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Abstract: Integration of the Internet of Things (IoT) into the fields of wastewater treatment and
water quality prediction has the potential to revolutionize traditional approaches and address urgent
challenges, considering the global demand for clean water and sustainable systems. This comprehen-
sive article explores the transformative applications of smart IoT technologies, including artificial
intelligence (AI) and machine learning (ML) models, in these areas. A successful example is the
implementation of an IoT-based automated water quality monitoring system that utilizes cloud
computing and ML methods to effectively address the above-mentioned issues. The IoT has been
employed to optimize, simulate, and automate various aspects, such as monitoring and managing
natural systems, water-treatment processes, wastewater-treatment applications, and water-related
agricultural practices like hydroponics and aquaponics. This review presents a collection of signifi-
cant water-based applications, which have been combined with the IoT, artificial neural networks, or
ML and have undergone critical peer-reviewed assessment. These applications encompass chlori-
nation, adsorption, membrane filtration, monitoring water quality indices, modeling water quality
parameters, monitoring river levels, and automating/monitoring effluent wastewater treatment
in aquaculture systems. Additionally, this review provides an overview of the IoT and discusses
potential future applications, along with examples of how their algorithms have been utilized to
evaluate the quality of treated water in diverse aquatic environments.

Keywords: Internet of Things; artificial intelligence; machine learning; artificial neural network; soft
sensors for water-treatment plants

1. Introduction

The most important component of human existence and industrial operations is water,
which is currently seriously threatened by dangerous contaminants brought on by both
human activity and natural processes. Water accessibility in safe and healthy ways is a big
issue across the world. Therefore, it is vital to categorize and keep track of the water quality;
however, the fundamental problem is that, with current technology, adequate parametric
quality metrics are not accessible [1]. Due to the increase in human population, the activities
of aquatic systems (aquaculture, aquaponics, and hydroponics) have increased. As a result,
the nutrient load, mainly nitrogen and phosphorus, drained to the water bodies has been
increased, causing damage in several water habitats [2,3]. Therefore, the treatment of
effluent aquaculture wastewater should be improved and developed in a sustainable way
using modern technologies [4,5].
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Water- and wastewater-treatment facilities, as well as numerous industrial and bio-
logical systems that depend on different resources, must have access to sustainable and
clean water. Treatment facilities must deal with complicated regulatory procedures to fulfill
the rising standards of quality, in addition to catering to customer wants and enhancing
infrastructure for quality of life [6]. Approximately 300–400 million tons of contaminants
are reported to be released into global water every year, leading to water pollution, which
is a great burden on water quality management [7]. This is only complicated by the fact
that nations continue to have severely contaminated rivers, which damage aquatic and
terrestrial life in addition to human life. These problems are gradually worsening as nations
continue to industrialize and modernize [8]. Researchers from all over the world have
looked for ways to improve water-related applications [8–11]. For several years, there
has been enough focus on developing and modeling optimal, economical, and intelligent
models to help resolve this problem [12,13].

The integration of the IoT into the areas of water treatment and water quality prediction
has the potential to revolutionize traditional approaches and address pressing challenges.
In these fields, the current review article explores the transformative applications of the
smart IoT, including AI models and ML methods.

While AI involves empowering algorithms to perform tasks and make inferences that
would typically require human intelligence, ML focuses on intelligent systems that can
adapt their behavior based on new information provided during the training phase [14]. The
concept of AI revolves around enabling algorithms to perform tasks and make deductions
that would typically necessitate human intelligence. On the other hand, ML is centered
on intelligent systems that possess the ability to adjust their behavior in response to
newly presented information during the training phase [15]. The adoption of AI and
ML in academic communities across various fields and industries is primarily driven by
their ability to enhance and facilitate understanding. This extends to research areas such
as water treatment, including coagulation and chlorination dosing, membrane-filtration
modeling, adsorption processes, natural system monitoring like river quality modeling,
and agricultural system health. Previous studies have indicated that ML can serve as an
effective approach to address the challenges encountered in these domains [16].

The increased utilization of AI and ML in academic communities spanning diverse
fields and industries is largely motivated by their capability to augment and streamline the
process of comprehension. This encompasses research endeavors related to water treatment,
such as coagulation and chlorination dosing, membrane-filtration modeling, adsorption
processes, and the monitoring of natural systems, including river quality modeling and
agricultural system health. Previous studies have demonstrated that ML can be a valuable
strategy for overcoming the challenges encountered within these domains [13]. The grow-
ing adoption of AI and ML in academic communities across various fields and industries
is driven by their ability to enhance and streamline the process of understanding. This
applies to research areas like water treatment, which include different activities, such as
coagulation and chlorination dosing, membrane-filtration modeling, adsorption processes,
and the monitoring of natural systems like river quality modeling and agricultural system
health. Previous studies have provided evidence that ML can serve as a valuable approach
to address the challenges faced in these specific domains [17]. The generality, resilience, and
relative simplicity of the design of ML, AI, and smart technologies in water applications
would enable them to model and resolve difficult and complicated situations to reduce
costs and improve operations [18].

Previous research has shown that the implementation of AI models as effective tools
in the water-treatment fields has produced excellent results. The majority of review ar-
ticles on AI applications in water treatment, however, concentrate on specific areas of
water-treatment techniques or process designs, such as membrane bioreactors, membrane
processes, adsorption processes, and water-treatment plants. Furthermore, there are not
many review articles that provide a thorough introduction to the popular AI models used
in water treatment, including their benefits, drawbacks, and recommendations. Thus, this
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review paper discusses the performance and applications of artificial neural networks
(ANN) and ML in several waters of surface water, groundwater, drinking water, wastew-
ater, and oceans, along with the advantages and disadvantages of commonly used ML
techniques. This review article provides a cross-section of critically important water-based
applications that have been combined with the IoT, ANN, or ML. These applications in-
clude chlorination, adsorption, membrane filtration, monitoring of water quality indices,
modeling of water quality parameters, monitoring river levels, and automation/monitoring
of aqua-systems’ effluent water treatment, in addition to giving a short overview of both
water infrastructure resiliency improvement and creating soft sensors for water-treatment
plants. In addition, this review discusses the overview and the possible future applications
of the IoT and the instances where their algorithms have been used to assess the quality of
treated water in various aquatic environments.

2. Smart Technology

Computer systems that can learn from data without being explicitly programmed
are referred to as ML, a subfield of AI that focuses on the development of algorithms and
statistical models (Figure 1).
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Developing predictive models with the ability to make precise predictions or decisions
based on data-driven learning is the fundamental aim of ML. Finding patterns or generating
predictions from large amounts of data generated by different scenarios is a common use
case for ML, a powerful data analysis technique. Before ML is applied in a practical setting,
it is necessary to complete data collection, appropriate algorithm selection, model training,
and model validation [19]. The main differentiating factor between these two types is
the presence of labels in the datasets. The term “Internet of Things” refers to a network
of physical objects that can connect to the internet or other communication networks.
These objects are often equipped with software, hardware, or other technologies that
enable them to facilitate analytical processes, such as environmental sensing. In water
applications, internet-enabled systems incorporating sensors for pressure, flow, or water
quality/characteristics are commonly employed [20].

During the lifetime of the sensor or that of other technologies, the objective is typically
to exchange data with other connected devices or networks, optimize the system, and open
up the system or usability [21]. Using labeled training datasets, supervised learning is used
to build predictive functions. Input values and anticipated output values are included in
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every training instance. To create a predictive model that would forecast the outcome based
on the relevant input data, supervised learning algorithms look for correlations between
input and output values. The most often used ML models include ANFIS, KNN, DT, SOM,
PCA, SVM, RF, and PSO [22].

Often used to identify patterns or forecasts based on massive data generated by multi-
ple situations, ML is a powerful technique for data analysis. Using labeled training datasets,
supervised learning is used to build predictive functions. Input values and anticipated
output values are included in every training instance. In order to create a predictive model
that would forecast the outcome based on the relevant input data, supervised learning
algorithms look for correlations between the input and output values [23]. An outline of
the ML models used in water applications is given in Section 3. Also, it provides a brief
explanation of the employed AI methodologies. The smart sensors, Internet of Things,
and systems built using these technologies, which are typically combined with AI/ML
models and methodologies, are all covered in Section 3 on smart technologies [24]. All of
these methods have been researched for use in hydroponic and aquaponic farming, as well
as procedures for treating water and wastewater, including chlorination, adsorption, and
membrane filtration. They have also all been studied for managing water quality, including
dissolved oxygen and water levels. The subfield of ML that includes deep learning is
essentially three-layer neural networks. By “learning” from vast volumes of data, these
neural networks aim to mimic the activity of the human brain, albeit far from approaching
its capacity. A neural network with only one layer can still generate educated guesses, but
it can be optimized and refined for accuracy with the help of more hidden layers [25]. Many
AI services and apps rely on deep learning to increase automation by carrying out physical
and analytical operations without the need for human participation. Both established
products and services (including digital assistants, voice-activated TV remote controls,
and credit card fraud detection), as well as cutting-edge innovations (like self-driving
automobiles), are powered by deep learning technology.

3. AI Models

According to the literature, Figure 2 depicts the important AI models used in WWT.
These models can be divided into three categories: ML, ANN, and SA.
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Figure 2. Models of AI.

3.1. RNN

An RNN, a type of NN, operates by iterating in the direction of sequence evolution
and taking sequence data as input. RNN has memory, parameter sharing, and Turing
completeness, making it advantageous for learning nonlinear features in time-series prob-
lems (Figure 3A). The LSTM is the most commonly used RNN to address the problem of
gradient disappearance [26]. RNN has achieved notable success in various applications,
such as water, WWT, water quality management, and water-based agriculture.
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3.2. ANN

ANNs are mathematical models that simulate the behavior of biological neural net-
works (BNNs) to process data. ANNs utilize unit nodes to mimic neurons and perform
information processing by adjusting the interconnection weights among multiple nodes
in the network. The typical components of an ANN include an input layer, an output
layer, and several hidden layers situated between them (Figure 3B). To perform complex
nonlinear computations, ANNs employ various activation functions, such as sigmoid, tanh,
and ReLU functions, along with multiple variable weights between neurons. Increasing
the number of hidden layers in an ANN enables the creation of more intricate nonlinear
models and enhances their expressive capabilities [27]. ANNs can be trained to understand
complex nonlinear relationships between inputs and outputs by formulating and optimiz-
ing loss functions. Recurrent neural networks (RNNs), CNNs, FNNs, and DNNs are the
most commonly used ANN models [28].
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3.3. FNN

FNN, a hybrid NN model, combines ANNs and fuzzy logic to handle uncertain or
ambiguous situations. FNN utilizes fuzzy logic reasoning to process input data and then
employs an ANN to train and produce the results (Figure 3C). The structure of FNN
resembles that of a conventional NN, but it incorporates fuzzy logic to define the fuzzy
relationship between inputs and outputs, as well as the weights of connections among
neurons (normalization, fuzzy inference, and membership function). The FNN architecture
comprises an input, membership function, fuzzy inference, normalization, and output
layers. FNN offers significant advantages over standard NNs in dealing with challenging
problems and finds extensive use in pattern recognition and control [29].

3.4. DNN

DNN is a type of ANN that consists of multiple hidden layers positioned between
the input and output layers. The deep architecture of DNN allows it to learn hierarchical
data representations by combining lower-level characteristics in successive layers to learn
higher-level features (Figure 3D). Similar to other neural networks, DNNs can have a larger
number of hidden layers and neurons and are commonly used to capture complex patterns
in data or learn highly nonlinear mappings from inputs to outputs. However, training
DNNs can be challenging and computationally expensive due to their intricate network
architecture, which requires a large amount of data for training [30].

3.5. CNN

CNNs are a type of deep learning technique that utilizes convolutional computations
and a deep structure feedforward neural network. CNNs are widely used in computer
vision, natural language processing, and other fields. CNNs employ convolutional layers
to extract intricate features from input images, pooling layers to reduce the feature of
dimensionality, and fully connected layers for classification or regression tasks [31]. A typi-
cal CNN architecture includes input, output, convolutional, pooling, and fully connected
layers (Figure 3E).

4. Methods of ML and AI

Table 1 provides a comprehensive overview of various AI and ML models and meth-
ods used in water treatment and monitoring. It highlights their general usage and specific
applications in water treatment and modeling, as well as their advantages and limitations,
aiding in the selection of appropriate models and approaches for monitoring applications
and water treatment. For more detailed and foundational descriptions of these methodolo-
gies and models, additional textbook sources are available.

Table 1. An overview of the ML models and AI techniques used in water treatment and monitoring.

ML and AI
Techniques

WWT and Monitoring
Applications Applications Advantages Disadvantages Refs.

ANN-General

Modeling of dissolved
oxygen concentrations,
control, and classification of
hydroponic systems;
dosage and set point of
chlorine; calibration of
adsorption process
parameters; and modeling of
membrane-process parameters.

Supervised ML,
regression, and
classification.

High-dimensional datasets
may be handled. Modeling
and prediction outcomes
are provided in a timely
manner. Forward
propagation allows for
low-cost, quick processing.
For more specific benefits of
ANN models, see below.

High computational
requirements, particularly
during the backward
propagation stage. Some
models and architectures
may be complex to
understand independently,
and there are specific
drawbacks associated with
ANN models.

[32]
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Table 1. Cont.

ML and AI
Techniques

WWT and Monitoring
Applications Applications Advantages Disadvantages Refs.

SVM/SVR

Three things are modeled: the
dissolved oxygen content of
rivers, the growth rates of
aquaponic plants, and the
stages in which plants
grow—models of chemical and
biological oxygen demand
(BOD and COD) for
membrane-process parameters.

Supervised ML in
classification,
regression, and
pattern analysis

High-dimensional datasets
can be handled, meaning
there are more inputs than
outputs. Small dataset
modifications can be
handled. Works with linear
and nonlinear data.

Comparatively long
training times. Modeling
needs great computational
power production.
SVM/SVR is generally not
appropriate for larger
datasets.

[33]

RF

Modeling the percentage
removal in the
adsorption process.
Modeling dissolved oxygen
in simple and hybrid ways.

Regression,
classification, and
machine learning.

Relatively stable with
minimal influence of noise
and outliers. Capable of
managing continuous and
categorical inputs, even
with missing values/data.

Decision tree “density”
determines accuracy and
robustness. Model
complexity, model training
time, and needed
computing power all
significantly rise
with density.

[34]

FIS
Hydroponics system,
environmental, and chlorine
dosage set point control.

AI. Decision-making
and system control.

The use of fuzzy logic, as
opposed to binary logic,
better represents how
people make decisions. A
clearly defined framework
allows for an easy
interpretation of results
and choices.

Terminology can be
misunderstood without
knowing fuzzy logic.
Application is reliant on
operator-specified
parameters and is
susceptible to human error.

[35]

CNN DBP formation
modeling

Regression,
classification,
segmentation, and
supervised
machine learning

Results are frequently
viewed as being quite
accurate. Results from the
parallel model are acquired
rapidly. Excels at
problem-solving using
visual inputs.

Model and architecture are
comprehensive and
intricate in and of
themselves. Considerable
computing power
is necessary.

[36]

RNN/LSTM

Simulation of
membrane-process
parameters and simulation
of dissolved
oxygen concentrations.

Supervised ML,
regression, and
Classification.

Suitable for modeling and
time-series datasets.
Suitable for modeling and
sequential datasets. The
length of dataset inputs is
not constrained.

Training is challenging due
to the high computing
requirements and the
massive and diverse
dataset requirements.

[37]

ELM Dissolved oxygen
concentration and modeling.

Supervised ML,
regression, and
classification

Short training times.
Appropriate for
pattern categorization.

Frequently encounters
over-fitting or under-fitting
if too many or too few
concealed nodes are used.

[38]

5. Machine Learning and Artificial Intelligence Techniques in Numerous Water- and
Wastewater-Treatment Applications

Several water- and wastewater-treatment applications have investigated AI and ML
approaches. The intelligent design systems of WWT and its reuse can benefit from the use
of AI models in conjunction with traditional techniques and IoT architecture. AI models are
a valuable and powerful instrument for the prediction, modeling, and optimization of the
wastewater-treatment process. They have been extensively utilized in various aspects of
WWT, including the elimination of colors, heavy metals, organic materials, solids, microbial
contaminants, medication, nutrients, and pesticides from water [39].

The primary fields in which AI models are used are process design and laboratory-scale
research. Process parameter optimization and process performance prediction are typically
included in process design in real-world applications. Three popular treatment methods
that are frequently applied in wastewater and water-treatment facilities are summarized
in this section. Most of the input data included in the publications under review were
obtained and distributed via standard collection methods by staff members of treatment
plants or other regulatory agencies. Integrating intelligent technology with assessed AI
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approaches or ML models helps mitigate the issue of data collection. Certain ML models
will most likely become more accurate with more data. Finally, this is only a quick summary
of the current research interests and does not aim to represent the whole breadth of research
into AI and ML applications in the water-treatment industry [21].

While ML models are useful for simulating disinfection by-product (DBP) concentra-
tions and important parameters for adsorption and membrane-filtration operations, AI
approaches have demonstrated their efficacy in controlling chlorination. The coefficient of
correlation (R2), mean average error (MAE), coefficient of determination (R2), mean square
error (MSE), root mean square error (RMSE), and relative error (RE) are frequently used to
evaluate the results. Each AI model has benefits, disadvantages, and potential application
areas. The most popular AI models for water purification are included in Table 2, along
with their uses, benefits, and disadvantages.

Table 2. Common AI models for wastewater treatment, their purposes, advantages, and disadvantages.

AI/ML
Models Objectives Advantages Difficulties Refs.

FNN
Prediction,

regression, and
classification

Suitable for difficult nonlinear
problems; simple to implement

and comprehend

Complex model architecture
and high cost of computation [40]

PSO
Clustering,

regression, and
classification

Strong universality, high
computational efficiency, and

simplicity and ease of use

Defective for discrete issues
and sensitive to beginning

circumstances
[41]

CNN
Regression,

segmentation, and
classification

Suitable for modeling photos
and extraction of key

characteristics from images

Computationally costly and
difficult to learn [42]

RF
Prediction,

regression, and
classification

Easy to use and simple, and
suited for

high-dimensional datasets

Costly to compute, requires
thick decision trees to ensure
correctness and robustness

[42]

RNN
Regression,

prediction, and
classification

Appropriate for
time-series modeling

Computationally costly and
challenging to train [43]

DT
Regression,

classification, and
optimization

No requirement for processing
beforehand, and it is simple to

comprehend, interpret,
and classify

Unsuitable for uneven datasets
and ineffective training [44]

PCA Clustering
Reduces dimensionality, is
simple and straightforward

to use

Loss of some crucial
information and sensitivity to

noise in the data
[45]

DNN
Prediction,

regression, and
classification

Rapid and accurate forecast-
Appropriate for difficult

nonlinear problems

No requirement for processing
beforehand, and it is simple to

comprehend, interpret,
and classify

[42]

SVM
Regression,

prediction, and
classification

Able to solve situations with
huge dimensions and

appropriate for complicated
separable datasets

Costly in terms of computation
and unsuitable for

bigger datasets
[42]

5.1. Disinfection and Chlorination By-Product Management

Disinfection is a crucial process in water- and wastewater-treatment plants that in-
volves eliminating bacteria and viruses by utilizing chlorine-based disinfectants. Although
chlorination is effective at disinfection, it also poses health hazards. Table 3 applied ma-
chine learning models for controlling the water’s chlorine content. Chlorine can react with
organic compounds and bromide in water systems, leading to the formation of disinfection
by-products (DBP) [46]. These DBPs are considered potential human carcinogens and repro-
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ductive disruptors, prompting increased global research interest [47]. ML technology holds
promise in predicting and mitigating the generation of DBPs in drinking water, as well as
controlling their levels using AI technologies [48]. Numerous researchers have conducted
model testing on surface waters treated with chlorine as the primary disinfectant in drink-
ing water plants, while some studies have explored pre-chlorination peroxide/ozonation.
Successful estimation of DBP concentrations in treated water distribution networks and
consumer residences has been achieved by considering factors such as water temperature,
pH, contact time, chlorine concentration, and TOC concentrations as model inputs [49].
ANNs have been extensively tested as ML models for chlorination and DBP prediction,
with additional applications utilizing support vector machines, fuzzy inference systems,
and genetic algorithms [50]. ANNs frequently beat both GAs and SVMs in comparative
tests, while there are some circumstances when SVMs provide a minor edge when R2 is
utilized as a point of comparison [51]. The most well-tested ML model to predict chlori-
nation and DBP is the artificial neural network (ANN). Fuzzy inference systems, support
vector machines, and evolutionary algorithms are used in other applications. Total tri-
halomethanes (TTHM) and total haloacetic acids (THAA) are common DBPs that have been
modeled and/or predicted. Certain DBP compounds, such as dichloroacetic acid (DCAA),
trichloromethane (TCM), bromochloroacetic acid (BCAA), bromodichloromethane (BDCM),
trichloroacetic acid (TCAA), and dibromochloromethane (DBCM), have been the subject of
specific studies [52].

Table 3. Using machine learning and artificial neural networks to control the amount of chlorine in water.

ML/AI
Method Used

Target Substance and
Disinfectant Input Parameters Output Ref.

BDCM and TCM Chlorine UVA254, temperature, pH, and
Cl2 concentration

DBP tap
concentration [53]

ANN Free residual
chlorine set point (FRC)

Production flow rate of the WTP, set point
output of the reservoir, FRC of the treated

water tank, compensatory system flow
rate, FRC output of the WTP (mg/L), and

dosage error

WTP
FRC set point, chlorine

dosage
[54]

ANN and SVM TTHM and chlorine
(Cl2) Chlorine, pH, temperature, TOC, UV254 post-monsoon

season (PoM) [55]

FIS Chlorine quantity and
chlorine (ClO)

pH, temperature, time, and raw water
total organic carbon (TOC)

Chlorine
dosage, FRC [56]

RBF-ANN HAA5, BCAA, and
HAA9

UVA254, dissolved organic carbon,
bromine concentration, temperature,

pH, Cl2 concentration,
NO2-N concentration, temperature,

pH, and NH4
+-N concentration

DBP tap
concentration [52]

ANN TTHM and
chlorine

Conditions such as temperature,
concentration of algae, pH, TOC, amount

of chlorophyll-a, post-chlorine, and
content of total chlorine

TTHM wastewater
content [57]

SVM, RF, and ANN TCAA and DCAA

The number of aromatic bonds, atomic
distribution of electronegativity, and
hydrophilicity and electrotopological
characteristics related to electrostatic

interactions

DBP wastewater
content [58]

THAA,
TCAA, and DCAA Chlorine Fluorescence spectra DBP wastewater

content [59]
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5.2. Adsorption Procedures

Adsorption techniques are widely recognized as physical and chemical treatment
alternatives for the removal of various contaminants in water and wastewater treatments.
Adsorption involves the transfer of a target molecule (adsorbate) from a fluid to a solid
surface (adsorbent) through an exothermic mass transfer process [60]. However, accurately
calculating crucial parameters and predicting the performance of the adsorption process
can be challenging due to the complex interactions involved [61]. ML models have been
used to enhance the adsorption process by providing critical predictions (Table 4). ML
can assist operator decisions in adsorption processes and has been used to model and
predict parameters in metal-, industrial color-, and organic chemical-contaminated water
streams [62]. Common variables in the ML modeling of adsorption processes include the
pH, water temperature, adsorbent dose, contact time, and initial adsorbate concentration,
which are included in. Other inputs, such as the adsorbent particle size, system flow rate,
agitation speed, bed height, and BET surface area, have been utilized in specific models [60].

Studies have investigated the adsorption processes of various organic contaminants
with different characteristics, such as the target contaminant molar mass. Most studies
focused on the adsorption efficiency and representing the percentage of removed adsorbate.
Some models have also attempted to predict the relative importance of the input water-
quality parameters, adsorption capacity, and non-dimensional effluent concentrations.
Among the ML models, ANN has been frequently used in research with metal, organic,
and industrial dye contaminants. SVM, ANFIS, and RF are other models that have shown
successful applications. R2 values for the ANN, SVM, and RF ML models often exceed
0.9 and occasionally surpass 0.99, indicating strong performance [63]. In most situations,
the SVM models outperformed the ANN models, providing statistically significant R2

and RMSE values. When compared to other success models for adsorption processes, the
optimized ANFIS model did well in one instance [64].

Table 4. Predictive machine learning models for adsorption processes of various contaminants.

Adsorbent Contaminated Target ML Technique Input Variables Ref.

Encapsulated nanoscale
zero-valent iron Phosphate ANN

pH, phosphate concentration,
adsorbent dose, stirring rate, and

reaction time
[65]

Natural walnut-activated
carbon

Methylene blue (MB),
Cd(II) ANN

pH, MB concentration, Cd(II)
concentration, adsorbent mass,

and contact time
[49]

Nickle(II) Oxide
nanocomposites Asphaltenes RF, ANN, and SVM

Initial copper concentration,
adsorbent dose, pH, contact

time, and the addition of NaNO3

[39]

Typha domingensis
(Cattail) biomass Ni(II), Cd(II) ANFIS

pH, adsorbent dosage, metal-ions
concentration, contact, and

biosorbent particle size.
[66]

Activated
carbon

Various
organic

pollutants

ANFIS,
ANN, and SVM

Initial concentration, molar mass
of target contaminant, bed height,
specific surface area, flow rate, and

contact time.

[64]

5.3. Membrane-Filtration Procedures

Membrane processes are commonly used to remove contaminants that require a high
level of removal, especially those that are difficult or costly to eliminate through other
means [67]. Popular membrane techniques include ultrafiltration, reverse osmosis, nanofil-
tration, and microfiltration [68]. Researchers have created reverse osmosis, ultrafiltration,
nanofiltration, and microfiltration models. An additional study using a submerged mem-
brane bioreactor is included in this review. Many natural and industrial wastes, including
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oil and petroleum, organic materials found in the environment, numerous industrial and
pharmaceutical wastes, and plain salt or ocean water, are among the many pollutants
and natural chemicals that these models are used to study. As discussed in previous
sections on ML, ANNs are the predominant model used in water/wastewater-treatment
applications. For simulating the membrane-filtration processes, ANNs such as RNNs
(some of which contain LSTM), as well as ANFIS and SVM, have also been utilized [69].
Table 5 showcases the applications that employ ML to model, predict, and enhance the
membrane-filtration process.

Table 5. The applications that apply ML to model, predict, and improve the membrane-filtration process.

Parameter Algorithm Input Parameters Refs.

Prediction of DO BWNN, ARIMA, BANN, and ANN Dissolved oxygen [70]

Prediction of BOD RF, DNN, and SVR

Longitude, latitude, time, site actual depth,
total coliform, degree of turbulence at sea,
temperature, EC, salinity, chlorophyll-a,

transparency, density, PO4–P, NH3–N, TP,
NOx–N, pH, DO, and TSS

[70]

TN and TP prediction ANN and SVM Flow travel time, river flow, TN, DO,
temperature, and TP [71]

Na, Mg, EC, Cl, HCO3
−, SO4,

TDS, and Ca prediction ANN and SVM Na, Mg, temperature, EC, HCO3, SO4, pH,
Cl, TDS, and Ca [72]

Prediction of algal bloom ANFIS

TSS, TP, COD, BOD, TOC, DTP, PO4–P, TN,
total coliform, NH3–N, NO3–N,

chlorophyll-a, temperature, DO, pH, EC,
and fecal coliform

[73]

Prediction of chlorophyll-a SVM and ANN
Chlorophyll-a, PO4–P, NH3–N, NO3–N,

temperature, solar radiation, and
wind speed

[74]

Heavy metal contamination
assay PCA Cu, Cd, Ni, Zn, Mn, Pb, Cr, and Co [75]

Hyperparameter selection
optimization SVR Chlorophyll-a, EC, BGA-PC, DO, turbidity,

fDOM, and pollution sediments [22]

Transmembrane pressure, permeate flow, and solute rejection are the three main
variables that ML algorithms seek to generate the simulate membrane-filtration processes.
Transmembrane pressure, contact/filtration time, flux rate, temperature, pH, and so on are
some of the inputs that are provided in part of this published study. Again, it is challenging
to fully compare the statistical values obtained by a number of these studies due to the
range of models examined for different parameters. Lastly, all the RNN, ANN, and SVM
models fared fairly well in terms of the R2 values, regularly achieving values better than
0.9 and, frequently, values higher than 0.99 [76] (Table 5).

5.4. Applications in Surface Water

Water quality in metropolitan areas is now declining, mainly as a result of municipal
and industrial wastewater produced by human activity. A prominent topic in surface water
quality research is the use of ML [77]. Surface water quality can be predicted and analyzed
using a variety of methods (Table 6). Much attention has been focused on improving ML
model optimization and increasing prediction precision. Gathering data is an essential
initial step in building ML models.

Water system management can benefit from integrated and ad hoc water quality mon-
itoring to establish standards. Traditional environmental monitoring techniques are widely
used by environmental authorities. However, practical challenges limit the application of
standard methods for in situ monitoring [78]. Remote sensing technologies can address
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these limitations by revealing migration and distribution patterns of contaminants that are
challenging to detect using conventional approaches. They also fulfill the requirements
of real-time and extensive water quality monitoring [79]. In a study by Sagan et al. [22],
experiment-based ML demonstrated a higher accuracy compared to conventional models
for DNN, PLS regression, and SVR. This enables sophisticated optimization based on
the combination of real-time monitoring sensor data and satellite data. However, certain
aspects of water quality, such as virus levels, may not be easily identified through remote
sensing due to the lack of high-resolution hyperspectral data or their optical inactivity.
Indirect estimation using other quantitative data may be employed instead.

Based on water image data, Wu et al. [80] created an attentional neural network based
on a convolutional neural network (CNN) to distinguish between clean and dirty water.
They verified the functionality of their attentional neural network by conducting several
comparative tests on a set of pictures of water surfaces. One advantage of CNN is that it
may use the reflectance picture as an input straight out of the box without requiring feature
engineering or changing any parameters. Some of the collected data may inevitably be
inaccurate, corrupted, or incomplete due to technical or human errors; this will produce
a sparse matrix and poor performance in model applications. When this happens, data
cleaning, another critical step in ML applications, becomes essential [79].

Several strategies can be used to achieve data cleaning, including not using the dataset
directly, applying averages or medians, or augmenting the raw data with ML and matrix
completion techniques [81]. The features that were utilized to train ML models affect how
accurate their predictions are. Redundant variables will make the model more complicated
and have a negative impact on the model’s inverse power and accuracy. One of the
most commonly studied aspects of surface water quality, dissolved oxygen (DO), directly
reflects the health of the aquatic environment and its capacity to support aquatic life. The
concentration of DO in the Danube River was forecast using the linear polynomial neural
network (PNN) model. The BOD, pH, temperature, and phosphorus content were found to
be the most significant factors impacting the forecast accuracy among the 17 water quality
parameters [82].

The prediction of the DO concentration in St. John’s River, USA, is based on five input
characteristics: pH, total dissolved solids, chloride, water temperature, and NOx. Of these,
pH and NOx have a significant link with DO and can affect prediction accuracy [83]. These
results support those of Chen et al. [84], who found that input parameters had an impact
on the model’s capacity for prediction. Eutrophication is an issue in surface water quality
prediction in addition to typical water characteristics.

Table 6. Machine learning models applied to surface and drinking water.

Algorithms Determination Input Factors Ref.

RF, DNN, and SVR BOD prediction

Site actual depth, latitude, longitude, time,
DO, total coliform, temperature, salinity, chlorophyll-a,

NH3–N, TP, pH, polychlorinated biphenyls count,
NOx–N, PO4–P, and TSS

[13]

PNN DO prediction Cl–, alkalinity, PO4–P, COD, BOD, pH, temperature, P,
NO3–N, and EC [85]

ANN and SVM TN and TP
prediction DO, TN, river flow, temperature, rainfall, and TP [13]

RF TRP, TP, NO3–N, and NH4–N
prediction

EC, temperature, turbulence, chlorophyll-a, DO, pH,
and flow rate [86]

ANFIS Algal bloom
prediction

NH3–N, COD, DTP, PO4–P, TOC, TN, NO3–N,
chlorophyll-a, temperature, BOD, flow rate, EC, total

coliform, DO, pH, and fecal coliform
[35]

SVM and ANN Chlorophyll-a
prediction

Solar radiation, PO4–P, chlorophyll-a, NH3–N,
NO3–N, temperature, and wind speed [87]

Attention neural network Water pollution monitoring Water images [13]
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5.5. Applications in Wastewater

ML is frequently utilized in wastewater treatment for operations and management of
wastewater-treatment plants (WWTPs), technological optimization, and the monitoring
and prediction of water quality (Figure 4).
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Pollutants in domestic and industrial wastewater necessitate an assessment of the
water’s quality prior to treatment [88]. Multiresolution analysis and PCA were combined
to create a technique that Rosen et al. [89] found to be more sensitive than PCA for mon-
itoring sewage indicators at various scales. Real-time internet monitoring is crucial for
the collection, processing, and analysis of large amounts of data [90]. For example, a soft
sensor based on the black-box paradigm was proposed for real-time monitoring of E. coli
concentrations, revealing significant increases after heavy rainfall, possibly due to urban
runoff that resuspends sewer debris [91]. Combining soft sensors with ANNs can help
overcome the challenges associated with the expensive and complex operation and mainte-
nance of wastewater-treatment plants, as well as the need for real-time online monitoring
of ammonia and chlorine levels [92]. Another example involves the construction of a water
quality monitoring system that incorporates a turbidimeter and UV spectrometer for mea-
suring COD and TSP. The system utilized a boosting-iterative predictor weighting-partial
least squares (boosting-IPW-PLS) approach with multiple sensors. By assigning weighted
parameters and suppressing variables irrelevant to water quality, the boosting-IPW-PLS
technique developed a wastewater quality prediction model. Test results showed a signifi-
cant correlation coefficient between the predicted and actual values, indicating the system’s
effectiveness in monitoring water quality [93].

A real-world use of ML is in the optimization of wastewater-treatment systems by
analyzing historical data. In order to conserve land by condensing the capacity of the
anoxic tank, Fang et al. [94] used an SVM and an adaptive evolutionary algorithm to
mimic anaerobic, anoxic, and oxic conditions. Additionally, nanofiltration, reverse osmosis,
ozonation, and adsorption are tertiary wastewater-treatment methods that have been
optimized using machine learning. ML techniques can be widely used in the future for the
enhanced treatment of wastewater, including micropollutants (MP) and new contaminants,
based on the findings of the aforementioned situations [95]. The work conducted by Bhagat
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et al. [13] focused on predicting the removal of copper (Cu) in an adsorption process
using attapulgite clay as the primary adsorbent. They developed and compared three
models to determine the optimal prediction approach: a RF based on grid optimization,
SVM, and ANN. This study was chosen for its detailed description of input selection and
model architecture.

To evaluate the impact of additional input variables on the effectiveness of adsorption,
the copper ion concentration was maintained at 50 mg L−1. The range of values for
the adsorbent dosage was 2 to 15 g L−1, the pH ranged from 2.0 to 12.0, the NaNO3
concentration varied from 0 to 0.5 mol L−1, and the contact period ranged from 5 to
120 min. The RF model, using open-source software in the R programming language
known for statistical computation, employed the bootstrapping method. This method splits
the data into multiple subsets with random replacement, allowing each decision tree in the
RF to have its own random subset for training. In this study, the RF model trained decision
trees using 76 samples [13,96].

Each model was tested with different sets of inputs. The input sets included: (1) initial
copper concentration; (2) initial copper concentration and adsorbent dosage; (3) initial
copper concentration, adsorbent dosage, and contact time; (4) initial copper concentration,
adsorbent dosage, contact time, pH, and NaNO3 concentration; and (5) initial copper con-
centration, adsorbent dosage, contact time, pH, and NaNO3 concentration. Multiple tests
were conducted using various input combinations for each model. The input sets for testing
included: (1) initial copper concentration; (2) initial copper concentration and adsorbent
dosage; (3) adsorbent dosage, initial copper concentration, and contact time; (4) adsorbent
dosage, initial copper concentration, pH, contact time, and NaNO3 concentration; and
(5) initial copper concentration, adsorbent dosage, contact time, pH, and NaNO3 concen-
tration. The study found that utilizing all five inputs improved the model’s performance.
Additionally, the SVM model achieved a maximum correlation coefficient of 0.93, while the
RF and ANN models exhibited higher accuracy, with correlation coefficients greater than
0.99 [96].

5.6. Application in Drinking Water

The application of ML in drinking water management, including source management,
distribution, treatment procedures, and decision-making, has proven to be highly beneficial.
ML-based approaches provide valuable support in forecasting and assessing source water
quality, enabling early detection and the management of pollution (Table 6). Bouamar and
Ladjal [97] investigated the effectiveness of multisensor-based ANN and SVM algorithms
for the dynamic monitoring of water quality. Both models demonstrated respectable
performance in identifying different types of water, with SVM showing greater stability
compared to ANN. Wu et al. [98] proposed an adaptive frequency analysis method using
drinking-water quality datasets to facilitate an early risk assessment, decision-making,
and warning systems for drinking water quality in Norwegian cities. While research
on drinking water quality has focused mainly on physical and chemical properties, the
microbiological aspects, particularly concerning E. coli, have received limited attention [99].
However, the SVM method’s simplicity and robustness have made it a popular choice for
developing plans related to flocculation and disinfection. Scientists are currently engaged
in fault monitoring, disaster prediction, and ensuring the proper operation of urban water-
supply system facilities to safeguard the drinking water supply [100]. Despite meeting the
necessary criteria at treatment facilities, water can become recontaminated during transit
through complex water supply networks. Monitoring biological stability markers and
implementing disinfection measures can help address this issue [101]

In terms of control strategies, Wang et al. [102] proposed a predictive control scheme
for chemical dosing based on an SVM model that outperformed traditional proportional-
integral-derivative feedback control. Cluster analysis has been employed to assess water
quality variations in different water networks. Tian et al. [103] utilized cluster analysis to
identify the contributions of mixed water sources, such as aluminum migration and sea-
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sonal variations, to aluminum residues in urban drinking-water supply systems. Rayaroth
et al. [104] introduced a random decision tree bagging classifier using the shuffling frog-
leaping optimization method to detect water leaks in distribution networks with optimal
sensor placement. The service life of pipelines, crucial for water supply management, was
found to be influenced by residual chlorine, and an advanced meta-learning model based
on a neural network was proposed by Almheiri et al. [105]. SVM algorithms have also been
employed to predict water distribution system contamination events.

Water scarcity is a pressing concern for regional development and population growth.
Zhang et al. [106] developed a hybrid statistical model combining ANN and genetic
algorithms to predict the performance of drinking water-treatment facilities. This model
effectively predicts changes in the water output under various parameter fluctuation
scenarios, making it a valuable tool for the efficient management of water-treatment plants.
Addressing water supply system imbalances can be facilitated through machine learning
approaches. Accurate estimation of water demand is crucial for effective water-resource
management, especially in areas with limited water availability [97]. ANN and SVM
are commonly used in the drinking water sector, particularly for large-scale applications.
Their fast computation time during the training phase enables their utilization of dynamic
real-time monitoring systems to ensure the safety and quality of drinking water [97].

5.7. Applications in Groundwater

Preserving the security of groundwater is crucial for ensuring human health, as it
serves as a significant source of potable water. ML has emerged as a valuable tool for various
groundwater analysis tasks, including assessing and predicting groundwater quality and
identifying causes of contamination. Multivariate statistical analytic approaches, such as
PCA and cluster analysis, have gained wide usage in evaluating groundwater quality. In
addition, groundwater quality evaluation has also used ML methods, including SVM, DT,
RF, and ANN. The majority of related research on groundwater quality has compared how
well different ML algorithms perform when evaluating different problems [107].

Lee et al. [108] analyzed the quality of urban groundwater in Seoul, South Korea,
using a combination of fuzzy c-means clustering and a self-organizing neural network.
Groundwater samples were categorized into three groups based on contamination levels
using a self-organizing map algorithm, and the geographical distribution of these groups
was studied to investigate pollution patterns. Jeihouni et al. [109] compared five data
mining algorithms, including decision trees, RF, the automatic chi-square interaction detec-
tor, and iterative dichotomizer 3, to identify the critical factors affecting groundwater in
semi-arid regions and evaluate their impact on high-quality groundwater areas in Tabriz
City, Iran. ML has also been used to estimate future water quality and evaluate large-scale
regional datasets. Agrawal et al. [110] employed SVM and PSO to estimate and forecast the
WQI of groundwater, demonstrating the effectiveness of combining these techniques for
groundwater prediction, particularly for pollutants like nitrate and arsenic.

Understanding the causes of groundwater contamination is crucial to ensure its secu-
rity. PCA and clustering techniques, such as K-means, are commonly used for this purpose
in contemporary research [107]. Chen et al. [111] utilized multivariate statistical analysis
and PCA to identify the key variables that influence changes in groundwater quality. Deci-
sion tree algorithms, commonly used to investigate groundwater resources and quality, can
learn the relationships between input and output variables based on specific rules. Random
forest (RF) is advantageous in terms of its efficiency and rule generalization ability, making
it useful for identifying locations with high-quality groundwater suitable for drinking. RF’s
performance based on continuous datasets (reaching an accuracy of 97.10%) is particularly
noteworthy for groundwater resource planning and management. Integrated models,
which combine multiple weak learners into a single strong learner, are widely used to
forecast groundwater quality indicators and improve prediction performance. Boosting is
an effective integration approach, although precautions must be taken to avoid over-fitting
while reducing the variance by combining multiple models [111].
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5.8. Soft Sensing in Wastewater Treatment Facilities

Since wastewater treatment has little control over the system’s input, it is necessary to
quickly quantify the process status indications of relevance to enable a prompt response to
changing circumstances. The method used to calculate the state indicators can be roughly
divided into two categories: primary variables, which are challenging to measure, and
secondary variables, which are simple to measure [112]. The secondary factors are simple
to measure using a variety of dependable and reasonably priced equipment, as opposed to
the more challenging variables. Primary factors depend on a variety of other variables due
to the nature of the treatment process, which is driven by the interconnected biochemical
events that take place within the system [113]. Also, sensor systems are utilized to monitor
wastewater-treatment facilities and maintain plant efficiency and public safety. However,
costly or unreliable sensors or off-site laboratory examinations may be needed for effluent
parameters of relevance [114]. For instance, ammonium is strictly controlled in discharge
water and is a key indicator of treatment effectiveness. However, each ammonium sensor
costs more than USD 10,000 [115].

The simple-to-measure variables can be viewed through this lens as inadequate stand-
ins for the main process variables. This naturally encourages us to investigate and create
an algorithm that, by utilizing a variety of widely accessible secondary variables, can
estimate a primary parameter rather precisely. Thus, creating a computer application that
may efficiently serve as a soft sensor and a low-cost, easily tuned alternative to pricey
instruments was accomplished.

Soft sensors are essentially computer models that seek to precisely estimate the process
parameters that are either too expensive for the instrument or that cannot be measured
directly [116]. Soft sensors are low-cost alternatives to costly wastewater sensors. They
are computer models that precisely predict process factors utilizing the readings from a
small number of physical sensors. Soft sensing is recognized for its superior generalization,
reduced dependence on subject expertise, and ease of modification to variances [117].
These sensors frequently use data-driven methods that require substantial amounts of
annotated datasets and incorporate statistical and machine learning algorithms. Auto-
regressive integrated moving averages (ARIMA), principal component analysis (PCA),
logistic regression, the hidden Markov model (HMM), partial least squares (PLS), random
forest (RF), support vector machines (SVMs) and artificial neural networks (ANNs) are
some of the methods that are currently in use in the literature [118–121]. The majority of
ANN models have been shown to perform better and more reliably than other models.

A specific class of machine learning techniques, known as artificial neural network
(ANN) models, consists of a hierarchical structure of neurons, which are numerical univer-
sal function approximators. Its well-known moniker, “deep model,” is similarly inspired
by the hierarchical organization. The field of water-treatment study has developed a num-
ber of configurations, or architectures, for the goal of inferring various process variables.
Nonetheless, the majority of existing literature has disregarded the temporal notion of
processes in the development of inference models [122].

Soft sensors have been developed utilizing modeling approaches, including PCA, PLS,
SVMs, and ANNs, for a wide range of uses in the wastewater sector [123]. ANNs with
feedforward neural network (FFNN) architecture are the most widely used of these modern
approaches [124]. These models have been investigated for the purpose of predicting a
variety of process variables: suspended solids (SS), biochemical oxygen demand (BOD),
and nutrient removal. Recently, in order to forecast the total nitrogen content, [10] we
compared FFNN with support vector machines (SVMs). It is interesting that the study has
shown that SVM models perform better than FFNN models. Although FFNN and SVM
perform rather well, they are unable to capture the temporal idea of processes by nature
and assume that all data are independent. Nonetheless, industrial processes are dynamic
in nature, with temporal correlations found in the process data [125]. Therefore, the soft
sensor framework makes use of a variety of deep neural network architectures to offer
cost-effective monitoring for these facilities as well as reliable predictive modeling.
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5.9. Water Infrastructure Resiliency Improvement

Water systems serve two distinct purposes, which makes them unique among infras-
tructure systems. First, these are essential to the supply of water services; as a result, the
system’s ability to withstand natural disasters and the dangers associated with climate
change is inextricably related to the system’s ability to produce water [126]. Resilience is
the capacity of a water or wastewater system to anticipate, withstand, recover from, and
adjust to a variety of challenges related to climate change or other events. Also, resilience
is known as a protracted procedure that involves striking a balance between threat and
resources and produces adaptable, creative ways to anticipate, manage, react to, recover
from, and change in reaction to or before events [127].

Water system management should take into account the following six concepts when
selecting resilience measures, in addition to the idea of making decisions under extreme
uncertainty [128]: (1) gaining knowledge of the system through critical assessment and
network analysis; (2) enhancing maintenance to lower vulnerability and boost resilience;
(3) involving users in active demand management; (4) collaborating in nature to manage and
respond to risks; (5) creating and refining contingency management, utilizing innovation
when necessary. Furthermore, when arguing for resilience investments in water systems,
it is important to consider the safeguard services that water systems provide, such as
transportation, power, and water itself, since they mitigate the risks related to specific
natural disasters [129].

5.9.1. Using AI and ML to Improve Water and Resilient Infrastructure

An essential component of AI and ML success is the exponential development of
data. Data are being generated in the modern world at a rate never seen before, and this
trend will only increase globally. The increasing accessibility of cloud computing is another
important factor contributing to the recent surge in AI and ML. Large AI algorithms may
be operated with flexibility and economy thanks to cloud-based platforms, which offer
affordable access to the processing power needed. Infrastructure spending is becoming
more and more necessary, especially in light of climate change. Our infrastructure is at risk
from extreme weather events like flooding and sea level rises; many communities will be
left exposed to the effects of climate change if no major investment is made. This involves
higher maintenance and operation costs for the infrastructure in a changing environment, in
addition to the possibility of infrastructure damage during extreme weather events. AI, ML,
and other modern innovations will be essential to these initiatives. Artificial intelligence
has a lot to offer that will change the way water infrastructure is planned and managed
in the future [130]. This goes beyond simply employing standard pattern recognition or
identifying trends from past data. The future of water and infrastructure around the world
will be affected by AI in the ways listed below:

a. Water Quality

Using comparable outcomes and sensor data, AI can examine future water quality
patterns to spot changes in the quality of the water that may be a sign of pollution or other
problems. In order to address problems such as toxic algal blooms or other pollution, the
local agency can now respond with prepared action plans.

b. Predictive Water Supply Maintenance

AI can help identify maintenance requirements and equipment malfunctions, result-
ing in increased uptime and less downtime. AI and ML systems that identify possible
equipment breakdowns in real-time have been adopted by a number of local governments
and agencies across the United States, enabling maintenance crews to take care of problems
before they become serious.

c. Future Forecast for Flood Risk

The natural world may be incredibly intricate when it relates to flooding. The tradi-
tional method of estimating future flood risk relied on historical data or “past performance”.
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AI has given sophisticated predictive modeling a new dimension in detecting flood risks
in the future. AI and ML can “learn” using full models rather than simply historical data
and “predict” the flood dangers for more complicated places with many risk factors. These
types of pilot tests are being carried out all throughout the country. This lessens the impact
of floods and enables the responsible authority to take preventative action to safeguard its
residents and assets.

d. Water-Resource and Asset Administration

AI can assist in prioritizing and managing infrastructure assets to guarantee their
appropriate upkeep and replacement. It can also lessen waste and improve irrigation, both
of which contribute to water conservation.

e. Energy Efficiency and Sustainability

Water distribution and treatment are prime candidates for AI and ML optimization
since they consume large quantities of energy. By examining past trends in water usage,
artificial intelligence (AI) can be used to forecast future demands in purification as well
as distribution networks. Additionally, the distribution system itself can be optimized
with AI. Artificial intelligence (AI) can determine which parts of the network are over- or
under-utilized by examining flow rates, pressure, and other data. Adjusting the network
and ensuring that water is distributed effectively can act as a decision support system to
reduce energy consumption and carbon emissions.

5.9.2. What Role May AI Play in Influencing Urban Water Infrastructure in the Future?

Decentralized, green, circular, carbon neutral, and autonomous are the five main
attributes of the future, which are based on the interventions that have been put in place
over the past three decades to gradually evolve water systems. The development paths
leading to these qualities are connected in terms of improving the system’s capacity, perfor-
mance, and efficiency, all of which eventually help create resilient and sustainable water
systems rather than be exclusive [131]. For example, using swales to manage stormwater is
a step toward a greener road, but as it can lower energy use and greenhouse gas emissions
and disconnect stormwater services from centralized sewer systems, it may also be a step
toward the decarbonization and decentralization pathways.

I. Decentralization pathway

Planning and managing decentralized systems, where local facilities are optimized
for water supply, stormwater management, water recycling, and wastewater treatment to
prevent needless loss of resources (i.e., water, energy, and materials), can be greatly aided
by artificial intelligence (AI). The optimal planning of decentralized systems is a more
complex problem than that of centralized systems because these systems need to be linked
to form a system of systems that functions as a whole in order to provide the necessary
wastewater and water services as well as the greatest possible benefits to the environment
and ecology.

Under some circumstances, Garrido-Baserba et al. proposed that economically feasible
decentralized systems that do away with the requirement for centralized water supply or
collection of waste can be created using existing technologies [132]. However, through
the identification of dependable and resilient operations and the creation of predictive
maintenance techniques, artificial intelligence (AI) technologies are needed to maximize the
various benefits of individual decentralized systems. AI and ML have been used more and
more in citizen science projects to improve participation and task allocation. They could be
used to facilitate surveys that aim to analyze public perceptions of decentralized systems
by finding participants, targeting a particular group of people, and analyzing collected
data [131].

II. Circular economy pathway

WWTPs are the backbone of the circular economy strategy because, in addition to
being energy intensive, they account for 25% of the energy used in the water sector, essential
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for nutrient recovery, water reuse, and generation of renewable energy using a variety of
available technologies [133]. Energy and nutrient recovery from water-treatment systems
have been optimized by the application of process-based models [134]. A specific real-world
difficulty in highly variable streams of water is driving an increasing amount of implemen-
tation of real-time monitoring of crucial process parameters and nutritional characteristics.
This enables online learning and control in real-time for optimal resource recovery, as well
as the integration of machine learning for precise simulation of system dynamics.

III. Decarbonization pathway

The significance of greenhouse gas (GHG) emissions by water-related activities and
the water sector’s critical role in mitigating climate change have been emphasized by recent
research [133]. The two main causes of greenhouse gas emissions in the water industry are
energy use and wastewater treatment. In order to achieve net zero emissions in the water
sector, new technologies have been implemented to increase the generation of renewable
energy, improve energy efficiency, and reduce emissions from the treatment of wastewater.

IV. Automation pathway

Thanks to advancements in sensing, communication, and computer technologies,
automation is widely used in sewage and water treatment plants. Nevertheless, its applica-
tion is primarily restricted to controlling a single process unit or multiple units within a
system [135]. Over the past few decades, studies on the integrated control of UWI systems
have advanced quickly, although there are not many practical applications [136]. Enhancing
automation or creating completely autonomous water systems presents significant chal-
lenges in a number of areas, including the intricate relationships between various system
components, the unpredictability of the future, the explainability of control strategies and
the credibility of AI, and the financial outlays needed for software and monitoring. For
better control performance, machine learning can be included in system control techniques.
The benefits of AI integration have been reported to include significantly improved water
quality, system reliability, and energy efficiency. A few examples of these benefits include
the use of forecasted demands to control water-treatment plant outflows [137]. According
to Wang et al. [138], the most recent advancements in deep learning technology have signif-
icantly increased the forecasting accuracy for pressure, water demand, water depth, flow,
and pollution load. This indicates that system control may be enhanced.

5.9.3. Time to Harness the Power of AI and ML

Without question, artificial intelligence (AI) will revolutionize the water and infras-
tructure sectors in a number of ways. From enhancing the management of water resources
to addressing concerns related to climate change and flood resilience, AI and ML have the
ability to handle many of the most critical issues facing the sector [130]. We can anticipate
even more creative ways to help guarantee a sustainable and effective future for our water
and infrastructure systems as technology develops.

6. Conclusions and Future Prospective

This review has provided an analysis and overview of various ML models, as well as
advanced technologies and techniques applied in different water-related applications. AI
and ML approaches have been instrumental in improving, modeling, and automating pro-
cesses in wastewater treatment, water-based agriculture, and monitoring and management
of natural systems. The integration of AI/ML technologies is expected to reduce costs,
enhance water-based applications, and offer computer-assisted solutions for complex chal-
lenges related to water chemistry and physical/biological processes. ML and AI methods
have successfully predicted, modeled, automated, and optimized significant applications
in water-related industries and operations, including water- and wastewater-treatment
facilities, natural systems, and water-based agriculture. It is recommended to increase
future studies on both water infrastructure resiliency improvement (based on water quality)
by AI/ML technologies and create soft sensors for water-treatment plants.
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However, despite the progress made in research studies, certain challenges and limita-
tions must be addressed. Fully utilizing ML algorithms for water quality evaluation faces
several issues, such as:

1. Data availability and quality: ML often requires a substantial amount of high-quality
data. Obtaining sufficient data with high precision is challenging in water-treatment
and management systems due to financial or technological constraints.

2. Limited applicability: ML approaches may not be widely applicable due to the highly
complex conditions encountered in real wastewater-treatment and management sys-
tems. Therefore, current methods may only be suitable for specific systems.

3. Data management and legal considerations: Challenges related to data management,
public and legal perspectives, repeatability, and transparency in research need to be
addressed to further advance intelligent applications in the field.

While these challenges and limitations are evident, ongoing research and development
demonstrate the substantial implications and potential of ML, AI, and smart technologies
in one of the world’s most crucial resources, water.
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Abbreviations Definitions
WWW Waste water treatment
IoT Internet of Things
AI Artificial intelligence
ML Machine learning
ELM Extreme learning machine
AS Search algorithm
NN Neural network
BNN Biological neural network
ANN Artificial neural network
DNN Deep neural network
BANN Bootstrapped artificial neural network
BWNN Bootstrapped wavelet neural network
ARIMA Auto-regressive integrated moving average
CCNN Cascade correlation neural network
LSTM Long short-term memory
DT Decision tree
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SVM Support vector machine
PSO Particle swarm optimization
RF Random forest
GB Gradient boosting
KNN K-nearest neighbor
SOM Self-organizing map
ANFIS Adaptive-network-based fuzzy inference system
PCA Principal component analysis
PLS Partial least squares regression
SVR Support vector regression
DBPs Disinfection by-products
DO Dissolved oxygen
BOD Biological oxygen demand
COD Chemical oxygen demand
TOC Total organic carbon
DTP Dissolved total phosphorus
TP Total phosphorus
TSS Total suspended solids
TRP Total reactive phosphorus
TN Total nitrogen
EC Electrical conductivity
TDS Tsinghua/Temporary DeepSpeed
FDOM Fluorescent dissolved organic matter
BGA-PC Blue-Green Algae Phycocyanin
WQI Water quality index
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