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Abstract: The study of the seepage and heat transfer law of three-dimensional rough fractures is
of great significance in improving the heat extraction efficiency of underground thermal reservoirs.
However, the phase transition effects of fluids during the thermal exploitation process profoundly
influence the intrinsic mechanisms of fracture seepage and heat transfer. Based on the FLUENT
2020 software, single-phase and multiphase heat–flow coupling models were established, and the
alterations stemming from the phase transition in seepage and heat transfer mechanisms were
dissected. The results indicate that, without considering phase transition, the geometric morphology
of the fractures controlled the distribution of local heat transfer coefficients, the magnitude of which
was influenced by different boundary conditions. Moreover, based on the Forchheimer formula,
it was found that the heat transfer process affects nonlinear seepage behavior significantly. After
considering the phase transition, the fluid exhibited characteristics similar to shear-diluted fluids
and, under the same pressure gradient, the increment of flow rate was higher than the increment
in the linearly increasing scenario. In the heat transfer process, the gas volume percentage played a
dominant role, causing the local heat transfer coefficient to decrease with the increase in gas content.
Therefore, considering fluid phase transition can more accurately reveal seepage characteristics and
the evolution law.

Keywords: seepage heat transfer; heat–flow coupling; nonlinear seepage; phase transition

1. Introduction

Hot dry rocks (HDRs) generally refer to subsurface rock bodies with temperatures
exceeding 200 ◦C and burial depths exceeding 3 km [1]. Due to the substantial heat content
in HDRs, they are often utilized in the development and utilization of geothermal resources.
In the development process, to ensure the extraction of a viable and powerful future energy
source from HDRs, enhanced geothermal systems (EGS) have come into existence [2]. In
the operation of EGS, this mainly involves pumping low-temperature water into the hot
rock area to facilitate heat exchange [3]. This implies that during the heat extraction process,
due to significant temperature differences and efficient convective heat transfer, water in
the fractures often undergoes phase transition, resulting in multiphase flow [4]. However,
influenced by heat–flow coupling, fluids often exhibit significant nonlinear effects in rock
fractures [5]. Therefore, a clear understanding of the nonlinear flow mechanisms and
heat transfer mechanisms of multiphase fluids under phase transition effects is crucial for
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simulating the movement of underground hot water, predicting temperature distribution
in geothermal reservoirs, and optimizing geothermal energy development.

In the research on EGS, the working fluid was initially considered to flow and exchange
heat in parallel plate fractures [6]. However, neglecting the roughness of the fracture surface
can lead to significant errors in the calculation results [7]. Tsang [8] pointed out in a study
that using a parallel plate model to simulate rough fractures can result in errors of one to
two orders of magnitude in the calculated flow rates. Li et al. [9] also proposed through
experiments that the roughness of the rock fracture surface will to some extent enhance the
overall heat transfer intensity. Huang et al. [10] also suggested that without considering the
roughness of the fracture, there would be significant errors in the calculation of convective
heat transfer coefficients. Therefore, the process of convective heat transfer should be
simulated based on the actual conditions of rough fractures.

Thus, to quantitatively describe the geometric morphology of fractures, Mandel-
brot [11] proposed fractal geometry theory. Wang et al. [12], based on this theory, divided
the fracture surface into first-order roughness with large-area undulations and second-order
roughness with undulations only in local regions. Tian et al. [13], using the successive ran-
dom accumulation method, constructed rough fractures with different fractal dimensions
and standard deviations, and indicated that the overall heat transfer characteristics weaken
with an increase in fractal dimension and a decrease in standard deviation. Huang et al. [14]
quantified the surface morphology of fractures using the joint roughness coefficient (JRC)
and conducted experimental research, indicating that the influence of fracture roughness
on the heat transfer process cannot be ignored. Tatone et al. [15] and He et al. [16] pro-
posed that the maximum apparent dip angle and root mean square of the fracture profile
characterize the geometric morphology of fractures. They believed that the rougher the
fracture, the greater the heat transfer. To analyze the relationship between heat transfer
conditions and the local roughness of fractures, He et al. [17] adopted profile waviness to
reflect the local geometric conditions of fractures and recognized that the larger the profile
waviness, the smaller the local heat transfer coefficient. Through the study of heat transfer
in rough fractures, parameters such as fluid injection velocity, injection temperature, initial
temperature of the rock layer, crack width, confinement pressure, and wall roughness all
influence the heat transfer mechanisms of fractured reservoirs [18,19]. However, limited
by the development of experimental equipment, current research is generally conducted
on heat transfer processes at low temperatures with a certain gap from the actual tem-
peratures of HDRs [20,21]. Therefore, there is no phase transition of the fluid during the
experimental process.

Thus, to gain a deeper understanding of the flow structure and movement characteris-
tics of immiscible two-phase flow, Zhou et al. [22] analyzed the permeation mechanism of
oil-water two phases under the influence of temperature through experimental analysis.
Chen et al. [23] proved through visualization experiments and theoretical analysis that the
flow geometry of fluid was controlled by the fracture geometry of the rough fracture. Some
researchers [24,25] have also conducted thermo-hydrodynamic analyses of two-phase flow
in heat pipes or microchannel coolers. However, constrained by the small-scale parameters
of microchannels and the slip boundary at the fluid–solid coupling interface [26,27], the
fluid’s motion state is markedly different from that of high-temperature fractured fluid. In
one study, Kiani [28] mentioned that in inclined single-walled carbon nanotubes (SWCNTs),
a longitudinal magnetic field can be exploited as an effective method to control transverse
vibrations of SWCNT-conveying fluids. However, in fractures of rock masses, parameters
such as fracture aperture, confining pressure, and fracture roughness can induce changes
in fluid flow behavior [29–31]. Therefore, in order to analyze the mechanism of flow non-
linearity, Liu et al. [32] suggested through experiments and numerical simulations that the
rougher the fracture, the more likely it is that nonlinear seepage will occur. Xiong et al.
conducted low-flow seepage experiments on fractures with five different roughnesses and
found that the larger the fracture roughness, the smaller the critical Reynolds number, and
the more pronounced the nonlinear effect [33]. Despite many achievements in multiphase
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flow and heat transfer, the mechanisms of seepage and heat transfer under phase transition
effects remain unclear. Therefore, it is essential to conduct further detailed research into its
internal mechanisms.

In general, seepage and heat transfer processes in underground thermal reservoirs
involve intricate heat–flow coupling and nonlinear mechanisms. Fluid phase transition
is expected to exert a significant influence on both phenomena. Therefore, to analyze the
underlying principles, based on FLUENT 2020 software, this research paper chose rough
fractured rock as the research object and established single-phase and multiphase heat–flow
coupling models. By comparing the differences in flow behavior and heat transfer with
and without considering phase transition, we further investigated the flow mechanism and
heat–flow coupling mechanism during phase transition. The aim was to explore multiphase
flow and nonlinear flow laws in the process of heat–flow coupling in rough fractured rock.

2. Materials and Methods
2.1. Methodology
2.1.1. Interface Tracking in Multiphase Flows

Regarding interface tracking in multiphase flows, various methods have been pro-
posed by scientists, such as the volume of the fluid (VOF) model [34], level set function
method [35], and front track method, among others. Compared to other algorithms, the
advantage of the VOF model in terms of efficiency is quite apparent. Therefore, the VOF
model was employed to simulate boiling fluid in this study. In the VOF model, each phase
in a cell is assigned a volume fraction, and the sum of volume fractions for all phases within
the cell is equal to 1.

α1 + α2 = 1 (1)

where α1 and α2 are the volume fractions of the liquid and gas, respectively.
Information about the distribution of phase interfaces can be directly extracted from

the volume fractions. For example, when the volume fraction is 0 or 1, the computational
grid is either empty or filled with liquid. After solving the volume fractions for all the
grids, as the constructed phase interfaces are discontinuous, a piecewise linear method is
employed to geometrically reconstruct the phase interfaces [36].

2.1.2. Heat–Flow Coupling Control Equation

In this study, the finite element software FLUENT 2020 was used to solve the control
equation, considering that the HDR had extremely low permeability and assuming that the
rock mass was impervious and the fluid incompressible. Figure 1 is a schematic diagram of
the seepage and heat transfer process of rough fractures, which conceptually represents the
heat transfer process of fluid through rough fractures. The fluid flows and transfers heat at
the initial velocity Vin (m/s) and initial temperature Tin (K) from the inlet along the fracture
surface with an aperture of δ (m) and flows out from the outlet at temperature Tout (K); the
upper and lower walls are the thermostatic boundaries with a temperature of Twall (K) and
the left and right walls are insulated walls. The heat transfer process between multiphase
fluids and rock mass follows continuity Equations (2) and (3) and N-S Equation (4).

∂α1

∂t
+∇(α1u1) = −Sm

ρ1
(2)

∂α2

∂t
+∇(α2u2) =

Sm

ρ2
(3)

ρ
∂u
∂t

+∇ · (ρuu) = −∇p +∇ ·
(

µ
[
∇u + (∇u)T

])
+ ρf (4)

where Sm is the phase transition mass source term determined by the Lee mode [37]:

Sm =

{
C1α1ρ1(T − Tsat)/Tsat , T ≥ Tsat
C2α2ρ2(T − Tsat) /Tsat, T < Tsat

(5)
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where ρ1 and ρ2 are the density (kg/m3) of the liquid and gas, respectively; u and p are the
velocity vector (m/s) and pressure (Pa). µ and ρ are the average dynamic viscosity (kg/m·s)
and average density (kg/m3) of the control body. Tsat is the saturation temperature (K).
C1 = C2 = 100 s−1; f is the interfacial force source term caused by surface tension.
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The energy equations for rocks and fluids satisfy the following equation:

∇•(−Kr∇Tr) = 0 (6)

∂ρe
∂t

+∇[u(ρe + p)] = −∇•(kw∇Tw) + Sq (7)

In the evaporative condensation model, the phase transition energy source term Sq
(W/m3) and the specific energy of the control body e (J/kg) satisfy Equations (8) and (9):

Sq = h f gSm (8)
e = (α1ρ1e1 + α2ρ2e2)/(α1ρ1 + α2ρ2)
e1 = Cp,1(Tw − 298.15)
e2 = Cp,2(Tw − 298.15)

(9)

where Kr and Tr are the thermal conductivity (W/m·K) and contact wall temperature (K)
of the rock, respectively; Cp,1 and Cp,2 are the specific heat capacity (J/kg·K) of liquid
phase and gas phase water; Tw and kw are water temperature (K) and water thermal
conductivity (W/m·K), respectively; and h f g is the latent heat of vaporization (J/kg) at the
corresponding pressure.

It should be noted that for the single-phase heat–flow coupling model that did not
consider the effect of fluid phase transition, the volume fraction and the phase transition
mass source term in the control equations satisfied α1 = 1 and Sm = 0, respectively. In this
case, only the liquid phase fluid was involved and there was no heat source term inside
the fluid field. When the temperature of the fluid reached the saturation temperature, the
temperature continued to rise without causing the phase transition phenomenon. For the
multiphase heat–flow coupling model considering the effect of evaporation, the phase
transition phenomenon occurred in the fluid after the temperature reached the saturation
temperature. The phase transition mass source term within the fluid was no longer zero
and the mass of the liquid phase fluid gradually decreased. The gas volume percentage
and the mass of the gaseous phase fluid within the unit incrementally increased.

2.1.3. Convective Heat Transfer Coefficient

The convective heat transfer coefficient is a key parameter to measure the heat transfer
characteristics of fluid. Many researchers derive the convective heat transfer coefficient
by using Newton’s cooling law and the temperature variation of the fluid after heat
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absorption [38,39]. To more accurately calculate the local convective heat transfer coefficient,
the fluid domain was discretized again based on the maximum grid size of 0.15 mm. As
shown in Figure 2, the fluid domain was uniformly divided into four layers in the aperture
direction, so the temperature of the fluid at position x is the average of the temperatures
of the four layers. The temperature of the rock mass was determined by the average
temperature of the upper and lower rock wall units. Finally, Equation (10) was adopted as
the calculation formula for the local convective heat transfer coefficient.

hlocal =
Cρuδ(Tw,x+1 − Tw,x−1)

2lx

(
Tf 1,x/2 + Tf 2,x/2 − Tw,x

) (10)

where δ is the aperture of the fracture (m), satisfying δ = 4 × 10−4 m; C is the average
specific heat capacity of the control body (J/kg·K) for the multiphase fluid, satisfying
C = α1Cp,1 + α2Cp,2; ρ is the average density (m3/kg) for the multiphase fluid, satisfying
ρ = α1ρ1 + α2ρ2; and lx is the length of the fluid unit, satisfying lx = 1.5 × 10−4 m; Tw,i,
Tf 1,i and Tf 2,i are the temperature (K) of water, the upper and lower walls at position
i, respectively.
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2.2. Methods
2.2.1. Construction of Single-Phase and Multiphase Heat–Flow Coupling Models

Through the Brazilian splitting test, cylindrical granite rock samples with a diameter
of 50 mm and length of 100 mm were used to prepare fracture surfaces with roughness.
The two split rock specimens were closed together, and a photograph of the end face was
taken of them in their natural state. Then, based on the captured images, the ratio of
the fracture aperture to the diameter of the rock sample was calculated. Finally, based
on this ratio, the average aperture of the fracture was determined to be 0.4 mm. The
geometric data of the fracture surface were obtained using a blue light 3D scanner with
an accuracy of 0.01 mm. Subsequently, noise reduction and optimization processing were
applied. To avoid the influence of edge damage caused by the splitting process on the
fracture surface, as well as the widespread use of small-scale models in heat and transfer
research [40,41], a local region of the fracture surface (15 ≤ x ≤ 35, 30 ≤ y ≤ 70) was divided
using CAD modeling software SolidWorks 2020 (Figure 3). Next, a 3D rough fracture model
with uniform apertures was constructed within this region. Finally, the geometric model
was imported into Workbench Meshing for grid generation. During the meshing process,
tetrahedral elements were employed to reduce discretization errors on the fracture surface.
Additionally, boundary layer meshing was applied to simulate a no-slip boundary on
the fracture surface, refer to Figure 4 for details. In order to obtain mesh-independent
results for each specific geometric model, we determined the final number of grids of
each specific geometric model by sensitivity analysis. The specific procedure involved
controlling the maximum grid size in the fluid domain to obtain different numbers of grids.
Subsequently, models with different numbers of grids were solved, and the temperature
values at the outlet were monitored after convergence. The results for calculations with
different numbers of grids are presented in Table 1. It can be observed that as the grid
was further refined, the computational results eventually stabilized, but the computation
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time increased. Therefore, the maximum grid size at the contact wall and within the fluid
domain was ultimately controlled to be no larger than 0.15 mm.
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Table 1. Mesh independence validation table for the model.

Maximum Size of
Grid (mm)

Number of Grids
(×104)

Outlet Temperature (K)

Single-Phase Multiphase

2.5 33 373.870 374.165
2.2 58 368.974 369.014
1.9 90 370.042 370.634
1.5 148 369.843 370.455
1.2 170 369.851 370.435
1 230 369.850 370.437

As shown in Figure 5, the upper and lower contact surfaces between the fluid and
the solid were impervious non-slip walls, i.e., u = 0 m/s. The front and rear walls were
set as thermal insulation boundaries, i.e., ∂T/∂n = 0, and the upper and lower walls were
constant temperature boundaries, i.e., T = Twall K. The inlet of the fracture was set as a
given temperature and flow rate, i.e., T = Tin.K and u = Vin m/s, and the outlet boundary
condition was set as zero pressure, i.e., P = 0 Pa.
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In the flow field region, the influence of initial fluid characteristics on the flow field
and temperature field was studied by varying the inlet flow rate Vin and inlet temperature
Tin, and the fluid motion state was a laminar flow. In the solid region, the influence of
solid wall characteristics on the convective heat transfer effect was studied by taking the
wall temperature Twall . The above four variables were divided into six groups according to
whether the phase transition worked, namely, V1 and V2 with different inlet flow rates, Ti1
and Ti2 with different inlet temperatures, and Tw1 and Tw2 at different wall temperatures,
and then group Φ was set up for flow nonlinear effects, see Table 2 for specific settings.
It should be noted that the single-phase and multiphase heat–flow coupling models had
the same model scale, fracture surface data, grid data, and boundary conditions. The only
difference was the different governing equations being solved.

Table 2. Summary of conditions for rough single-crack models.

Group Num

Boundary Condition
Group Num

Boundary Condition

Vin
(m/s)

Tin
(K)

Twall
(K)

Phase
Transition

Vin
(m/s)

Tin
(K)

Twall
(K)

Phase
Transition

V1

V1–1 0.01 333.15 463.15 NO

V2

V2–1 0.05 333.15 463.15 YES
V1–2 0.03 333.15 463.15 NO V2–2 0.05 333.15 463.15 YES
V1–3 0.05 333.15 463.15 NO V2–3 0.05 333.15 463.15 YES
V1–4 0.065 333.15 463.15 NO V2–4 0.05 333.15 463.15 YES
V1–5 0.08 333.15 463.15 NO V2–5 0.05 333.15 463.15 YES

Ti1

Ti1–1 0.05 313.15 463.15 NO

Ti2

Ti2–1 0.05 323.15 463.15 YES
Ti1–2 0.05 323.15 463.15 NO Ti2–2 0.05 333.15 463.15 YES
Ti1–3 0.05 333.15 463.15 NO Ti2–3 0.05 343.15 463.15 YES
Ti1–4 0.05 343.15 463.15 NO Ti2–4 0.05 353.15 463.15 YES
Ti1–5 0.05 353.15 463.15 NO Ti2–5 0.05 333.15 383.15 YES

Tw1

Tw1–1 0.05 333.15 383.15 NO

Tw2

Tw2–1 0.05 333.15 383.15 YES
Tw1–2 0.05 333.15 403.15 NO Tw2–2 0.05 333.15 403.15 YES
Tw1–3 0.05 333.15 423.15 NO Tw2–3 0.05 333.15 423.15 YES
Tw1–4 0.05 333.15 443.15 NO Tw2–4 0.05 333.15 443.15 YES
Tw1–5 0.05 333.15 463.15 NO Tw2–5 0.05 333.15 463.15 YES

Φ

Φ–1 0.01 313.15 313.15 NO
Φ

Φ–4 0.065 313.15 313.15 NO
Φ–2 0.03 313.15 313.15 NO Φ–5 0.08 313.15 313.15 NO
Φ–3 0.05 313.15 313.15 NO
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The physical parameters of the studied granite were set to constant and the density,
specific heat capacity, and thermal conductivity were 2700 kg/m3, 920 J/(kg·K), and
1.8 W/(m·K), respectively. Since the physical parameters of the fluid changed greatly with
the temperature, it was set as a function of temperature, where the density, specific heat
capacity, thermal conductivity, and dynamic viscosity of the liquid phase fluid were shown
in Equation (11) [42] and Equation (12) [43], respectively. The density and other physical
parameters of the gas phase fluid were separately determined by Equation (13) [44] and
built-in parameters (Equation (13)) in FLUENT.

ρ1 = 838.47 + 1.40T − 0.003T2 + 3.72 × 10−7T3

Cp,1 = 12010.15 − 80.41T + 0.31T2 − 5.38 × 10−4T3 + 3.62 × 10−7T4

k1 = −0.87 + 0.009T − 1.58 × 10−5T2 + 7.98 × 10−9T3
(11)

µ1 =
0.01775ρ

1 + 0.033T + 0.00021T2 (12)

ρ2 =

{
10−4(0.025T3 − 25.34T2 + 8710.9T − 996329

)
, T ∈ [373.15, 423.15]

10−4(0.044T3 − 49.2T2 + 18865.5T − 2370607
)
, T ∈ [423.15, 473.15]

(13)


Cp,2 = 1563.1 + 1.60T − 0.0029T2 + 3.22 × 10−6T3 − 1.16 × 10−9T4

k2 = −0.0078 + 6.81 × 10−5T + 4.49 × 10−8T2 − 9.1 × 10−12T3 + 6.17 × 10−16T4

µ2 = −4.4 × 10−6 + 4.7 × 10−8T − 5.4 × 10−12T2 + 3.2 × 10−16T3 + 4.9 × 10−22T4
(14)

2.2.2. Verification of the Single-Phase Heat–Flow Coupling Model

In a study of seepage and heat transfer under single-phase heat–flow coupling, Bai [37]
conducted seepage heat transfer experiments using a multi-field triaxial experimental
system (Figure 6) developed by the Institute of Rock and Soil Mechanics, Chinese Academy
of Science, to derive the overall convective heat transfer coefficient. Therefore, this paper
primarily relied on the experimental data obtained by Bai [37] to conduct simulation
verification. In Bai’s [37] experiment, the surrounding pressure oil inside the chamber
was first heated by an electromagnetic heater located outside the triaxial chamber. Then,
the cylindrical granite rock sample measuring 50 × 100 mm was uniformly heated by
surrounding pressure oil. When the temperature of the rock mass was consistent with the
oil temperature, the pipeline was immersed at the sample inlet in high-temperature hot oil
to ensure a stable fluid temperature at the inlet. Then, water was injected into the fracture
at a constant flow rate by controlling the flow with an ISCO pump. Finally, temperature
and pressure differences at the entrance and exit were obtained by setting sensors at the
entrance and exit.
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Based on the experimental research by Bai [37], 10 sets of experiments were selected
for simulation verification with a temperature limit of 100 ◦C and a pressure limit of
0 MPa. However, due to the current experimental conditions not supporting the conduct of
seepage and heat transfer experiments at high temperatures, the fluid temperature often
failed to reach the saturation temperature. This limitation also prevented the occurrence of
phase transition phenomena in the experiments, thereby making it impossible to obtain the
corresponding experimental data. Therefore, to validate the effectiveness of the multiphase
flow–heat coupling model, simulations were conducted by setting the same boundary
conditions as those in the experimental conditions of Bai [37]. The specific implementation
process was as follows: firstly, 3D rough fracture single-phase and multiphase flow–heat
coupling models were established based on the physical parameters of the granite rock
sample, and the boundary conditions of the models are shown in Figure 5. In the calculation
process, the convergence condition was set as

∣∣Tj+1 − Tj
∣∣ ≤ 10−3K, where T represents the

temperature at the outlet and j is the time step. For the single-phase flow–heat coupling
model, the time step was set to 5 × 10−3 s. For the multiphase flow–heat coupling model,
when the fluid temperature had not yet reached the saturation temperature, the time step
was set to 5 × 10−3 s. Otherwise, it was adjusted to 1 × 10−3 s. The purpose of setting the
time step in this way was to enhance the convergence of the model and save computational
time. After setting the model parameters, computations were carried out on a computer
with an Intel(R) Core(TM) i5-7300HQ processor (Lenovo, Beijing, China). For different
models, the convergence time varied, with an average computation time ranging between
3 and 6 s, i.e., 1.5 × 103–6 × 103 time steps.

Figure 7 illustrates the disparities between the simulated results and the experimental
outcomes. From the graph, it is evident that the simulated temperature values were
higher than the measured values in the experiment. However, the maximum temperature
difference between simulated and experimental values was 2.6 ◦C, with a relative error of
3.6%. The reasons for such discrepancies are diverse, including errors caused by the discrete
process of fracture surface representation, fitting errors in the heat transfer parameters
of rocks and fluids, and truncation errors during computer calculations. Referring to the
simulation results from Tan [33], it can be observed that these errors fell within a reasonable
range. Furthermore, from the graph, it can be observed that the outlet temperature values
calculated by the two numerical models were very close. This indicates that in the absence of
phase transition, the results of the multiphase flow–heat coupling model are also applicable
for heat transfer research.

Water 2024, 16, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. Comparison of numerical results and experimental results based on Bai’s [28] experimental 
data. 

3. Results and Discussion 
3.1. Flow Characteristics under Single-Phase and Multiphase Flow–Thermal Coupling 

Based on the established single-phase flow–heat coupling model, the fluid was added 
with the evaporation effect. This caused the phase transition phenomenon when the fluid 
temperature reached the saturation temperature. It led to a decrease in the liquid phase 
fluid percentage and an increase in the gas phase volume percentage within the unit. To 
study the influence of the phase transition process on the flow process, the V2, Ti2, and Tw2 

group models considering the evaporative phenomenon and the V1, Ti1, and Tw1 group 
models without phase transition were compared. Figure 8 shows the distribution cloud 
map of the gas volume percentage in the fluid domain after the exit temperature stabi-
lized. From the figure, it can be seen that there was a distinct gas–liquid interface between 
the gas and liquid phases. Near the inlet, the liquid phase dominated, while near the out-
let, the gas phase dominated. Because the stable temperature of the Tw2–1 model did not 
reach the saturation temperature, only liquid phase fluid existed in the fluid domain. 

 
Figure 8. Cloud distribution of water vapor and gas volume percentages in different grouping 
models. 

Figure 7. Comparison of numerical results and experimental results based on Bai’s [28] experimen-
tal data.

3. Results and Discussion
3.1. Flow Characteristics under Single-Phase and Multiphase Flow–Thermal Coupling

Based on the established single-phase flow–heat coupling model, the fluid was added
with the evaporation effect. This caused the phase transition phenomenon when the fluid
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temperature reached the saturation temperature. It led to a decrease in the liquid phase
fluid percentage and an increase in the gas phase volume percentage within the unit. To
study the influence of the phase transition process on the flow process, the V2, Ti2, and Tw2
group models considering the evaporative phenomenon and the V1, Ti1, and Tw1 group
models without phase transition were compared. Figure 8 shows the distribution cloud
map of the gas volume percentage in the fluid domain after the exit temperature stabilized.
From the figure, it can be seen that there was a distinct gas–liquid interface between the
gas and liquid phases. Near the inlet, the liquid phase dominated, while near the outlet,
the gas phase dominated. Because the stable temperature of the Tw2–1 model did not reach
the saturation temperature, only liquid phase fluid existed in the fluid domain.
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Figure 9 illustrates the distribution of velocity in the fluid domain, taking conditions
V1–3 and V2–3 as examples. From the figure, it can be observed that the fluid velocity was
0 m/s at the upper, lower, left, and right wall surfaces, while the inlet velocity was 0.05 m/s;
this configuration was consistent with the specified boundary conditions. Observing the
velocity along the flow direction, it can be noticed that, at the outlet, it was significantly
greater than at the inlet. The model V1–3, which does not consider the phase transition effect,
exhibits an outlet velocity mean and peak values of 0.052 m/s and 0.08 m/s, respectively. In
contrast, the model V2–3, which considered phase transition, showed outlet velocity mean
and peak values of 0.186 m/s and 0.3 m/s, respectively. This is because, with the increase
in fluid temperature, the density of the fluid began to decrease, leading to the expansion of
fluid volume. However, the mass of the fluid entering from the inlet and exiting from the
outlet was conserved. Therefore, the volumetric flow rate of the fluid at the outlet began
to increase. As for the liquid phase fluid, its density underwent a relatively small change
with temperature; hence, the increase in its flow velocity was not significant. However, for
the model V2–3 that considered the effect of fluid phase transition, the vaporization of the
liquid phase fluid significantly altered the fluid density, leading to a more than twofold
increase in flow velocity.
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Figure 10 depicts the relationship curve between the pressure gradient and flow rate
for the V1, V2, and Φ group models. In the Φ group of models, as the rock wall temperature
was set to the same value as the fluid temperature, there was no heat exchange occurring
in this system. From the dashed lines in the graph, it can also be observed that there was a
linear relationship between flow rate and pressure gradient at this point. This indicates
that without considering heat exchange, the movement of low-flow fluid in the fracture
exhibited a well-defined linear relationship. This is consistent with the quantification
expressed by Darcy’s law. However, when considering the heat exchange effects within the
system, the relationship between pressure gradient and flow rate was no longer linear. This
further illustrates that heat transfer effects alter the fluid’s motion state, making non-linear
effects more prone to occur. This is because, in the absence of considering heat transfer
effects, the nonlinear effects in the fluid often occur when the fluid has a relatively high
velocity. This is also because excessively high velocities can render the inertia term in the
Navier–Stokes equations non-negligible. On the contrary, when considering heat transfer
effects, nonlinear flow behavior persists even at relatively low velocities. The main reason
for this lies in the fact that temperature alters the physical parameters of the fluid, such as
density and viscosity.
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Through Figure 10, we can also observe that the phase transition leads to two distinct
nonlinear phenomena exhibited by the fluid. When neglecting the phase transition effect of
the fluid, under the same flow rate increment, the increment of the pressure gradient was
higher than the increment in the linearly increasing case. The curve was convex towards
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the flow rate axis. When considering the phase transition effect of the fluid, under the same
flow rate increment, the increment of the pressure gradient was lower than the increment in
the linearly increasing case. The curve was convex towards the pressure gradient axis. This
is because, when not considering phase transition, the fluid moved within the fractures
in the liquid phase. At this point, the viscosity of the fluid had a significant impact on
its motion. The viscosity of liquid phase water decreased with increasing temperature,
but higher flow rates resulted in a decrease in fluid temperature after reaching thermal
stability. This led to the need for a larger pressure gradient to achieve the same flow rate
increment. When considering the phase transition phenomenon of the fluid, the density of
the fluid had a significant impact on the motion of the mixed fluid. Because the process of
liquid water converting to gaseous water involves volume expansion, it led to an increase
in pressure within the fluid domain. However, as the flow rate increased, the volume of the
gaseous phase decreased after heat transfer stabilized within the fluid domain. Therefore,
with an equivalent increase in flow rate, a smaller pressure gradient was required.

Furthermore, both types of nonlinear effects caused by heat transfer can be described
using the Forchheimer equation. When used to describe the flow state of multiphase fluids,
the nonlinear coefficient becomes negative, resembling the behavior of shear-thinning
fluids. This also indicates that the resistance experienced by multiphase fluids decreases as
the flow velocity increases.

3.2. Heat Transfer Characteristics under Single-Phase and Multiphase Heat–Flow Coupling

Based on Bai’s low-temperature seepage and heat transfer experiment, the temperature
value of the constant-temperature wall was increased to meet the condition of fluid phase
transition. According to Equation (10), the local convective heat transfer coefficient was
calculated by taking the fracture profile curve at the center of the model. Figure 11 summa-
rizes the distribution curves of the local convective heat transfer coefficients in different
grouping models. The data for Figure 11a, Figure 11b, and Figure 11c are respectively
sourced from the V1 group models with different inlet velocities, the Ti1 group models with
different inlet temperatures, and the Tw1 group models with different wall temperatures.
The common feature among these three groups of models is that they did not take into
account the phase transition effect of the fluid. From these three sets of Figure 8, it can be
observed that the curves of the local convective heat transfer coefficient exhibited similar
trends of increase or decrease at the same positions. Peaks or valleys also appeared at the
same positions in each set. This indicates that the inlet velocity, inlet temperature, and wall
temperature only affected the magnitude of the local convective heat transfer coefficient,
while the distribution of the local convective heat transfer coefficient was controlled by the
local roughness of the wall surface. The cause of this phenomenon may be attributed to
the calculation principles of the local convective heat transfer coefficient because in the
calculation process, we discretized the entire fluid domain with a length of 0.15 mm. How-
ever, due to the undulating nature of the fracture surface, within the region of a straight
length of 0.15 mm, the fracture surface with more pronounced undulations had a larger
actual contact area with the fluid. This phenomenon led to greater heat exchange within
the discrete units. Therefore, reflected in the local convective heat transfer curve is the same
changing trend at the same location. However, this is also consistent with reality. Many
scholars have pointed out in their research that the rougher the fracture surface, the greater
the heat exchange [15–17].
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Based on the established single-phase heat–flow coupling model, boiling was intro-
duced into the fluid, causing a phase transition phenomenon when the fluid temperature
reached the saturation temperature. As the heating continued, the percentage of liquid
phase fluid in the fluid domain decreased, while the percentage of gas phase volume
increased. The data for Figure 11d–f are obtained from models with different boundary
conditions, taking into account the phase transition effect. It can be observed that in the
local area near the inlet, the process of heat transfer was mainly carried out through the
liquid phase water. Therefore, the variation pattern of the local convective heat transfer
coefficient was similar to those models that did not take into account the phenomenon
of phase transitions. For example, within the 1–2 mm range from the inlet, the local heat
transfer coefficient increased with a decrease in inlet velocity and an increase in inlet
temperature and wall temperature. The stable temperature of model Tw2–1 did not reach
saturation stability and no phase transition occurred, so its local convective heat transfer
coefficient was similar to that of model Tw1–1. This also indirectly reflects the reliability of
the multiphase heat–flow coupling model. However, with the increase in flow distance,
the distribution characteristics of the local convective heat transfer coefficient underwent
significant changes due to the phase transition effect. On the one hand, the fluctuations in
the local convective heat transfer coefficient decreased, and the decrease rate was faster
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with a lower inlet flow rate and wall temperature and higher inlet temperature. On the
other hand, the distribution characteristics of the local convective heat transfer coefficient
no longer exhibited strong regularity. This indicates that the phase transition effect changed
the fluid heat transfer parameters, thereby causing the local roughness of the fracture to no
longer control the distribution characteristics of the local heat transfer coefficient.

To compare the effect of phase transition on heat transfer, the local heat transfer
coefficients at the center profile of the model were collected and plotted in Figure 12, using
the operating conditions V1–2 and V2–2 as examples. From the graph, it can be observed
that in the local entrance region, where the fluid had not undergone phase transition, both
models V1–2 and V2–2 had similar local heat transfer coefficients. However, as the flow
distance increased, the volume fraction of vapor phase water gradually increased, leading to
fluctuations and reductions in the local heat transfer coefficient of model V2–2. Furthermore,
there was a clear negative correlation between the two variables. From Equation (10), it
can also be observed that when the fluid had the same temperature distribution as the rock
surface, the magnitude of the local heat transfer coefficient depended on the fluid’s physical
parameters (C) and mass flow rate (ρuδ). However, for each cell, mass conservation was
observed as mass flowed in and out from the front and rear sections of the cell. Therefore,
the magnitude of the specific heat capacity had a significant impact on the local heat
transfer coefficient. When considering the phase transition effects, with the increase in
gas volume percentage, the specific heat capacity of the mixed fluid became closer to
that of gaseous water. This resulted in the phenomenon of the local convective heat
transfer coefficient decreasing with the increase in the gas phase volume fraction. From a
microscopic perspective, this can also be explained. Because the molecules of gaseous water
have a larger intermolecular distance and weaker interaction forces, absorbing the same
amount of energy results in faster molecular motion, manifesting as a quicker temperature
rise on a macroscopic scale. Additionally, due to the increased flow velocity after fluid
vaporization, the reduced heat transfer time in the rock limits the heat transfer capacity of
the fluid.
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In order to further quantify the relationship between gas volume percentage and
local convective heat transfer coefficients, a dimensionless number H was defined to
measure the extent of the influence on heat transfer when the fluid underwent phase
transition Equation (15). From the equation, it can be observed that as H increased, the
impact of phase transition on heat transfer became more significant, but this influence was
diminishing. Next, we compiled the values of H at the midsection under all computed
conditions and the corresponding gas volume percentage values at respective positions and
then plotted them in Figure 13. From the figure, it can be observed that with the increase in
gas volume percentage, the relative impact on the local convective heat transfer coefficient
followed an exponential trend. When the gas volume percentage was 1, the local convective
heat transfer coefficient without considering phase transition was approximately 10 times
greater than when considering phase change effects. This further indicates that when
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considering phase transition effects, the gas volume percentage plays a dominant role in
the distribution characteristics of the local convective heat transfer coefficient.

H =
hsin pas

hmulpas
(15)

where hsin pas is the convective heat transfer coefficient calculated by the single-phase heat–
flow coupling model; hmulpas is the convective heat transfer coefficient calculated by the
multiphase heat–flow coupling model under the corresponding boundary conditions.
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Figure 14 presents the distribution curves of fluid temperature and gas volume per-
centage, taking scenarios V1–3 and V2–3 as examples. From the graph, it can be seen that
both had similar temperature distribution curves before the phase transition occurred. As
the fluid temperature gradually reached the saturation temperature, neglecting the phase
transition effect of the fluid resulted in a steady increase in fluid temperature. However,
considering the phase transition effect caused the temperature of the fluid to gradually
slow down after reaching the saturation temperature. The reason for this phenomenon is
twofold: on the one hand, it is due to the low gas content within this range, and on the
other hand, it is because the absorbed heat during the phase transition process is used
to overcome intermolecular forces, thereby generating gaseous fluid. By comparing the
distribution curves of gas volume percentage, it can be observed that as the phase transition
began, the gas volume percentage gradually increased, and the temperature increase rate
of the fluid also gradually intensified.
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4. Conclusions

Based on FLURNT 2020 software, single-phase and multiphase heat–flow coupling
models were established and the flow–heat transfer characteristics of 3D rough fractures
were analyzed. When the phase transition effect was considered or not, the heat–flow
coupling mechanism and nonlinear flow mechanism were comparatively studied. The
main research results are as follows:

1. In the absence of phase transition effects, the inlet velocity, inlet temperature, and wall
temperature only affect the magnitude of the local heat transfer coefficient, of which
the distribution characteristics are controlled by the local roughness of the fracture
surface. However, when considering phase transition, the distribution characteristics
of the local heat transfer coefficient are dominated by the gas phase volume percentage.
As the gas content increases, the local heat transfer coefficient decreases.

2. When phase transition of the fluid is not considered, the fluid flow with low flow
velocity and no heat transfer effect within the rock wall conforms to Darcy’s law.
However, when there is heat exchange between the fluid and the rock wall, the
nonlinear effects become more significant, and the nonlinear characteristics caused by
heat transfer can be described by the Forchheimer equation. After considering phase
transition effects, the two-phase fluid exhibits characteristics similar to shear-thinning
fluids. Especially under the same pressure gradient, the increment of seepage flow rate
is higher than that when linearly increasing. When described using the Forchheimer
equation, the nonlinear coefficient is negative.
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