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1. Introduction

Deep excavations play an important role in the construction of urban infrastructures
such as metro stations and high-rise buildings [1–3]. In recent decades, the depth and plan
view size of most of the deep excavations in megalopolises are becoming unprecedented,
due to growing usage requirements [4–7]. For example, the depth of the deepest excavation
for a metro station in China, the Binjiang Station of Nanjing Metro Line 2, reached 51 m.
Such a large excavation depth will inevitably bring challenges in controlling the safety and
stability of the excavating work and its surroundings [8–10]. Moreover, the geological and
hydrological conditions faced by deep excavations are increasingly complicated. Soft soils
and high groundwater levels are not uncommon in deep excavation [11–13]. Therefore, the
safety risk of deep excavations remains high, and various types of deep-excavation-related
accidents have occurred in many parts of the world, causing enormous economic losses
and casualties [14–18]. Figure 1 shows photos of typical cases of deep-excavation-related
accidents [19].
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(b) Harbin; (c) Nanning; (d) Singapore; (e) Wuhan; (f) Xining (after Guo [19]).

In water-rich areas, most deep excavations are affected by groundwater. During the
construction of deep excavations in water-rich areas, for the sake of preventing seepage
failure, effective dewatering measures have to be taken [20,21]. These measures provide a
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dry construction environment, which is beneficial for the stabilization of the excavation
slope. However, dewatering can be detrimental in that it induces considerable and differen-
tial ground settlements, complicating the stress and seepage fields surrounding the site. On
the one hand, dewatering can increase the effective stress in the soil skeleton surrounding
the deep excavation, which induces ground settlement [22,23]. On the other hand, the
dynamic water pressure generated by dewatering-induced waterhead difference will fur-
ther exacerbate ground settlement [24,25]. Excessive and differential ground settlements
can induce cracking, structure tilts, pipeline fractures, and other disasters in buildings.
Additionally, the coupling of the seepage field and stress field during dewatering is rather
complicated. Thus far, its mechanism and effect on the stability and deformation behavior
of the deep excavation have not been well understood [26–28]. Thus, the safety risk of deep
excavations in water-rich areas is extremely severe compared to that in arid areas.

The safety risk of deep excavations in water-rich areas has aroused extensive research
interest among geotechnical engineers and researchers worldwide. Since the pioneering
work of Einstein [29], who introduced the risk management concept to the field of under-
ground engineering, significant advances have been made in risk management technologies
for deep excavations. In detail, risk management technologies contain three critical aspects:
risk identification, risk assessment, and risk control. Obviously, this is the primary step in
identifying the various risk factors for ensuring the safety of deep excavations in water-rich
areas. On this basis, risk assessment needs to be performed to ascertain the risk grade
and the high-risk factors. This step involves the establishment of a risk assessment model
capable of considering the causality between different risk factors. For example, Li [30]
has proposed an improved risk assessment model, as depicted in Figure 2, based on the
Multi-Attribute Border Approximation Area Comparison (MABAC) method. Finally, a
risk control procedure is conducted to obtain the optimal countermeasure scheme for
maintaining a good balance between restraining the high-risk factors and reducing the
project’s cost. However, due to the systematic construction of deep excavations, and the
complexity of the dewatering-induced coupling of the seepage and stress fields, severe ac-
cidents related to deep excavations still happen in water-rich areas. Consequently, in-depth
investigations into risk management technologies for deep excavations in water-rich areas
are urgently required.

Water 2024, 16, x FOR PEER REVIEW 2 of 8 
 

 

primary step in identifying the various risk factors for ensuring the safety of deep excava-

tions in water-rich areas. On this basis, risk assessment needs to be performed to ascertain 

the risk grade and the high-risk factors. This step involves the establishment of a risk as-

sessment model capable of considering the causality between different risk factors. For 

example, Li [30] has proposed an improved risk assessment model, as depicted in Figure 

2, based on the Multi-A�ribute Border Approximation Area Comparison (MABAC) 

method. Finally, a risk control procedure is conducted to obtain the optimal countermeas-

ure scheme for maintaining a good balance between restraining the high-risk factors and 

reducing the project’s cost. However, due to the systematic construction of deep excava-

tions, and the complexity of the dewatering-induced coupling of the seepage and stress 

fields, severe accidents related to deep excavations still happen in water-rich areas. Con-

sequently, in-depth investigations into risk management technologies for deep excava-

tions in water-rich areas are urgently required. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Photos of typical cases of deep-excavation-related accidents in many regions: (a) Hang-

zhou; (b) Harbin; (c) Nanning; (d) Singapore; (e) Wuhan; (f) Xining (after Guo [19]). 

 

Figure 2. Flow chart of the improved risk assessment model proposed by Li [30]. Figure 2. Flow chart of the improved risk assessment model proposed by Li [30].



Water 2024, 16, 323 3 of 8

This Special Issue has attracted many submissions and publications focusing on
new and important contributions to the field of risk management technologies for deep
excavation in water-rich areas. It contains eighteen articles and one correction. In particular,
we are honored and grateful that four articles among them have been awarded the status
of ‘Feature Paper’, a title that indicates advanced research with significant potential for
high impact in the field. In the next section, we will briefly describe the contributions of
the published articles. More importantly, the purpose of this Editorial is to encourage the
readers to actively explore these articles.

2. An Overview of the Published Articles

Tang et al.’s article (Contribution 1) discusses the safety risk assessment method
for pedestrian escape in subway stations subjected to flood disasters. Based on an actual
subway station engineering project, the authors conducted a series of numerical simulations
considering different conditions. A method for calculating the maximum pedestrian
capacity, critical flood height, and minimum pedestrian escape speed is proposed. This
research is of practical significance for achieving a safe escape from flooded subway stations.

The article by Wang et al. (contribution 2) is focused on analytically predicting the
ground surface settlements caused by deep excavations in flood detention zones. The
proposed method takes the effect of embankment surcharge load near deep excavations
into account. As excessive ground surface settlements are detrimental to the safety of
adjacent infrastructures, this method can be used for rapidly estimating the degree of risk
in deep excavations in water-rich soft ground.

The third article, from Li et al. (contribution 3), aims to analyze the stability of a deep
braced excavation spanning two shallowly buried large-diameter pressurized pipelines. By
performing three-dimensional finite element analysis, the deformation and internal force
behavior of the excavation support structures were captured. A suspension structure is
also proposed for protecting the in situ pipelines and is demonstrated to be effective for
reducing the risk of pipeline damage during the construction of deep excavations.

The fourth text published in this Special Issue is a case study by Sun et al. (contribution
4) on the performance of a soft soil deep excavation supported by a composite structural
system. The system, comprising SMW piles, concrete struts, and rotary spray anchor cables,
is a relatively new excavation support system. By analyzing the performance data from
on-site monitoring, the behavior of this excavation support system can be understood,
which provides a significant basis for risk control and design optimization.

The article by Yuan et al. (contribution 5) proposes a new machine-learning-based
method for identifying the engineering risk of goaf. By performing principal component
analysis, both the data-processing speed and prediction accuracy are improved. The risks
of goaf are clarified with the help of the support vector machine method. The proposed
method is demonstrated to be effective for goaf risk identification.

In the sixth article, Lu et al. (contribution 6) focus on the application of the frequency
selection method to shallow groundwater exploration. They established a simplified geo-
physical model for a low-resistivity conductive sphere in homogeneous half space. The
authors proved that the frequency selection method is effective for shallow groundwa-
ter exploration.

The research from Shakya et al. (contribution 7) delves into the environmental influ-
ences of boreholes installed for the demolition of existing pile foundations. Finite element
analysis was performed to determine the ground settlements and distribution ranges for
three different soil saturation and loading conditions. This research can provide a reference
for risk control during pile removal.

Liu et al.’s study (contribution 8) focuses on water-resisting coal pillars, aiming to
comprehend their failure behavior under stress–seepage coupling. A series of stress–
seepage coupling tests were performed to investigate the evolution law of the stress–
seepage coupling characteristics of coal rock. Based on the numerical analysis results, a
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method for determining reasonable coal pillar widths is proposed. This study is helpful for
risk control in coal seam water inrush.

Liu et al.’s work (contribution 9) is devoted to understanding the effects of mining
leachates on the hydraulic performance of geosynthetic clay liners under different tem-
peratures. The research reveals that an increase in the temperature can restrain the ion
exchange between bentonite and the mixture. It was also found that the swelling index of
bentonite increases with increasing temperature. This research promotes the application of
geosynthetic clay liners in mining.

The study by Wu et al. (contribution 10) focuses on a case study of a deep excavation in
Lanzhou, China. This deep excavation faced complex environmental conditions comprising
a composite stratum, dense buildings, and a high groundwater level. To reduce the safety
risks during construction, an automated monitoring system was used. This research is
beneficial for risk control practice in similar cases.

The eleventh text published in this Special Issue is the research by Lu et al. (con-
tribution 11) that focuses on detecting the landfill leakage points. The effectiveness and
resolution in detecting the landfill leakage points are compared between the opposing-coils
transient electromagnetic method and the electrical resistivity tomography method. This
article provides a new basis for the detection of leakage points in landfills.

The article by Liu et al. (contribution 12) is a correction to a figure in an article by the
same authors (contribution 8). The text “Mongolia” in the initial figure has been revised to
be “Inner Mongolia”. This correction does not affect the academic content.

Shu et al.’s article (contribution 13) discusses the stability of river embankment seep-
age affected by underwater shield tunnelling. They performed finite element analysis
considering various magnitudes and thicknesses of underwater tunnel overburden. The
findings of this study can serve as a guide for reducing the risks of river embankment
erosion and seepage instabilities during underwater shield tunnelling.

In the fourteenth article, Wang et al. (contribution 14) report a case history of a deep
excavation for the construction of Hefei metro station. The risks associated with this
deep excavation, in terms of self-stability, groundwater, and surrounding structures, are
assessed. Field monitoring data were analyzed to capture the behavior of the excavation
support system and the adjacent buildings. This research is helpful for implementing deep
excavation design optimization in similar cases.

The research from Tu et al. (contribution 15) is devoted to investigating the perfor-
mance of a deep excavation in a water-rich area in Fuzhou, China. This deep excavation is
supported by cast-in-place piles combined with internal struts. The dewatering scheme and
field monitoring results on excavation performance are elaborately described. This research
concludes that tube-well dewatering is effective for deep excavations in water-rich areas.

The article by Wang et al. (contribution 16) is focused on the performance of a deep
braced excavation in a thick silty clay stratum. The monitored behavior of the deep
excavation, in terms of ground movements, structure deformation, and internal forces
in struts, is revealed. Three-dimensional finite element analysis is also performed. The
findings from this study provide a reliable scientific basis for risk control.

Chen et al.’s article (contribution 17) proposes a simplified method for estimating
the reliability of a three-dimensional slope. This method is within the framework of
limit equilibrium analysis. Through two typical slope examples, the effectiveness of the
proposed method has been validated. This method can be conveniently used in real
engineering practices.

The article by Lu et al. (contribution 18) delves into the applicability of the frequency
selection method in the exploration of underground hot water in the Maoyanhe scenic spot.
This research is based on a geological investigation in the field and on existing geological
data. Using two verification boreholes, the effectiveness of the frequency selection method
is demonstrated.

The final article published in this Special Issue is the study by Tu et al. (contribution 19),
which focuses on a case history of deep braced excavation in soft soils in Fuzhou, China.
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Based on a thorough analysis of the observed performance, the influence of deep excavation
on the displacements and internal force characteristics of supporting structures, as well as
surrounding buildings, roads, and buried pipelines, is captured. This contribution provides
a reference for design optimization and risk control in deep excavations in soft soil areas.

3. Future Research Directions

The nineteen articles published in this Special Issue make a significant contribution
to advancing the field of risk management technologies for deep excavation in water-rich
areas. Meanwhile, several research gaps can be also detected in exploring the content
of these articles, which will direct future research work in this field. For the benefit of
readers interested in this field, the guest editors of this Special Issue are glad to present their
opinions on several potential directions for further research in the future. The potential
avenues that could be explored in the future, in order to achieve a high level of safety in
deep excavations in water-rich areas, may include the following:

• An exploration of how seepage and stress fields are coupled during the entire con-
struction period of deep excavation in water-rich areas, and this effects the stability
and deformation behavior of the deep excavation;

• The establishment of risk evaluation index systems that are comprehensive, represen-
tative, and scientific;

• The development of risk assessment models and methods able to take into account the
correlations between parameters and the dynamic evolution of risk indicators during
the construction of deep excavations in water-rich areas;

• An exploration of how to shorten the period of risk assessment so as to reserve
sufficient time for taking risk prevention measures;

• The optimization of risk control technologies, especially for the methods controlling
deep excavation deformation, with the aim of promoting risk control technologies that
are more efficient, intelligent, green, and low-carbon;

• The development of a real-time monitoring system and risk alertness forecasting
system that can be conveniently used on site in deep excavations in water-rich areas;

• The application of artificial intelligence to specifically enhance the efficiency, precision,
and effectiveness, and reduce the cost of risk management technologies, including risk
identification, risk assessment, and risk control.

As a final note, we would like to express our sincere gratitude to all the authors of
the forty articles submitted for this Special Issue, as well as all the Assistant Editors and
Academic Editors of Water for their contributions in ensuring its success.
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