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Abstract: Groundwater is an important natural resource in the North China Plain (NCP) with high 
economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation water 
requirements. In this review, the information is retrieved from high-quality articles published in 
MEDLINE and other sources. We saw that groundwater is declining faster (>1 m yr−1) and polluting 
with NO3- (>30 mg L−1) due to excessive water pumping and application of a nitrogen (N) fertilizer, 
respectively. The water pumping (>600 mm ha−1 yr−1) for agricultural purposes in the region is higher 
than the recharge amount (<200 mm yr−1). The low recharge is the result of low rainfall (<600 mm 
yr−1), and high evapotranspiration (>800 mm yr−1) under the impact of dominant vegetative charac-
teristics of winter wheat–summer maize (WW-SM) rotations, covering >80% of the land. Furthermore, 
N application exceeds the crop assimilation capacity (>250 kg ha−1 yr−1) and leach deep down (>50 
kg ha−1) as well as loss in the atmosphere. Presently, Beijing, Tianjin, and Hebei are ecologically the 
most affected areas. We suggest that excessive water and N fertilizer use for intensive cropping 
systems should be controlled by paying high attention to groundwater-friendly farming practices. 
In addition, artificial groundwater recharge options and their safe utilization would be explored 
across the region to replenish aquifers. This literature review contributes valuable insights to the 
knowledge bank and offers a foundation for further research and policy development. 

Keywords: groundwater depletion; degradation; cropping system; North China Plain;  
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1. Introduction 
The degradation and depletion of groundwater worldwide have become serious en-

vironmental problems that endanger ecosystem health and water security [1]. Rapid ur-
banization, industrial needs, and intensive agricultural irrigation all lead to unsustainable 
extraction rates, which lower water tables and deteriorate aquifers [2]. Over pumping for 
agricultural and urban water supply has resulted in significant drops in groundwater lev-
els in the Middle East, the United States, China, and the Indian subcontinent regions [3]. 
Climate change exacerbates the problem by changing precipitation patterns and affecting 
aquifers’ natural replenishment too [4]. Groundwater becomes unsafe for human con-
sumption due to pollution caused by inappropriate waste disposal, industrial discharges, 
and agricultural runoff [5]. 
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According to World Health Organization (WHO) estimation due to pollution prob-
lems, almost 2 billion people worldwide do not have access to clean drinking water [6]. 
Recharging aquifers, encouraging water use efficiency, and implementing effective irriga-
tion techniques are all examples of initiatives that are essential to sustainable groundwater 
management [7]. Reducing pollution and over-extraction is largely dependent on the es-
tablishment of strong monitoring programs, legal frameworks, and public awareness ini-
tiatives [8]. The necessity of sustainable groundwater management is emphasized by the 
2030 Agenda for Sustainable Development, particularly Goal 6 (Clean Water and Sanita-
tion), to protect the supply of clean water for present and future generations [9]. 

China is experiencing an over-extraction of groundwater from aquifers due to the 
country’s fast economic expansion, urbanization, and intensification of agriculture. Due 
to this, groundwater levels have decreased, land has begun to sink, and the quality of the 
water has gotten worse [10]. The overuse of water for agriculture in China is a major cause 
of groundwater depletion. Large-scale irrigation projects and the production of crops that 
require a lot of water have resulted in unsustainable rates of extraction, especially in north-
ern areas like the North China Plain [11]. Furthermore, a serious problem is the deteriora-
tion of groundwater quality, which is made unsafe for agricultural and drinking uses by 
untreated sewage, industrial discharges, and agricultural runoff [12,13]. Statistics of water 
consumption in 2020 are presented in Figure 1 [14]. 

 
Figure 1. China’s water uses in 2020 by types, (a) in billion cubic meters and (b) in percentage [14]. 

2. Overview of North China Plain (NCP) 
The NCP is located in the eastern coastal region of China (34°46–40°25′ N and 

112°30′–119°30′ E). The Yanshan mountain border from the north, south, and west is the 
Tailhang, Dabie, and Tianmu mountains, while from the east is the Yellow Sea boundary. 
The region is widely extended to Henan, Hebei, and Shandong provinces and merges with 
the Yangtze River in the north of Jiangsu and Anhui. Beijing is the national capital, Tianjin 
is a hub of industries, and Shandong is the base of petroleum. Thus, the region is the main 
economic and political center of the county [15,16]. 

The region has subtropical monsoon climatic conditions. Seasonally, dry cold air em-
anating from central Asian regions prevails from December to February, resulting in a 
temperature drop below −0 °C. The mean temperature during summer, particularly June 
to July, ranges between 25° and 28 °C, which are considered the hottest months. Thus, the 
region is classified into four distinct seasons based on changing weather year-round, in-
cluding spring (dry), summer (hot), autumn (windy), and winter (cold). The annual pre-
cipitation is highly variable (300–1000 mm) throughout the NCP, with a mean range from 
< 600 mm and about 70% rainfalls during the maize growing season from June to Septem-
ber [17]. Low rainfall makes the plain prone to drought. In the case of the current paper, 
a set of 50 years of weather data comprising 89 stations was obtained from China’s 
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National Meteorological Information Centre (NMIC). Generally, there is no balance be-
tween mean annual rainfall and evapotranspiration. The long-term climatic scenario in 
the North China Plain is presented in Figure 2. 

 
Figure 2. Long-term climatic scenario in the North China Plain [18]. The maximum, minimum and 
average temperature (A), rainfall and relativity humidity (B) in the region. 

In the case of soil characteristics of NCP, it is mainly fluvo-aquic; other types include 
meadow and coastal solonchak, saline meadow, saline swamp, sandy, and cinnamon. Il-
lite is the dominant layer silicate mineral; smectite, kaolinite, and chlorite are subdomi-
nant. In most counties, the saline and sodic soils are severe problems for agricultural sus-
tainability, where soil properties are affected by monsoon rainfall events, groundwater 
chemistry, and its depth, as well as surface water and variation in topographical charac-
teristics. The soils of most areas have low clay content [19,20]; however, it is suitable for 
most field crops. 

The double cropping of winter wheat–summer maize (WW-SM) rotation is the dom-
inant pattern throughout the regions, covering >80%. Hence, this region meets >60% of the 
national wheat and >30% of the corn demand of the country, and >50% of peanuts are also 
produced here. All these features make this region crucially self-sufficient in food [21]. 
The geographical boundary of NCP in China is shown in Figure 3.  

In agriculture, modern technology, mechanization, and fertilization greatly help 
boost crop productivity. Increased incomes dramatically changed the living standards of 
rural peoples, poverty levels dropped sharply, and extreme poverty was eradicated. For 
example, a significant increase in wheat yield (0.7 Mg ha−1) was observed in 2009 [22]. 
Nonetheless, with that success, the side effects became visible within a short period in 
terms of groundwater decline, and N pollution in the water bodies and air due to system-
atic change in crop cultivation such as overuse of irrigation and fertilizers [23,24]. The 
excessive water use in crop production system increased pressure on water-resources 
throughout the region and excessive chemical fertilizer application deteriorated water 
quality [25]. Approximately 15% of food production in China could reduce due to water 
shortage caused by continuous groundwater decline [26]. These concerns of groundwater 
depletion and N contamination have existed for a long time. NO3- has been found in shal-
low to deep aquifers [27]. A recent study [28] revealed that N contamination was domi-
nant with an excessive limit of water quality standards in farmlands due to the use of 
manures. Groundwater in villages is unsafe, and the consumption of water contaminated 
by high NO3- levels could cause several diseases in rural people [29]. 

In response to escalating environmental concerns, the government has taken proac-
tive measures through legislative actions. For instance, a prohibition on groundwater 
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pumping has been enforced along the fourth ring road of Beijing. Additionally, efforts 
have been made to advocate for eco-friendly policies, such as the implementation of the 
‘land fallow system’. This system encourages leaving soil unsown in regions heavily im-
pacted by groundwater depletion and pollution, particularly during the winter season. In 
2014, a document for water resources conservation was first proposed, and then NCP was 
selected as one of the leading ecologically degraded and NO3-contaminated zones. After 
that, researchers focused highly on the NCP, and many experiments were conducted. Re-
search is ongoing to overcome the problems [30,31]. The scientific outcomes are widely 
published. However, the latest review of the literature on the interaction between crop-
ping systems and their impact on the environment is not available, which can collectively 
provide results and recommendations abstracting from research papers. Therefore, in the 
current review, our objectives were (i) to highlight the environmental issues for ground-
water protection in NCP and (ii) to collect the latest scientific information from the litera-
ture and deposit it into the knowledge bank for researchers’ use, those working on eco-
system conservation. 

 
Figure 3. Major wheat and maize growing areas and geographical boundary of NCP in China. The 
map was prepared in ArcGIS version 10.2.2 using data source from Agricultural Handbook No.664 
of the United States Department of Agriculture (USDA). 

3. Environmental Challenges 
Currently, the entire NCP region is experiencing serious groundwater decline and 

NO3- pollution in water bodies due to the intensive double cropping pattern of WW-SM 
under the farmer management practices. There are >7.6 million tubewells throughout the 
region. The farmers of this region normally apply 6–7 times the irrigation in the WW-SM 

rotations by each time pumping >90 mm; thus, annual groundwater abstraction reaches 
>600 mm ha−1 [32], and (N) fertilizer application exceeds the crop utilization capacity of 
>250 kg ha−1 yr−1 [33]. Approximately >400 mm of irrigation water is applied to the winter 
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wheat crop. Consequently, enormous water pumping caused a >1 m yr−1 groundwater de-
cline [32] and overuse of N-contaminated groundwater via the NO3− leaching pathway 
[34]. In this paper, we have categorized NCP’s environmental problems as groundwater 
depletion and degradation through NO3- contamination, which are discussed below un-
der the sub-headings of 3.1 and 3.2. The historically measured groundwater water table 
drop is shown in Figure 4 and the present ecosystem scenario of the region is precisely 
illustrated in Figure 5. 

3.1. Groundwater Depletion 
Groundwater is an important natural resource in the NCP with high economic bene-

fits and social significance. It consists of four grouped layers of the aquifer. The first, sec-
ond, third, and fourth aquifers are about 40 m, 130 m, 220 m, and 350 m deep, respectively. 
The specific yield of aquifers varies between 0.04 and 0.25 m, depending on their rock 
material. Since the 1970s, frequent excessive water pumping has caused scarcity of under-
ground water reservoirs. Consequently, the first aquifer is already depleted, and now the 
second aquifer is going to be depleted because water pumping from the ground for crop 
purposes is quicker than it can replenish. The annual natural water refilling is low due to 
low rainfall intensity. The amount of water from rainfall cannot meet the recharge require-
ments. Therefore, the plain is the world’s fastest depleting groundwater region [11,35]. 
The situation can be even tighter in the near future, and the agricultural system may fluc-
tuate badly. For example, the water table is continuously decreasing every year in the 
counties along with the Beijing capital side, and the fast development of urban areas will 
further increase the demand for water and reduce its availability. Xiao et al. [36] reported 
that there is no balance between the water overdraft of a prevalent cropping pattern and 
groundwater recharge. Luo et al. [37] conducted a field experiment on different cropping 
patterns for 4 years and reported that WW-SM caused the highest groundwater level drop 
and had the lowest <128 mm recharge amount. 

Recently, Liang et al. [38] evaluated various cropping patterns and reported that the 
primary reason for groundwater decline was winter wheat. Wheat crop water consump-
tion was about 300–450 mm yr−1, which substantially exceeds the average annual rainfall 
of 280 mm yr−1 [39]. On the other hand, surface water resources are insufficient; ground-
water is the only strong source of irrigation [36], which accounts for 70% of the total water 
supply [40] and low rainfall could only meet 25–40% of crop water requirements [41]. 

Many studies have reported groundwater level drops and their causes by using dif-
ferent methodologies and techniques. Some researchers have used Geographical Infor-
mation Systems (GISs) to analyze water availability and geographic distribution. The GIS 
and its tools are widely used in agriculture. The management of crop yield, optimization 
of rotations, soil mapping, and analysis of groundwater vulnerability, storage potential, 
and flow are greatly visualized and estimated by using GIS for future strategies. There are 
several advantages of GIS, such as covering a wide area in the research, which is easier 
than manually measuring. For example, groundwater storage variation monitoring in 
mountain and arid regions is not only challenging but also time-consuming through rely-
ing on the observation of wells because the well observations are generally limited [42] 
and satellite missions such as the Gravity Recovery and Climate Experiment (GRACE) 
provide monthly changes in terrestrial water storage [43]. Feng et al. [44] used GRACE 
satellite data to estimate groundwater storage changes in the NCP during 2002–2014 and 
reported that groundwater is being depleted faster. Yin et al. [45] also estimated ground-
water drops and reported that groundwater was severely depleted, particularly in the Bei-
jing, Tianjin, and Hebei provinces. In a recent study, Kumar et al. [46] stated that NCP has 
an unsustainable groundwater level as compared to the south of China. Lin et al. [47] 
identified the hotspots within the Yellow River basin, where the water declination rate 
was relatively higher in the west and east areas of the river. This description indicates that 
groundwater security is quite important. Table 1 shows the different studies and estima-
tions about groundwater decline from 2001 to the present. The table contains local and 
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regional level outcomes of experimental work conducted in the NCP. We have calculated 
the average groundwater decline value as 1.18 m yr−1 from surveyed publications. The 
historically measured groundwater water table drop from July 1974 to June 2014 and its 
forecasted trend are shown in Figure 4 [48]. 

 
Figure 4. Historical groundwater water table drop in NCP [48]. 

3.2. Groundwater Degradation 
Environmental pollution is another serious problem of NCP. Heavy reliance on N 

fertilizers to boost grain productivity compared to the past created tough challenges for 
both agriculture and environmental sectors. It has been identified that agricultural farm-
ing causes more pollution than any other source [49,50]. A recent study showed that fer-
tilizer use increased by >30% in the past few years [51]. Intensive use of commercially 
available chemical fertilizers is hazardous to the ecosystem (Figure 5) as they are produced 
by blending with a range of trace metals [52]. A typical plant can uptake half of the applied 
N only, while the remaining enters water bodies via a deep drain in the process of leaching 
and is lost to the atmosphere through volatilization and denitrification pathways [53,54]. 
In the NCP, the normal N fertilizer application rate reaches >600 kg ha−1 yr−1, exceeding 
up to >250 kg N ha−1 yr−1 compared to the crop N requirement (CNR) for optimum growth 
and development [33]. The exceeded N is generally lost and consequently contaminates 
the environment since N, in the form of NO3−, is highly water-soluble and mobile. There-
fore, it moves and displaces freely with water through most types of soils. Approximately 
a 10–20% N loss takes place via leaching from the crop production system. Many research-
ers characterized the agriculture of the region as low-N-efficient. The N fertilizer efficiency 
is often <25% to 20% because farmers apply N through the broadcasting method, which 
is an inefficient method as compared to modern techniques. Ju et al. [55] reported that 
annual N application at the rate of >550 kg ha−1 did not increase yield and led to two times 
greater NO3− losses. Cao et al. [56] observed a peak of N fluxes at >180 kg N ha−1, and it 
was observed immediately after fertilization. Wang et al. [57] performed a meta-analysis, 
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covering >150 field measurements for N loss from an agricultural system. They stated that 
NCP is more widely affected by N contamination than any other region. Proper farming 
practices that keep the soil moisture and pH at the optimum levels would help decrease 
different forms of N losses such as NO- and NO3− [58], and Li et al. [59] examined cropping 
systems and found that the NO3− flux was closely related to irrigation levels and N ferti-
lizer application rates; <40 kg ha−1 NO3− leaching was observed when the N rate was <180 
kg ha−1, and maximum >50 kg ha−1 NO3− leaching was noticed when the N rate was >400 
kg ha−1 in combination with >300 mm irrigation. Technically, field water transports the 
excessive NO3− to deep groundwater; thus, it is the dominant pathway of NO3− deposition 
in groundwater [60]. The leached NO3− deteriorates both shallow and deep water with an 
estimate of >20 mg L−1. Recently, Wang et al. [28] compared different land use types, in-
cluding farmland, forestland, and areas that were under natural vegetation. They found 
that NO3− contamination in water reached up to 50 mg L−1 in farmlands because of manure 
use being >223 kg N ha−1 yr−1. This is an excessive limit of NO3- in the water following the 
water quality standard index and the World Health Organization’s (WHO) criteria for safe 
water [6]. The consumption of such highly degraded water for drinking could cause the 
conversion of hemoglobin to methemoglobin, which depletes oxygen levels in the blood, 
thyroid gland enlargement, congenital disabilities, stomach, colorectal, bladder, and 
breast cancer, and hypertension. Water that is contaminated with >10 mg NO3− L−1 is the 
most dangerous for the health of children. Furthermore, the complete details about how 
NO3-s adversely impact health are well elaborated in the specific literature of [29], where 
they specifically studied the N in relation to human health issues. In the case of the current 
paper, we have calculated the average value of NO3− contamination in the groundwater as 
48.67 mg L−1 from surveyed publications (Table 1). 

In this section on environmental problems, we found that groundwater depletion and 
N contamination are two serious challenges. These issues can be more complicated in the 
near future. How do we overcome these problems? What are the mitigation measures? 
We have given some options under the new heading, heading 3. 

 
Figure 5. A complete scenario of NCP, where Beijing, Tianjin, and Hebei are the most affected areas 
in terms of both groundwater depletion and degradation. ET: Evapotranspiration, IWR: Irrigation 
water requirement, DWR: Drinking water requirement [28,33,38,45,61–66]. 
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Table 1. Groundwater (GW) depletion rate and NO3- contamination in groundwater reported by 
different researchers. 

GW Depletion Location NO3− Level Location References 

0.10 m yr−1 Hebei to Tianjin 2.18 mg L−1 Eastern Taihang Moun-
tains 

[67,68] 

3.83 m yr−1 Zhangjiakou 178.7 mg L−1 Hutuo River Valley Plain [69,70] 
1.30 m yr−1 Luancheng 10.34 mg L−1 Baiyangdian Lake Area [71,72] 
0.33 m yr−1 Hebei  1.840 mg L−1 Beijing Urban Sides  [38,73] 
1.70 m yr−1 Shijiazhuang 70.40 mg L−1 Rural Beijing [74,75] 
0.59 m yr−1 Beijing and Tianjin 124.4  mg L−1 Hutuo River Plain [37,76] 
1.00 m yr−1 WR 6.230 mg L−1 Pinggu District  [77,78] 
1.60 m yr−1 Hebei 50.00 mg L−1 WR [28,79] 
1.10 m yr−1 Luancheng 184.6 mg L−1 Shandong  [66,80] 
1.14 m yr−1 Taihang Mountain 47.70 mg L−1 Catchment Areas of Hutuo [81,82] 
1.15 m yr−1 Hufu Plain  134.8 mg L−1 Baiyang Lake Area [83,84] 
1.25 m yr−1 WR 31.60 mg L−1 Beiyishui Watershed [30,85] 
1.50 m yr−1 Luancheng 10.00 mg L−1 Luoyang Basin Area [86,87] 
1.00 m yr−1 WR 29.60 mg L−1 Yellow River Sides [87,88] 
1.07 m yr−1 Taihang Mountains 13.40 mg L−1 WR [89,90] 
0.71 m yr−1 Piedmont Plain 56.80 mg L−1 Tangshan  [91,92] 
0.80 m yr−1 Xian 9.370 mg L−1 Hebei [93,94] 
1.21 m yr−1 Hebei  13.80 mg L−1 Beijing [95,96] 
1.00 m yr−1 WR 10.00 mg L−1 Huantai [97,98] 
0.45 m yr−1 Hebei 20.00 mg L−1 Quzhou [99,100] 
0.87 m yr−1 Ningjin  20.00 mg L−1 Shijiazhuang [101,102] 
1.10 m yr−1 Shijiazhuang 45.00 mg L−1 Beijing and Surroundings [103,104] 

Note: Hence, the average value of groundwater depletion is calculated as 1.18 m yr−1 from the sur-
veyed publications and the average value of NO3− contamination in the groundwater is calculated 
as 48.67 L−1. The classification of NO3− content levels: 0–3 mg L−1 (clean), 3–6 mg L−1 (lightly polluted), 
6–10 mg L−1 (polluted), and 10 or >10 mg L−1 (severely polluted) [105]. The WR indicates that the 
study reported on the whole region. GW is groundwater. 

4. Mitigation Options 
There are several mitigation options that could be taken in the NCP to overcome 

groundwater depletion and reduce the risk of water pollution. These include water saving 
and change in crop type, the ban on cereals, reduced and soil test-based N application, 
use of slow-release coated urea, and optimum irrigation to minimize the risk of N 
transport in the groundwater through deep drainage. All these options fall in the category 
of a cropping system. Therefore, a change in the cropping system has high potential [38] 
and has been found to be the most commonly used approach in the literature related to 
NCP published by researchers. Other options, including artificial recharge by utilizing 
urban and industrial wastewater, could be significant as well. However, brackish water 
should not be used on high land [5]. It is somewhat suitable only for lowlands as a substi-
tution for freshwater [105]. In Figure 6, some broad options are enlisted where sub-com-
ponents are classified with their potential level. 
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Figure 6. Environmental problems of NCP and their mitigation options with componential potenti-
ality levels classified in [106]. A, Very high; B, High; C, Low; D, Not appropriate/not well studied. 
This chart is modified considering current research trends [39,81,107]. 

4.1. Cropping System Change Option 
The cropping system is a broad idea, where selections of crop type and cultivation 

practices are critically important. A cropping system should be environment-friendly and 
socio-economically viable. 

4.1.1. Groundwater Neutral Cropping Pattern 
The current cropping pattern of winter wheat–summer maize is unsustainable. 

Therefore, other options like a monoculture of spring maize or adopting any alternative 
cropping pattern could be eco-friendly. The annual crop water requirement of spring 
maize would not be >350–551 mm [108]. The plots of three harvests in a two-year pattern 
of winter wheat, summer maize, and spring maize or one harvest in one year demon-
strated significant potential to reduce water and N consumption, produce maximum grain 
yield, and maintain groundwater balance [38]. Meng et al. [22] studied various crop rota-
tions in long-term field experiments from 2004 to 2010 and reported that although >70 mm 
of water can be saved by optimizing the irrigation schedule in a double cropping pattern 
as compared to the conventionally managed field, the annual groundwater utilization of 
250 mm was still high, where >70% water was consumed only by the wheat crop. At the 
same time, the triple cropping pattern and monoculture saved 35–61% water with a minor 
decrease in wheat grain yield. These cropping patterns would decrease 94–190 mm of an-
nual groundwater demand. 

In addition, the 59–72% N rate can also be reduced by adapting alternative patterns 
against conventional double cropping patterns. Yang et al. [66] evaluated five cropping 
patterns in which many crop species were included. The results showed that WW-SM rota-
tion had the highest evapotranspiration (ET) rate of 734 mm yr−1 compared to any other 
cropping pattern. Therefore, they observed a maximum groundwater decline of 1.1 m yr−1 
and low WUE and a minimum groundwater decline of 0.4 m yr−1 with high WUE from 
sweet potato–cotton–sweet potato–winter wheat–summer maize in a 4-year cycle. Many 
other researchers also evaluated WW-SM in comparison with alternative cropping patterns 
and suggested optimizing cropping patterns. Recommendations include winter wheat–
early maize–early maize–fallow [109], alfalfa–winter wheat [57], peanut–winter wheat–
summer maize [39], winter wheat monoculture [110], sweet potato–cotton–sweet potato–
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winter wheat–summer maize [66], and sole summer maize [111]. Furthermore, Table 2 
shows some recommendations with supporting comments for the development of 
groundwater water-neutral cropping patterns. However, replacing a double cropping sys-
tem of winter wheat–summer maize with a new cropping system could cause grain pro-
duction decline in the region. 

Table 2. Some recommendations for groundwater water conservation under the cropping pattern 
change option. 

Recommendations Supporting Comments for Recommendations References 
WW-SM-SPM  Water conserved up to 284 mm  [22] 
WW-SM-SPM  Lowered groundwater decline by 0.33 m yr−1  [38] 

SP-C-SP-WW-SM The system showed less groundwater decline by 0.4 m yr−1 [66] 
WW-SM-SPM-SPM N fertilizer can be reduced up to 30–50% in the system [112] 

WW-EM-EM-F Increased water saving of 2322 × 106 m3 [113] 
SM-monoculture Showed 30% low water overdraft [111] 

2Y3MS1 Balanced groundwater overdraft [114] 
Ww-SMOpt Saves 62% of groundwater use (minimum irrigated) [115] 

Catch crops  Decreased 23.6% drainage and 32.8% NO3− leaching  [116] 
Mixing switchgrass Lowered water table drop by 0.4 m yr−1 [75] 

SPM × SOY Increased land utilization rate by >40%  [117] 
Alfalfa-WW Reduced water consumption by 70.5% and NO3− leaching by 35% [57] 

WW-SM-SPM-SPM Resulted in less groundwater drop of 0.07 m yr−1 [37] 
SS-WW Mitigate groundwater decline through fewer evaporations [118] 

Early maize only It had 190 mm less groundwater overdraft  [112] 
WW-SM-F-SPM Revealed low water overdraft by 150 mm yr−1 only [113] 

SPM-monoculture Showed 31% high grain yield via minimum water use [119] 
PN-WW-SM The system had 19% low evapotranspiration  [39] 
CT-WF-ESM Exhibited 33.7% higher water utilization [120] 

WWOpt-no-till Reduced risk of groundwater drop  [110] 
WW-watermelon Consumed low water and N fertilizer [121] 
SPM-monoculture Showed lowest, 139 mm yr−1, water consumption [122] 

Note: Hence, the change in cropping pattern is recommended by rejecting the conventional crop-
ping pattern of WW-SM based on surveyed publications. WW: Winter wheat, SM: Summer maize, EM: 
Early maize, F: Fallow, PN: Peanut, SOY: Soybean, SPM: Spring maize, SS-WW: Sweet sorghum–Winter 
wheat, CWF-ESM: Cotton–Wheat fallow–Early summer maize, SP-C-SP-WW-SM: Sweet potato–Cotton–
Sweet potato–Winter wheat–Summer maize, CT: Cotton, WF-ESM: Winter fallow–Early summer 
maize. 

4.1.2. Groundwater-Friendly Farming Practices 
Many studies evaluated farming practices to better understand the impacts of field 

management on groundwater. Along with the change in the cropping pattern, different 
farming techniques should also be considered, such as root-zone watering, low N appli-
cations, and deficit irrigation [53], and limited water supply to the conventional WW-SM 
could reduce 15 to 35% water consumption by increasing 10 to 30% WUE [123]. Xu et al. 
[124] revealed that improved farming practices and technology have shown good results 
by reducing >60% of N and >50% of water loss by sloping croplands; together, 20% of crop 
productivity also improved. Still, there are several challenges for sustainable water and 
nitrogen use. A breakthrough is required in a series of agricultural technologies, including 
efficient crop production, mechanization, and standardization, which can help to achieve 
sustainable yield goals by protecting and restoring natural resources. This would all be 
possible through enhancing WUE and NUEs, which are associated with farming practices. 
Advance farming practices include the use of new drip, sprinkler, central pivoted, and 
subsurface irrigation technology, as well as the application of slow-release N and Nano 
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fertilizers. Nowadays, easy-to-use remote sensors have also been invented for farmers’ 
use, so they can analyze CWR very quickly by themselves without going to laboratories 
and finding specialists, but such technology is not successfully transferred to the farmers. 

Furthermore, there is a lack of awareness among the farmer community due to edu-
cation factors. If farmers apply water via a drip and nitrogen after testing soil moisture 
and N concentration and follow the integrated agronomical strategy, then excessive use 
of water and N could be reduced in the region. For example, Meng et al. [22] saved 19% 
water and two times more NUE via soil testing than farmer practice in the WW-SM field 
and also obtained optimum grain yield. Sun et al. [122] achieved 5.4 kg ha−1 mm−1 greater 
WUE as compared to the conventionally managed field of WW-SM rotations. Similarly, 
Chen et al. [125] prevented 85.2% NO3− leaching through an analysis. There are several 
studies concerning farming practices; Yan et al. [126] conducted a field experiment on the 
maize crop from a plant density aspect and suggested 7.5 plants m−2 as optimum for en-
hanced crop N utilization. Li et al. [127] performed an experiment on irrigation methods 
and concluded that raining of irrigation (RI) to the crop via a sprinkler was the best prac-
tice compared to conventional border irrigation (BI). They also found that the RI system 
increased by 64.8% WUE. Yan et al. [126] suggested that wide precision planting enhanced 
both WUE and NUE. Hu et al. [128] recommended the use of slow-release coated urea for 
maximum N recovery. 

These findings are pioneering and would significantly help to improve farming prac-
tices for groundwater sustainability. A list of recommendations is presented in Table 3 for 
developing groundwater-neutral farming practices and controlling NO3- transport in the 
groundwater. 

Table 3. Some recommendations for groundwater water conservation under optimized farming 
practices. 

Recommendations Supporting Comments for Recommendations References 
<200 kg N ha−1 Because >200 kg N ha−1 caused N leaching from WWSM [24] 

Larger spike wheat  Larger spike wheat showed N efficiency >10%  [25] 
Straw incorporation Significant inhibited annual N loss of about 31%  [58] 

75 mm watering  From jointing to booting stages in WW showed excellent result  [69] 
394 mm water yr−1 Showed as optimum for WW-SM rotations [75] 
330 kg N ha−1 yr−1 Reduced N losses by 34% from WW-SM field [39] 
Soil test-based N 85.2% NO3− leaching can be reduced from the wheat field [125] 

7.5 plants m−2 Showed higher NUE of maize than plant density, 9.0 m−2 [126] 
Subsoiling tillage (ST) Water storage capacity increased in 2 m soil layer [129] 

ETWatch-UZF-MODFLOW Improved the groundwater balance for shallow aquifers [130] 
Drip irrigation Proven as efficient irrigation method in water-scarce area [46] 

BI→RI RI showed 64.8% WUE compared to conventional BI [131] 
FP → OPT Significantly decreased N loss by 28.6% in WW-SM [132] 

43 kg N ha−1 Concluded as the optimum ecological dose for maize [133] 
Sprinkler irrigation Lowered water consumption and improved WUE (17.7%) [134] 

N via fertigation Reduced risk of NO3− contamination in groundwater  [135] 
Wide planting Enhanced WUE and NUE compared to traditional method  [59] 

CTS → NTS NTS significantly decreased NO3- leaching losses [136] 
Use of coated urea  Slow-release coated urea increased maximum N recovery  [128] 

Conservatory tillage  30.1% WUE was improved compared to conventional tillage [137] 
5-day-delay sowing  ET was decreased by 3.5 mm day−1 for wheat [138] 
Mulching in maize Reduced soil evaporation loss by 40–50 mm yr−1 [139] 

Note: Hence, the optimized farming practices are recommended by rejecting conventional cultiva-
tion practices in light of surveyed publications. BI: Border irrigation, RI: Raining irrigation, FP: 
Farmer practice, OPT: Optimized practice, CTS: Conventional-tillage system, NTS: No-tillage sys-
tem. 
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4.2. Groundwater Recharge Option 
Integrated use of options such as a change in the cropping system plus aquifer charge 

should be preferred to conserve natural resources because the shallow aquifer is already 
depleted, and the deep aquifer is under stress in the region. Artificial recharge of aquifers 
is a great technique for groundwater recovery and improving water availability. It can 
help to solve many problems associated with water scarcity, including low crop produc-
tivity issues, land subsidence, intrusion of seawater, particularly in the Tianjin coastal 
area, and ecosystem damage. The artificial recharge of groundwater is becoming a neces-
sary measure over time because natural recharge is low in the region. For instance, Cao et 
al. [140] and Min et al. [141] conducted research on groundwater recharge in the NCP and 
found that the mean groundwater recharge was 130 and 200 mm yr−1 during the period 
between 1993 and 2008 and 1976 and 2013, respectively. In a recent study, Min et al. [142] 
reported the groundwater recharge rate as 92.80 mm yr−1 in the central plain areas. There 
is a significant difference in groundwater recharge from area to area in the region. Ap-
proximately 89 mm yr−1 of groundwater is recharged through rainfall contribution [143] 
and >40 mm yr−1 comes from irrigation [144]. Generally, natural groundwater recharge in 
the region is influenced by some biotic and abiotic factors, i.e., the vegetation type, pre-
cipitation, soil properties, especially texture, and amount of irrigation to the crop. Every 
year, the increase in the cultivated area increases the annual rate of ET and thus reduces 
recharge [134]. The magnitude of natural recharge depends on precipitation events. The 
recharge of <100 mm yr−1 and <200 mm yr−1 could be classified as rainfall representation 
of 18% and 30%, respectively. Scientifically, precipitation undergoes various evaporative 
effects before recharging the groundwater [140]. In this paper, groundwater recharge has 
been calculated from the surveyed publications with an average value of 121.96 mm yr−1 
(Table 4). This recharge amount of water is insufficient, considering figures of groundwa-
ter obstruction in the region. Therefore, artificial groundwater should be considered. It 
has been estimated that >40 b m3 of water could be stored underground via artificial re-
charge [145]. After a deep search of the literature, we found that a few government projects 
are running for groundwater recharge, including the Chaobai river (spreading basin), 
Yongding river (trench + well injection), and Tanggu section (deep well injection). The first 
two schemes are being used to enhance groundwater storage. As a result, groundwater 
has risen to a satisfactory level, and the decline has slowed as compared to the historical 
background of selected areas. At present, the new South-to-North Water Transfer 
(SNWTP) project is being highly appreciated. It is called the “Silver bullet” and can restore 
the groundwater when it will be fully operational. This project has been designed to de-
liver 20 b m3 yr−1 to address the water shortage issue of the region [146]. This kind of gov-
ernment effort would be a key to recovering groundwater storage, but the government 
should also take some low-cost steps for local-level groundwater recharge methods, such 
as commonly rural peoples harvesting rainfall water in wells, ponds, ditches, and basins 
for crop production, which is greatly helping to restore and sustain the groundwater. En-
couraging such human activities through technology and finance will provide better re-
sults in conserving groundwater reservoirs. The digging of ditches and small basins inside 
the crop land and on the wasteland could save an ample amount of water, which will 
serve as recharge sources after pumping. On the other hand, urban and industrial 
wastewater should be well utilized after primary or secondary treatment. It should be 
regarded as a valuable water resource for not only groundwater recharge but also for 
farming use since the amount of urban and industrial wastewater is very high. For exam-
ple, the Hai river basin generates about 10,000 mm3 yr−1. The proper wastewater harvest-
ing and recycling will also carry surface drainage waters, including rainfall, which will be 
additionally advantageous to solve the problems related to wastewater management. It 
would minimize the risk of pollution caused by the wastewater discharge. However, there 
are some institutional and technical constraints to effectively harvest wastewater and re-
use it [114]. A better strategy and joint work of ministries such as Water and land and 
resources, Agriculture, Environmental protection, Housing, and Urban and rural 
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development would be useful to overcome technical matters since the subject of ground-
water management is widely fragmented among these ministries. Some literature showed 
that urban wastewater was utilized in a few severe water shortage areas for crops and 
groundwater recharge without adequate measures, which resulted in the deterioration of 
underground water through NO3− contamination [79]. 

Strategies such as rainwater harvesting and artificial recharge for groundwater show 
possibilities in mitigating groundwater depletion and deterioration [147]. Rainwater is 
collected and stored for a variety of uses, which is known as rainwater harvesting. This 
technique offers an alternative water source that can lessen the need for groundwater for 
household and agricultural requirements by collecting rainfall runoff from rooftops or 
other surfaces [148]. This is an economical and ecologically sustainable method that may 
be applied at many levels, ranging from individual dwellings to more extensive commu-
nity-wide initiatives [147]. Intentionally accelerating the natural process of water penetra-
tion into the earth is known as artificial recharge of groundwater. Spreading grounds, in-
jection wells, and recharge basins are involved in some of the techniques that can be used 
to accomplish this [149]. These methods successfully recharge aquifers and mitigate the 
detrimental consequences of excessive groundwater extraction by facilitating the percola-
tion of water into the soil [150]. Groundwater quality is enhanced and groundwater levels 
are restored via both artificial recharge and rainfall harvesting. When rainwater percolates 
through the soil during artificial recharge, pollutants are naturally filtered away, and it is 
usually devoid of the toxins commonly present in surface water. Thus, these approaches 
provide a dual advantage by raising the amount of accessible groundwater and improving 
its overall quality [149,151]. 

Table 4. Groundwater water recharge reported by different researchers. 

Recharge Area Reference Recharge Area Reference 
102.0 mm yr−1 WR [65] 177.0 mm yr−1 Lacustrine plain sites [152] 
65.00 mm yr−1 WR [99] 90.00 mm yr−1 WR [144] 
120.0 mm yr−1 Central plain [140] 108.0 mm yr−1 Liaocheng city [153] 
200.0 mm yr−1 WR [141] 85.80 mm yr−1 Luancheng [154] 
92.80 mm yr−1 Central plain [142] 168.0 mm yr−1 Weishan district  [155] 
130.0 mm yr−1 WR [156] 126.8 mm yr−1 Shijiazhuang [157] 
188.0 mm yr−1 Cangzhou [158] 63.80 mm yr−1 Tongzhou [159] 
180.0 mm yr−1 Piedmont plain [160] 138.7 mm yr−1 Hebei [161] 
150.0 mm yr−1 Taihang mountains [133] 124.3 mm yr−1 Hengshui [162] 
134.0 mm yr−1 Luancheng [163] 175.0 mm yr−1 Hebei [164] 

Note: Hence, the average groundwater recharge value is calculated as 121.96 mm yr−1 from the sur-
veyed publications. The WR indicates that the study reported on the whole region. 

5. Conclusions and Future Perspective 
In the current review, we found low average groundwater recharge, faster decline, 

and higher NO3− contamination via combined studies of local and regional level research 
papers. The conventional cropping system is a primary cause of ecosystem damage. The 
scenario could be severe in the future due to the rapid increase in the human population, 
which will demand more food and a safe water supply. Continuously declining ground-
water reservoirs will result in water scarcity for both drinking and crop cultivation. Food 
production could be decreased due to water shortage. Information presented in this doc-
ument would be useful for researchers when referencing the North China Plain in agri-
culture, hydrology, and environmental studies. 

In the context of the above-mentioned facts, some valuable suggestions are provided 
below: 
 The government should take some steps to control excessive groundwater pumping 

and the application of nitrogen fertilizers. 
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 Farmers would be facilitated with highly efficient irrigation and nitrogen application 
systems. 

 Control measures for NO3- leaching in the field should be well studied via large-scale 
research. 

 The groundwater recharge rate should be determined with the response to rainfall 
intensity throughout the region. 

 Artificial recharge options should be explored in every part of the region, the actual 
amount of water should be quantified, and safe utilization should be ensured via 
modern technology to minimize the risk of NO3− transport in the groundwater. 
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