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Abstract: Recent concern over energy use in wastewater treatment plants (WWTPs) has spurred
research on enhancing efficiency and identifying energy-saving technologies. Treating one cubic
meter of wastewater consumes at least 0.18 kWh of electricity. About 50% of the energy consumed
during this process is attributed to aeration, which varies based on treatment quality and facility
size. To harness energy savings in WWTPs, the transition from traditional controls to artificial intelli-
gence (AI)-based strategies has been observed. Research in this area has demonstrated significant
improvements to the efficiency of wastewater treatment. This contribution offers an extensive review
of the literature from the past decade. It aims to contribute to the ongoing discourse on improving the
efficiency and the sustainability of WWTPs. It covers conventional and advanced control strategies,
with a particular emphasis on AI-based control utilizing algorithms such as neural networks and
fuzzy logic. The review includes four key areas of wastewater treatment AI research as follows:
parameter forecasting, performance analysis, modeling development, and process optimization. It
also points out potential disadvantages of using AI controls in WWTPs as well as research gaps
such as the limited translation of AI strategies from research to real-world implementation and the
challenges associated with implementing AI models outside of simulation environments.

Keywords: wastewater treatment; aeration; artificial intelligence (AI); dissolved oxygen (DO); control;
fuzzy logic

1. Introduction

Energy usage is increasing as municipal wastewater treatment plants (WWTPS), also
known as water resource recovery facilities, are required to satisfy stricter treatment stan-
dards [1,2]. WWTPs require a significant amount of energy for their operation and are
often the most significant energy consumers within a municipality [3]. According to data
from Italy and Germany, electricity demand for wastewater treatment amounts to around
1% of each country’s overall energy usage. In the US, the distribution of water as well
as the collection and treatment of wastewater accounts for 4% of the total electricity con-
sumed [4]. The treatment of one cubic meter of wastewater requires about 0.18 to 0.8 kWh
of electricity [2,3,5]. In an energy audit of WWTPs across different countries, 388 WWTPs
with a collective treatment capacity of about 15.7 million people equivalent (PE) had a
corresponding electric energy consumption of 1.72 × 106 kW h/day [4]. This implies a
city with a population of about 500,000 people will consume an average of 54,777 kWh of
electricity per day for wastewater treatment, which is enough energy to power a Canadian
household for 796.4 days [6].

Most WWTPs utilize aerobic treatment technologies, most commonly the activated
sludge process [7]. In aerobic processes, oxygen is supplied to the aeration basin by
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pumping air, pure oxygen, or using mechanical aerators. The energy consumption per
WWTP unit was evaluated across ten different WWTPs with a representative range of
sizes; the percentage of energy consumed by the primary, bioreactor, and clarifier units was
25.08% ± 3.86%, 61.93 ± 8.02%, and 12.69 ± 7.63%, respectively [2]. The bioreactor unit
was found to be the most energy-demanding mainly due to aeration. Energy use models
for small facilities (serving less than 10,000 people) differ from those for large facilities;
depending on the size of the WWTP, aeration consumes about 30% to 70% of the total
energy required, with smaller facilities being in the lower range [8,9]. The high energy
consumption of the aeration process is because oxygen is not easily transferred from the
gaseous phase to the liquid phase for use by microbes in the wastewater [8,10].

The control and optimization of energy consumption in the aeration process have
been of significant research interest, and many modifications that have had objectives such
as improving the surface contact area of organics, the efficient suspension of materials in
the wastewater, energy utilization, and energy recovery have been made. For example,
methods including moving bed biofilm reactors (MBBRs) with suspended growth and
the moving bed membrane bioreactor (MBMBR) aim to enhance energy efficiency by
maximizing surface contact area and enhancing the suspension of organic matter [11,12].
Combined heat and power (CHP) generation using biogas from anaerobic sludge digestion
attempts to optimize energy consumption through energy recovery and utilization [13].

Most optimization approaches to the aeration process can be linked to better control
of dissolved oxygen (DO) concentration. Generally, increasing the air or oxygen flow rate
in the aeration basin, which can be achieved with surface aerators or submerged blowers,
will significantly improve the DO. It is, however, worthy of note that excess airflow can
significantly raise energy costs, reduce sludge quality, and adversely affect the overall
treatment process [14,15].

There has been a lot of research and development on DO control strategies using pro-
cess control devices. These controllers, collectively known for their diverse functionalities
in process management, regulate aeration device components, such as blowers and valves,
based on incoming process signals. There has also been an increase in the sophistication of
controllers from conventional on–off and proportional integral derivative (PID) controllers
to advanced control strategies like adaptive fuzzy control, adaptive PID, and artificial
intelligence-based controls.

Conducting a bibliographic search in the Scopus database within the engineering
and environmental science domain using the keyword “Artificial Intelligence” showed an
exponential increase in published works on this subject. A similar search using “Artificial
AND Intelligence AND Wastewater” showed a parallel exponential increase, indicating a
growing interest in applying Artificial Intelligence (AI) to wastewater-related contexts.

The inception of AI as a field of study traces back to a foundational assumption
posited by researchers at Dartmouth College in 1956. They envisioned the possibility of
describing every facet of learning and intelligence, paving the way for machines to emulate
these characteristics [16]. Today, AI refers to computerized systems capable of performing
tasks traditionally requiring human intelligence, covering perception, reasoning, learning,
and decision making. Within AI, machine learning (ML) is a key component, employing
statistical and computational algorithms to empower computers to learn from data and
enhance their task performance over time. ML branches into the four primary classes
of supervised, unsupervised, semi-supervised, and reinforcement learning. Supervised
learning trains models using labeled data for predictive tasks, while unsupervised learning
detects patterns in unlabeled data. Semi-supervised learning merges these approaches, and
reinforcement learning trains models to maximize rewards within an environment.

The integration of numerous ML algorithms, such as artificial neural networks, genetic
algorithms, and fuzzy logic is gaining traction within WWTPs [17]. Diverse publications
show that AI and ML in WWTPs largely serve purposes like process modeling, control,
performance analysis, forecasting, and optimization.
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This paper is based on literature published within the past decade and attempts to
identify the following points: (i) factors that influence oxygen transfer from the gaseous to
liquid phase, (ii) systems required for the implementation of aeration control, (iii) different
aeration control strategies that have been implemented both in simulation and pilot scales,
and (iv) advanced aeration control strategies, particularly AI control strategies. The paper
also identifies research gaps such as the implementation challenges of AI strategies in oper-
ational plants and the trade-off between model complexity and performance. Furthermore,
it highlights recommendations on generally accepted principles and good practices that
should be considered to bridge the gaps.

The paper’s structure is as follows: Section 2 explores oxygen demand and the factors
influencing its transfer efficiency. Following that, Section 3 examines various components
crucial for WWTP control. This includes an overview of control platforms, structures,
models, and algorithms. Furthermore, Section 3 extensively explores control strategies,
particularly focusing on AI in control strategies. This section also delves into real-world
WWTP implementations of AI control while shedding light on the potential disadvantages
associated with such implementations. Sections 4 and 5, respectively, address the exist-
ing research gaps identified throughout the paper and the conclusions drawn from the
study’s findings.

This study’s contribution to research lies in its comprehensive exploration and analysis
of the integration of AI within WWTP control strategies. By highlighting the nuances,
challenges, and opportunities associated with AI-driven control strategies, this study
provides valuable insights for practitioners, researchers, and policymakers in the field of
wastewater treatment. Furthermore, the review aims to contribute to the ongoing discourse
on enhancing the efficiency, reliability, and sustainability of WWTPs through the integration
of advanced AI-based control systems, paving the way for informed decision making and
future advancements in this critical domain.

2. Oxygen Demand in the Biological Treatment Process

Aeration is essential for nitrification and breaking down organic substances in bio-
logical wastewater treatment. However, the aeration process itself is a complex, nonlinear
system involving more than blowers alone as well as an intricate air delivery setup, as
represented in Figure 1. The most utilized modeling framework for both the aeration
system and the entire biological treatment process is covered by the activated sludge model
(ASM) [18]. These models comprise an extensive number of state variables as well as kinetic
and stoichiometric parameters. In most cases, a simplified approach is used to estimate the
dynamic oxygen demand. This simplified model operates under certain assumptions; it
assumes a single type of microorganism and substrate, focusing solely on organic matter
removal. Additionally, it presumes continuous stirring in the aeration tank, no reactions
in the settler, and exclusively recycles activated sludge to provide it back to the aerated
bioreactor. Along the recycling path, this model disregards the concentrations of oxygen
and the substrate. It also assumes that the output flow from the aerated bioreactor equals
the combined output flow from the settler and the recycled activated sludge flow [19]. The
amount of oxygen required by the microorganisms during wastewater treatment varies and
is given using the dynamic DO mass balance in the aerated bioreactor in Equation (1) [20]:

dSo(t)
dt

=
Qin(t) Soin(t)− Qout(t) So(t)

V (t)
+ kLa (Qair(t))(S o,sat − So (t))−

So(t)
Ko + So(t)

Rr(t) (1)

where Qin [m3/h], Qout [m3/h], Qair [m3/h], Soin [g.O2/m3], So [g.O2/m3], Rr [g/m3h],
V [m3], Ko [g/m3], So,sat [g.O2/m3] represent the waste inflow into the aerated bioreactor,
the waste outflow out of the aerated bioreactor, the airflow, the influent DO concentration,
the DO concentration in the aerated bioreactor, the respiration, the volume of the bioreactor,
the Monod constant and the DO concentration saturation limit respectively.
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It is also worthy of note that oxygen does not transfer easily from a gaseous to a liquid
phase. The parameters that define oxygen transfer from the gaseous to the liquid phase
are derived from Fick’s first law of diffusion, which relates the flux of a substance to its
concentration gradient:

∂M
∂t

= −DA
∂C
∂x f

(2)

where:
∂M
∂t = rate of oxygen transfer (g.O2/h);

D = diffusion coefficient (m2/h);
A = interfacial contact area between the gaseous and liquid phase (m2);
∂C
∂x f

= oxygen concentration gradient (g/m4).

Following some derivations, Equation (2) becomes the oxygen transfer equation as
follows [15,21]:

dC
dt

= KLa(Cs − C)= KLa(Cs − DO) (3)

where:

Cs = dissolved oxygen concentration at the gas–liquid film interface (g.O2/m3);
C = dissolved oxygen concentration in bulk liquid volume (g.O2/m3);
KLa = transfer coefficient (1/h).

Equation (3) forms the basis of modeling the oxygen transfer and is referred to as the
oxygen transfer rate (OTR) equation. Numerous studies have shown that other factors that
are not part of the OTR equation can also have effects on the OTR. These factors, such as
surface-active agents and salinity, are discussed below.

2.1. Surface-Active Agents

Surface active agents (SAAs), or surfactants, have been identified as major contami-
nants in wastewater [22]. The unique properties of SAAs have made them widely used in
various industries, such as the food, medical, and chemical industries, which explain their
continuous presence in the wastewater treatment (WWT) influent streams [23]. They can
plug subsurface aeration devices that inhibit oxygen transfer to aerobic microorganisms,
and they can have antibacterial properties depending on their compositions [23,24].

It has been observed that surfactants indirectly reduce the oxygen transfer coefficient
(KLA) of fine bubble aerators by reducing the bubble surface area, though they improve the
KLA of surface aerators and coarse bubble diffusers [15,21]. This variation in the impact of
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SAAs on fine bubble and surface aerators has been attributed to the turbulence associated
with oxygen transfer using the different aerators and the velocities at which the air bubble
travels through the wastewater.

2.2. Wastewater Salinity

Regional freshwater scarcity in many areas of the world has led to the use of saline
water as an alternative to freshwater, especially for industrial purposes [22]. The byproduct
of the desalination process is brine; when it is discharged into the wastewater stream, the
salt concentration in the wastewater ranges from 15 to 45 g/L [25].

Different researchers have conducted studies on saline wastewater, and it has been
observed that an increase in the concentrations of salinity decreases the OTR and further
affects the activated sludge microbial consortia. In a study on the effect of different salinity
concentrations (0 to 3% w/w) on the performance of microbial consortia in a sequential batch
reactor (SBR), an optimal biological nutrient removal performance was observed when no
salinity was present [26]. The performance decreased by 5% at a salinity concentration of
2% (w/w). In another study with synthetic wastewater samples containing NaCl, changes
in microbial consortia were observed as the NaCl concentration increased from 5 to 20 g/L,
but there was no observed change in the nitrification performance [27]. It was, however,
noted that nitrification was affected only when NaCl salt concentrations increased rapidly.
This was validated in a different study using a fixed-bed biofilm CANON bioreactor
and wastewater samples containing NaCl concentrations ranging from 0 to 45 g/L [28].
Inhibition of nitrification was observed with higher salt concentration due to the rapid
decrease in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB).

Salinity also influences the sludge volume index (SVI). A gradual increase in salinity
reduces the SVI because filamentous bacteria do not thrive in environments with high
salinity [27].

These factors may not be under the direct control of the WWTP operator but could
be altered to improve treatment efficiency. Other factors in works of the literature include
mixed liquor concentrations, solid retention time, and diffuser-related factors such as depth,
fouling, scaling, and temperature.

3. Aeration Control

Over the years, the WWT process has undergone numerous advancements using in-
creasingly complex designs to meet treatment standards and effluent discharge regulations.
The WWT influents not only have varying flows but also have varying concentrations. Hu-
man operators can apply experiential knowledge and rules of thumb to implicitly control
the WWTP, but the process is nonlinear and has a multi-variable timescale, thus requiring
more than the experiential knowledge of the operator alone [29]. Control mechanisms are
tools that are preferably used to maintain a high-level performance of the activated sludge
process (ASP) amidst the system’s variabilities and disturbances. The two main control
elements comprise the air supply system’s capacity for varying airflows over intervals and
the sensors that transmit signals to prompt control actions [10]. Most aeration systems are
controlled based on the DO levels within the aeration basin and can save 25% to 40% of
energy costs [30,31].

3.1. Control Implementation Platforms

All sizes of WWTPs require a control interface to monitor plant operations and sensor
signals while providing some level of control. To implement WWTP control, three basic
control platforms are extensively employed. Supervisory control and data acquisition
(SCADA), distributed control systems (DCSs), and programmable logic controllers (PLCs)
constitute the three types of control interfaces. Although a PLC can be used on its own,
SCADA and DCSs are always integrated into PLCs.

PLCs are originally designed to meet the control requirement of a single piece or
discrete component of a process, while DCSs are designed to provide local centralized data
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collection from multiple pieces of connected process components [32]. SCADA is widely
used in WWTPs as it has the advantage of notifying an operator of possible malfunctions,
remotely turning process components on or off, displaying and logging real-time data, and
providing a plant-wide view [32,33].

Unlike a DCS, SCADA can be accessed at any time by the operator without the
constraint of space or distance; however, it has a relatively slower communication time
as SCADA systems are online while DCSs are onsite [34]. The preference for one control
platform over another is based on the operator’s choice, economic factor, or platform
compatibility with the process equipment.

3.2. Conventional Control Strategy
3.2.1. The On–Off Control

Being also referred to as a traditional control strategy, on–off controls are known for
their simplicity in turning the process of a manipulated variable off or on when an output
signal is greater or less than a control setpoint or a dead band is received. For instance, a
DO controller with a setpoint of 2.0 mg/L and a dead band of ±0.5 is illustrated in Figure 2.
Despite its simplicity, it is one of the least preferred control algorithms for WWTPs the as
on–off switching of the inputs can cause process disturbances and huge stresses [20].
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3.2.2. PID Control

Although the WWT is a nonlinear process, linear control strategies such as the PID
are the most deployed in full-scale WWTP applications [35]. As seen in Equation (4)
and Figure 3, the PID combines proportional (P), integral (I), and derivative (D) control
actions that are applied proportionally to the error between the desired and measured
feedback signals. PID controllers are commonly used in the variants of the P and PI control
actions [36]. Unlike the on–off control strategy, the PID eliminates the oscillations, thus
keeping the process at the set point.

u = uo + KP·e + KI

∫
e· dt + KD

de
dt

(4)

where:

e = (u − uo) is the error;
KP = proportional gain;
KI = integral gain;
KD = derivative gain.
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The PID control strategy is reliable when the system is stable, but proper tuning is
required to maintain its reliability when there are disturbances [35,36].

3.3. Control Structures
3.3.1. DO Cascade Control

Control structures organize the controlled and manipulated variables within a control
loop, making a process more responsive to disturbances and less susceptible to downtime.
As illustrated in Figure 4, a cascade control structure is made up of multiple loops and
controllers in which one or more controllers calculate a set point for others. The simplest
form of a cascade control structure comprises two controllers and control loops that monitor
two measurement signals to control one primary variable [36].
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A typical application of a cascade structure is highlighted below in the ammonia-based
aeration control (ABAC) section, where an ammonium reference and concentration values
are used by a primary ABAC controller to compute a set point for a DO controller. Another
application is in the DO and air flowrate cascade controller, where the DO controller
determines the setpoints for the air flowrate controller to manipulate valve positions.

3.3.2. Ammonia-Based Aeration Control (ABAC)

Removal of ammonia and nitrogen from wastewater is carried out through nitrification
and denitrification, respectively. Theoretically, complete nitrification is an oxygen-intensive
reaction in which 4.57 g of oxygen are required.

ABAC is a cascade-type control structure, as shown in Figure 5. It prevents the com-
plete nitrification of ammonia while keeping effluent setpoint values below the discharge
concentration that is permitted by municipal regulations [31,37]. ABAC has proved that
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nitrifying enough NH4
+ to meet regulatory standards saves energy used for aeration [38].

Based on the direction of signal flow, ABAC can be categorized as a feedforward or a
feedback loop. Feedback-controlled loops measure the control variable, which is then
used as an input for the controller while feedforward-controlled loops measure process
disturbances and use a predictive model to map out the behavior of the controlled system
to take a control action [31].
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Figure 5. Ammonia-based aeration control (ABAC) structure.

3.4. Artificial Intelligence (AI) Control Strategy—Advanced Control

Advanced control strategies refer to a wide range of techniques and technologies used
within process control systems, usually together with basic or conventional process controls
for optimization, accounting for nonlinearities and other system constraints. Advanced
aeration control strategies are seldom used in field applications because of their complexities
and industrial viability [37]. In this section, the advanced controls of focus are AI control
strategies. As shown in Figures 6 and 7, there is an observed increase in interest in the
application of AI in environmental science and wastewater-related contexts.
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AI is a branch of computer science that integrates a broad range of techniques to
imitate human intelligence such as natural language comprehension, object identification,
decision making, and learning from experience. Machine learning (ML), which is often
conflicted with AI, is an AI technique that utilizes algorithms to enable computers to learn
from data and improve task performance. While there are numerous AI and ML algorithms,
the most documented in works of the literature are artificial neural networks (ANNs),
genetic algorithms (GAs), and fuzzy logic (FL) [17,39]. As shown in Figure 8, AI technolo-
gies applied in WWTP research have mainly been used to study parameter forecasting,
performance analysis, decision support, modeling development, process optimization, and
the development of smart control systems.
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AI technologies used for forecasting and prediction play a role in supporting plant
operators with advanced information about impending events. This is particularly valuable
in predictive maintenance and anticipating time-series events, such as an expected spike
in chemical oxygen demand (COD) levels. Some algorithms in this domain include Au-
toregressive Integrated Moving Average (ARIMA) and its variant, Auto-regressive Moving
Average (ARMA). Moving to performance analysis and decision support, AI technologies
here, serve as a secondary layer for validating process operations and efficiency. This
may involve the utilization of soft sensors, enhancing the robustness of assessments. Fur-
thermore, AI tools for modeling and optimization within WWTPs function to delineate
specific operations in a replicable manner, allowing for the observation of operational
policies with various modifications. The primary aim is process optimization without
necessitating these changes within the actual WWTP itself. Lastly, smart control systems
leverage algorithms to implement aspects of prediction, forecasting, decision support analy-
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sis, and optimization. These systems are typically commercialized as Software-as-a-Service
(SaaS) applications, providing a versatile and scalable approach to implementing AI-driven
functionalities within wastewater treatment processes. Some frequently used algorithms
applied in WWTPs, and their use cases are discussed in more detail below.

3.4.1. Fuzzy Logic Control (FLC) Strategy

FLC is a nonlinear control algorithm that belongs to a family of rule-based controllers;
unlike conventional or Boolean logic (e.g., on–off) controllers, it uses successive intervals
between 0 (off) and 1 (on). FLCs integrate linguistic information from human experts
and process knowledge to make up a linguistic rule base for the inference mechanism of
the controller. As shown in Figure 9, the FLC has the four main components the fuzzy
inference system (FIS), fuzzifier, de-fuzzifier, and fuzzy rules [39,40]. From a high-level
perspective, FLCs use membership functions to fuzzify crisp input signals, which are a
set of linguistic rules for inference mechanisms, and a de-fuzzifier to transform control
outputs into crisp forms. FLC applications have been found in plant-wide biological
nutrient removal, greenhouse gas emission control, and in N2O emission reductions of up
to 35% [41,42]. When FLC was compared with PID controllers in varying control structures,
FLC was observed to improve process stability and energy savings [35]. Benchmark
simulation model 1 (BSM1) mirrors the operations of a real wastewater treatment plant
in a simulated setting. It utilizes a standard control approach with proportional integral
(PI) controllers and is widely employed in simulating various control strategies. Using
FLC in BSM1 with MATLAB/Simulink in which DO was the control variable also recorded
significant performances, such as a 15.57% increase in effluent quality [43,44]. FLC has
some variants with high control performance that are usually applied to manage conditions
of unforeseen disturbances on the system or when a model of the controlled process is
unavailable. These variants include the adaptive fuzzy-neural network (AFNN), the fuzzy-
neural network (FNN), supervisory committee fuzzy logic (SCFL), and the adaptive neuro-
fuzzy inference system (ANFIS) [40,45–47]. Of these variants, the ANFIS does not require
an expert or operator to develop a rule base. Its ANN component specifies membership
functions and infers rules from training on process data [40]. The ANFIS and model
predictive controller (MPC) were used on a large-scale WWTP of about 500,000 people
equivalent [39]. The ANFIS–MPC configuration recorded obtained better effluent quality
and energy savings when compared with the PIDs previously used. In a study comparing
ANFIS and generalized linear model (GLM) regression, ANFIS models provided better
predictions of the studied effluent variables [48]. FLC is one of the most popular control
strategies and among the few that have been validated through full-scale application [49].
Table 1 provides a list of some fuzzy logic AI techniques used for WWTP control.
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Table 1. Fuzzy logic AI techniques used for WWTP control.

Model Type Application Controlled Variable(s) Metric of Evaluation
(Compared with Default Controller) Reference

MPC based on
neuro-fuzzy control Field—500,000 PE DO

Recycle flow (Qr)
16% energy saving
8.1% reduction in effluent N total [39]

FLC in cascade with PI Simulation—BSM2G

Recycle flow rate (Q)
External flow rate
Dissolved oxygen Setpoint
(DOsp)

1.73% on EQI (effluent quality index)
17.20% on OCI (operating cost index)
8.60% of total CO2

[41]

FLC Simulation—BSM2
Field—3500 PE

Effluent ammonia
concentration

+7–8% on EQI (simulation)
+13% on energy saving (simulation)
+40–50% energy saving (field)

[35]

FLC in cascade with PI Simulation—BSM1
Effluent ammonia
concentration
Recycle flow (Qr)

+15.57 to 20.3% effluent quality [44]

FLC Simulation—BSM1 Dissolved oxygen (DO)
Faster rejection of disturbance to
maintain a set point compared with
the PID

[43]

FLC Simulation—BSM2N

The ratio of nitrate
produced by NOB and the
ammonium consumed.
by AOB

35% reduction in N2O emissions [42]

AFNN + optimization
algorithm Simulation—BSM1 DO setpoint (DOsp) and

NO2 setpoint
7% aeration energy
8% pumping energy [45]

Type-2 fuzzy broad
learning controller Simulation—BSM1 DO and NO3-N

Compared with FNN:
70% faster computational time
90% + less integral square error

[50]

Fuzzy-based predictive
controller Simulation—BSM1 DO

Faster rejection of disturbance to
maintain set point compared with
the PID

[51]

Oxy fuzzy logic Field—75,000 PE Effluent ammonia
concentration (NH3)

13% reduction in annual energy
consumption [52]

Fuzzy-based MPC Simulation—BSM1 DO
Faster rejection of disturbance to
maintain set point compared with
the PID

[53]

FLC Simulation—BSM2
Recirculation flow
rate (Qa)
NH3-H

2.25% to 57.94% reduction in
Ntot violations
55.22% to 79.69% reduction in
NH3-N limit violations
0.84% to 38.06% reduction in the cost
of pumping energy

[54]

Fuzzy-neural network
controller (FNNC) +
multi-objective optimal
control (MOOC)

Simulation—BSM1 DO and NO3

Energy consumption (EC) reduced
by 1.6% in dry, 1.15% in rain, and
2.17% in storm conditions

[55]

Cooperative fuzzy-neural
control (CFNC) Simulation—BSM1 DO and NO3-N

0.0021 DO-integral of
absolute error (DO-IAE)
0.2357 DO-integrated square
differential error (ISDE)
0.0049—NO3-N—IAE
0.4587—NO3-N—ISDE

[56]

Cooperative fuzzy-neural
control (CFNC) Field—16,000 m3/d DO and NO3-N

0.0084 DO-IAE
0.3677 DO-ISD
0.0143—NO3-N—IAE
0.4987—NO3-N—ISDE

[56]

3.4.2. Artificial Neural Network (ANN) Control Strategy

ANNs are typically stand-alone AI technologies, but there are several types of ANNs
that include the radial bias function (RBF), wavelength neural network (WNN), multilayer
perception (MLP), and self-organizing map (SOM) [17]. Structurally, all neural networks are
made up of input, hidden, and output layers, interconnected through weighted synaptic
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connections using groups of nodes to infer approximate functions between input and
output variables. ANN control strategies use the gradient descent method and are trained
to recognize patterns from a dataset. The inference drawn from the training dataset can
be applied to the experimental designing and solving of multivariant nonlinear problems.
ANN control strategies have been observed to have some limitations, such as high training
cost, slow convergence, and the possibility of local minimum entrapment, when the network
has enormous input disturbances [57–59]. Throughout the literature, ANNs are often used
together in an ensemble with other models such as the GA, FL, MPC, and internal model
control (IMC) in control strategies [60–63].

In BSM1, DO was controlled using IMC and a multilayer perceptron neural net-
work [62,63]. These methods were employed to regulate DO levels by adjusting the oxygen
transfer coefficient (KLa). The comparison of performance with the default PI of BSM1
indicated at least a 42% decrease in the integral squared error (ISE) amongst other metrics
of performance. Similarly, within the BSM1 framework, the control of DO and nitrate levels
was accomplished by manipulating the oxygen transfer coefficient and internal recycling
rates, respectively [55]. This was achieved through the development of a multi-objective
optimal control system utilizing a fuzzy-neural network controller. Notably, this approach
demonstrated improved performance not only compared with the default PI controller but
also with other optimal controllers documented in the existing literature.

To overcome the challenge of local minima entrapment, which was a limitation of
the traditional neural network as mentioned earlier, an online sequential extreme learning
machine (OS-ELM) was introduced. An OS-ELM is a single-layered feedforward neural
network designed to address this issue [58]. When implemented in the BSM1, the KLa and
DO in the current time step were controlled to yield DO for the next time step, the OS-ELM
achieved impressive results. It recorded integral of absolute error (IAE) values of 0.0475
and integral of squared error (ISE) values of 0.00069 both in the dry weather and rainy
weather conditions of the BSM 1.

Utilizing artificial neural networks (ANNs) in an ensemble allows for the exploration
of diverse ANN-based control strategies, enhancing the adaptability and effectiveness of
the overall system. Table 2 provides a list of some ANN techniques used for WWTP control.

Table 2. Artificial neural network (ANN) AI techniques used for WWTP control.

Model Type Type of Test Controlled Variable(s) Metric of Evaluation
(Compared to Default Controller) Reference

ANN-based internal
model control (IMC) Simulation—BSM1 DO

16% IAE
[63]53% ISE

ANN-based IMC Simulation—BSM1 DO
21.25% IAE

[62]54.64% ISE

Fuzzy-neural network
controller (FNNC) +
multi-objective optimal
control (MOOC)

Simulation—BSM1 DO and NO3

Energy consumption (EC) reduced
by 1.6% in dry, 1.15% in rain, and
2.17% in storm conditions

[55]

Adaptive control based
on online sequential
extreme learning
machine (OS-ELM)
neural network

Simulation—BSM1 DO

Dry weather:

[58]

IAE—0.0475
ISE—0.00069
Rain Weather:
IAE—0.0375
ISE—0.00067

3.4.3. Genetic Algorithm (GA) Control Strategy

GA is an optimization algorithm inspired by Darwin’s theory of evolution; it is also one
of the most refereed examples of evolutionary computation. One of the peculiarities of GA
optimization is its implementation with evolutionary-biology terms. For example, selection,
crossover, and mutation are operations applied to the population of chromosomes (viable
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solutions) to find an optimal solution (off-spring) [64]. GA can search through complex
spaces independently of space dimensionality at a high performance and can be a soft
calculation tool for systems with high nonlinearities such as WWTPs [65].

It is important to note that GA is an optimization algorithm and is typically integrated
into other AI control strategies mainly to reduce the error margin of the predictive AI
model itself and to improve operational efficiency by optimizing the controlled variable.
An instance where GA control was applied to improve operational efficiency was in the
hierarchical control structure proposed for biological nutrient removal operations [65].
Here, iterative learning and PIs were used in a lower-level control of DO by manipulating
the KLa while a GA was used at a higher level to determine the DO setpoint at optimal OCI
and EQI values. This higher-level control design based on a GA for WWTPSs recorded a
noticeably reduced OCI, which is a direct measure of oxygen consumption [65]. Research in
which a GA is used to reduce the error margin of predictive AI models used for the control
of WWTPs is more common in the literature. Some of these instances include the FLC-based
GA control of DO and a GA evolving fuzzy wavelet neural network (FWNN) control of
DO [66,67]. Where a FLC-based GA was used to control DO, the membership function of
the FLC was optimized by the GA. Comparisons with the default PI controller showed that
the FLC-based GA controller had a 22.12% and 9.63% reduction in integral squared errors
(ISEs) and integral absolute errors (IAEs), respectively [66]. For the GA evolving FWNN,
the GA was used to adjust the center and width parameters of the Gaussian function,
dilation, and translation parameters of the wavelet functions as well as the weight of the
wavelet networks [67].

3.4.4. AI-Driven Model Predictive Control (MPC)

An MPC is a model-based controller used for advanced control strategies, and their
models could be linear or nonlinear. AI-driven MPCs are nonlinear and use AI models
such as FL and ANN MPCs have the characteristic of handling multiple inputs and outputs
(MIMO) with constraints that could be varied as hard or soft. The primary feature of an
MPC is its use of an optimization algorithm and a plant model to solve the control problem
and predict plant behavior, respectively, over a future horizon [61,68]. At each control time
step (k), both over a prediction horizon (p) and within a control horizon (m), MPCs compute
a series of control moves with predictions over p as:

ŷ(k + 1|k), ŷ (k + 2|k), . . . , ŷ( k + p|k) (5)

and optimizations over m:

∆u(k), ∆u(k + 1), ..., ∆u(k + m − 1). (6)

For a linear industrial process with linear constraint and cost functions, a linear time-
invariant MPC, such as an adaptive MPC or gain-scheduling MPC, can be implemented.
A WWTP is a nonlinear system, but its process can be approximated in the vicinity of
a working point by a discrete-time state-space model [69]. Nonlinear MPCs (NMPCs)
have gained popularity since the 1990s; they are more appropriate for controlling highly
nonlinear systems like WWTPs [36]. AI-driven MPCs are NMPCs that use AI models to
predict plant behavior. Certain AI-driven MPC configurations include the fuzzy-supervised
NMPC, MPC + FLC configuration that is implemented for the removal of effluent violations
in WWTPS, the advanced decision control system with MPC+ Feedforward (FF), FLC, and
an ANN MPC + FF [61,69,70]. Moreover, a process control scheme was developed with an
MPC in which the set points for DO and the recycle flow (Qr) were forecasted with the AI
engine of the ANFIS [39].

While MPCs provide the benefit a reduction of over 25% in power consumption
as well as an increase in plant efficiency, it is a computationally intensive process when
computations are conducted over smaller time steps (k) as well as with longer prediction
(p) and control (m) horizons [68]. To manage the high computational burden, viable
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recommendations within a simulation space are event-triggered [71,72]. Table 3 provides a
list of some MPC techniques used for WWTP control.

Table 3. Model-predictive control (MPC) AI techniques used for WWTP control.

Model Type Type of Test Controlled Variable(s) Metric of Evaluation
(Compared with Default Controller) Reference

Nonlinear multi-objective
model-predictive control
(NMMPC)

Simulation—BSM1 DO and NO3 3.2% to 9.1% aeration energy [68]

MPC + FF (feedforward)
and FL Simulation—BSM1 DO and NO2

3.9% on OCI
5% on EQI [69]

Hierarchical structured
MPC + FF, FL, and ANN
MPC + FF

Simulation—BSM2 DO and NH3-N 2.62% to 37.09% OCI
3.41% to 12.6% EQI [61]

Fuzzy-supervised NMPC Benchmark Simulation
with ASM2D TN and TP 18% reduction in plant operating cost [70]

Event-triggered MPC
(ETMPC) Simulation DO and NO3

60% computation reduction and 0.1
improvements for the integral of the
squared error (ISE)

[72]

Event-triggered NMPC
(ETNMPC) Simulation—BSM1 DO and NO3 50% computation reduction [71]

Fuzzy-based MPC Simulation—BSM1 DO
Faster rejection of disturbance to
maintain set point compared with the
PID

[53]

NMPC Simulation—BSM1 DO and NO3 20% reduction in operation costs [73]

MPC + genetic algorithm
(GA) Field—4000 PE DO 50% reduction in the relative amount of

aeration used [74]

3.4.5. Machine Learning and Data Mining (ML-DM) Control and Optimization

As highlighted in an earlier section, AI technologies have broadly been grouped into
ANN, FL, and GA. These three technologies have been referred to as typical stand-alone AI
technologies [17]. However, there are other AI methodologies applied to WWTP controls.
Some of these methodologies, such as random forest (RF) and K-nearest neighbor (KNN),
have been collectively referred to as machine learning (ML) techniques in some sections of
the literature and data mining (DM) techniques in others. Although ML and DM differ in
terms of purpose, learning functionality, human interaction, and their functional design to
self-improve, they use similar algorithms, such as classification and regression. While DM
is a computer-assisted process of revealing non-trivial patterns and establishing concise
relationships within an enormous data set, ML is a collection of methods through which
computers automate data-driven models and discover non-trivial patterns in data without
being programed for specific problems [75,76].

ML and DM are mostly applied for prediction and offline optimization. The offline
prediction and optimization models can subsequently be used to develop a control strategy.
In this section, some ML-DM techniques that have been applied to the prediction, control,
and optimization of the WWTP ASP are collectively discussed as ML-DM control strategies.
A study that aimed to improve the aeration process of Detroit’s water and sewerage
used an offline modeling methodology with different ML-DM methods such as the multi-
adaptive regression spline (MARS), RF, and KNN [77]. The model obtained from MARS was
comparatively selected for WWTP optimization. The results obtained yielded an airflow
reduction of greater than 31%. MARS was also used comparatively with reinforcement
learning (RL) and a constrained Markov decision process (CMDP) for the WWTP of Lleida,
Spain [78]. In that study, RL had some calibration limitations, while MARS had a long
runtime of four hours compared with the CMDP, which ran successfully in eight seconds.
Building on this comparative base, a CMDP was used for the Lleida WWTP pilot test with
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results of 13.5%, 14%, and 17% reductions in the plant’s electricity consumption, chemicals
needed for phosphorus removal, and sludge production, respectively.

RL is an advanced ML-DM methodology that differs from the conventional ML-
DM methodologies as it does not require training datasets. RL utilizes an agent to learn
and conduct better optimizations within an environment by interacting directly with the
environment. Some RL applications in WWTP systems include control tracking and the
cost decrease in N-ammonia removal [79,80].

A single ML-DM methodology can be used to develop models that may or may
not substantially characterize the nonlinearities of a WWTP process. However, a robust
characterization can be achieved by using different models at different points in the ML-DM
pipeline where an RF model was developed and validated using a deep neural network
(DNN) [81]. In the same study, variable importance measure (VIM) analyses were used to
determine the feature importance of the total suspended solids in the effluent (TSSe), while
a partial dependence plot (PDP) analysis was used to explain the effect of the feature from
the VIM on the TSSe.

Alternatively, a more robust ML-DM model can be achieved by using an ensemble [82].
An ensemble consists of at least two independent models, often called base model estima-
tors, working in sync as a single model to predict the outcome of a process. Ensembles have
the advantage of improving model accuracy and reducing generalization errors. An en-
semble learning framework of ANNs, ANFISs, and support vector regressions (SVRs) was
used to predict fifteen process parameters with at least 5% improvement when compared
only with individual base models [59].

There are at least three basic ensemble learning methods as follows: simple averaging
ensemble (SAE), a weighted average ensemble (WAE), and a nonlinear neural ensemble
(NNE). In a study on the WWTP of Nicosia, Cyprus, an ensemble of feedforward neural
networks (FFNNs), ANFISs, support vector machines (SVMs), and a classical multi-linear
regression (MLR) were used for the prediction effluent BOD [83]. The study utilized and
compared the three different ensemble methods, and the results showed that the ensemble
models of the SAE, WAE, and NNE increased performance efficiency up to 14%, 20%, and
24%, respectively, in the prediction of effluent BOD. Table 4 provides a list of some ML-DM
techniques used for WWTP control.

Table 4. Machine learning and data mining (ML-DM) AI techniques used for WWTP control.

Model Type Type of Test Optimized or
Predicted Variable Metric of Evaluation Reference

Multi-adaptive regression
spline (MARS)

Offline modelling and
optimization DO 31%+ reduction in airflow rate [77]

Constrained Markov
decision process (CMDP)

Offline modelling and
optimization with field
pilot test implementation

DO, WAS pump rate, and
internal recycle pump rate

13.5% energy reduction
14% less chemicals use for phosphorus
17% reduction in sludge production

[78]

Reinforcement learning (RL) Simulation—BSM1 N-ammonia Cost reduction of N-ammonia removal [80]

Direct heuristic dynamic
programming
(dHDP)-based RL.

Simulation—BSM1 DO
NO2

Single objective DO control design:
IAE of 0.068
ISE of 0.00063

[79]

Ensemble of
feedforward neural network
(FFNN), ANFIS, SVM, and a
multi-linear
regression (MLR)

Effluent quality parameter
prediction BOD

Comparison of ensemble techniques in
terms of performance efficiency:
SAE 14%
WAE 20%
NNE 24%

[84]

Ensemble of
AdaBoost,
gradient boost, and
random forest regression

Effluent quality parameter
prediction

TDS
BOD5
COD

Adaboost
TDS correlation coefficient = 0.96
Gradient boost
BOD5 correlation coefficient = 0.90
COD correlation coefficient = 0.75

[83]
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As established in earlier sections, an ensemble comprises at least two independent
models working together through ensemble techniques such as SAE, WAE, or NNE. How-
ever, there are stand-alone ML-DM algorithms based on advanced ensemble techniques.
Algorithms such as AdaBoost, extreme gradient boost (XGB), CatBoost, and RF are based
on advanced bagging and boosting ensemble techniques. These algorithms can also be
referred to as ensemble ML algorithms. They work with similar principles in that a subset
of evenly weighted data is created from an original or universal dataset. An initial base
model is created from that subset to predict the universal dataset. Then, the incorrectly
predicted data points of the universal datasets are given higher weights, and another base
model is created that is usually an improvement of the previous. The sequence continues
until a final and optimum model, a weighted mean of all previous base models, is obtained.

The effluent quality parameters of a WWTP in Qom province, Iran, were predicted
using AdaBoost, gradient boost, and random forest [83]. The results from this study showed
that AdaBoost and gradient boost performed better at predicting total dissolved solids
(TDSs) and BOD5, respectively.

3.4.6. Real WWTP Implementation of AI Control

Publications on AI integration or experimentation within real WWTPs are limited.
Typically, the assessment of AI control strategies is confined to dynamic simulation envi-
ronments, rarely extending to real-world plant scenarios. Detailed case studies focusing
on individual plants are less common compared to broader studies of multiple plants and
their utilization of artificial intelligence. Most successfully implemented AI applications in
real-world WWTPs are often marketed as software-as-a-service (SaaS) solutions. These suc-
cessful applications often have a scarcity of comprehensive case studies and white papers
detailing their reproducibility. Some successful implementations are mentioned below.

Aveva™, an esteemed industrial software solution provider headquartered in Cam-
bridge, UK and recognized for its PI system product used in WWTPS, introduced a predic-
tive analytics product [85]. This product boasts no-code AI and ML capabilities and has
been asserted as a proven solution implemented by industrial operations for over 15 years.
At the time of this review, no case studies or white papers had been made publicly available
on the predictive analytics product.

Xylem Solutions, a water technology provider based in Washington, DC, USA, de-
ployed a proprietary AI tool to optimize the efficiency of energy and chemical usage within
the aeration process of a WWTP situated in Cuxhaven, Germany. The plant, which is oper-
ated by EWE WASSER GmbH (EWE) also situated in Cuxhaven, Germany, has a treatment
capacity of 400,000 PE. According to reports, this implementation resulted in a remarkable
30% reduction in energy consumption while maintaining full compliance with regulatory
standards [82]. The optimization tool in this case study, known as the Xylem Vue, uses
neural network models of carbon, nitrogen, and phosphorus elimination processes. These
models were developed using data extracted from the plant’s SCADA system, allowing for
a comprehensive data-driven approach to enhancing operational efficiency. The report in
this case study showed that since its integration in 2017, the treatment plant achieved an
annual saving of 1.2 million kilowatt-hours of aeration energy usage. This saving equates
to powering 321 homes using 3500 kWh per year, showcasing the significant strides made
in energy conservation [86].

In a separate case study, an advanced supervisory control system, known as PreviSys,
was deployed to oversee operations at the Klimzowiec WWTP in Chorzow, southern Poland.
PreviSys, a data-driven tool utilizing algorithms like model predictive control (MPC), was
integrated into the plant’s SCADA system. Its primary objective was to execute different
operational strategies for optimizing the biological nutrient removal (BNR) process and
enhancing the plant’s energy balance [87]. The objective was realized through a comparative
assessment between the default control strategy and the strategies provided by PreviSys,
which compensated for uncertainties as a support operating system, ultimately leading to
at least a 16% reduction in energy consumption at the Klimzowiec WWTP. Although AI
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did not exclusively drive the MPC in this specific case study, it is noteworthy that MPC can
be harmoniously fused with AI methodologies in specific applications.

In the area of monitoring WWTP performance, there is an increasing need to closely
track treatment quality, especially with rising effluent quality standards and strict dis-
charge regulations. A unique AI development in this field is a soft sensor powered by a
fuzzy-neural network (FNN) [88]. This innovative approach was implemented in a study
across two WWTPs situated in Beijing, China, with treatment capacities of 400,000 m3/d
and 1,000,000 m3/d. Unlike traditional physical sensors which measure variables using
physical hardware, soft sensors use algorithms to infer the variable based on other data. In
this study, the soft sensor specifically monitored effluent concentrations of total phosphorus
and ammonia nitrogen in two WWTPs. The soft sensor operated on an FNN that under-
went training using an adaptive second-order algorithm. Its inputs were chosen through
principal component analysis (PCA). After being put into production for a year at the two
treatment plants, these soft sensors consistently achieved a quarterly mean accuracy of at
least 90% [88].

3.4.7. Potential Disadvantages of Implementing AI Control in WWTPs

While the rapid evolution and promise of AI technology signify remarkable advance-
ments, there exist specific concerns, challenges, and potential disadvantages that warrant
attention within the wastewater treatment industry that encompass the following points:

Cost of implementation: the integration of AI systems typically demands substantial
upfront investments in technology, specialized expertise, training, and infrastructure.
While these costs are relatively quantifiable, there exists a less conspicuous yet critical
factor—the cost of false positives [89]. For a WWTP, a false positive from an AI system
could trigger violations of treatment and discharge regulations, setting off a cascade of
environmental challenges. The repercussions might extend beyond immediate compliance
issues, potentially leading to significant environmental consequences.

Dependency and adaptability: the concern regarding the adaptability of the workforce
considering AI advancements is pervasive, particularly regarding potential job displace-
ment [90,91]. Overdependence on AI systems may inadvertently erode human expertise
and decision-making abilities, impacting the readiness of handling unforeseen situations.

Data quality: the effectiveness of AI strategies hinges significantly on the quality of
input data, directly influencing the precision of output results. Any compromise in data
quality poses a substantial risk to the overall efficiency of the strategy [89]. Factors like
sensor malfunctions, breakdowns, or severe process variability can impact data quality. Pro-
cess variability introduces the concern of concept drift, where AI-driven models or control
strategies struggle to generate accurate outputs when faced with unfamiliar data instances.
Therefore, addressing possible sensor breakdowns becomes a pivotal consideration for
ensuring the long-term viability of AI strategies, potentially necessitating additional capital
expenditure. Likewise, mitigating concept drift demands periodic model retraining, which
may entail supplementary computing costs.

Data security and privacy risks: with increased connectivity, data usage, and the usage
of AI tools, the risk of unauthorized access or sensitive information and cyber attacks
increasingly becomes a sensitive issue. The implementation of AI strategies therefore
requires a thorough evaluation of data and network security policies [89,92].

Ethics and AI bias: the ethical factors of AI deployment raise significant concerns,
particularly regarding algorithmic transparency, biases, and accountability issues [89,93].
Reports have highlighted instances where AI tools lack transparency, potentially introduc-
ing biases into decision-making processes. Among these concerns is the one regarding how
ML systems inherently exhibit biases due to their design from the collection of data and the
subsequent preprocessing and feature engineering that aim to render the data more suitable
for modeling purposes [94]. Several fundamental principles of ethics within AI have been
identified including transparency, justice, non-maleficence, responsibility, privacy, trust,
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sustainability, dignity, and solidarity [89,93–95]. These principles serve as crucial guidelines
to be incorporated into the standards governing AI development and deployment.

4. Discussion and Research Gaps

From all the reviewed papers, data-driven control strategies have shown high accuracy
and efficiency in the control of nonlinear processes. The application of data-driven strategies
in the study on wastewater treatment has yielded profound results in various metrics such
as energy consumption, treatment quality, airflow rate reduction, and operating cost
index. It is noteworthy that within the previous decade, there has been a significant influx
of over 20,000 publications and references to artificial intelligence (AI) and data-driven
control strategies. However, upon conducting a comprehensive review of a representative
sample from this vast body of work, it becomes apparent that less than 20% of these
publications have been dedicated to the practical implementation of these strategies in
full-scale or pilot-scale treatment plants. Most of these publications primarily revolve
around simulation-based studies.

An evident trade-off can be observed between the simplicity of a data-driven strategy,
the evaluation metric utilized, and the level of difficulty associated with its implementation.
Typically, a more complex model tends to yield higher evaluation metrics but also presents
challenges when it comes to implementing the strategy at a full-scale or pilot plant level.
As a general guideline, an ideal data-driven control strategy aims to strike a balance of
being sufficiently parsimonious in order to yield significant improvements in metrics while
remaining simple enough to facilitate straightforward implementation within a full-scale
or pilot plant setting.

As an example, when considering the implementation of a data-driven control strategy
like reinforcement learning (RL), RL agents navigate towards an optimal control strategy
by interacting with the environment based on rewards and penalties. This iterative process
may continue until the RL agent has garnered rewards across a diverse range of plant dis-
turbances, eventually achieving optimal control. However, it is important to acknowledge
that during the time it takes for the RL agent to reach optimal control, the treatment plant
may have already violated certain regulations. Consequently, it is understandable that no
operator would willingly entrust the operation of a treatment facility solely to an RL agent
or other unsupervised data-driven control strategies.

In practice, most operators would likely prefer to implement a precise data-driven
control strategy that has been thoroughly validated to meet the operational requirements
of another plant over a significant period, encompassing annual changes in seasons and
various external disturbances beyond the scope of a simulation environment. However,
a notable challenge arises with this preferred approach as data-driven control strategies
are highly specific to individual processes or plants. Although there are some solutions
available for pre-instructing an RL agent to bridge this implementation gap in wastew-
ater treatment plants (WWTPs), these solutions remain experimental with anticipated
improvements in the future [96].

An additional crucial yet often disregarded factor contributing to the limited success
of translating AI research into full-scale implementation is the inadequate representation of
domain knowledge and the involvement of diverse expert groups throughout the various
stages of an AI project. Ensuring an equitable representation of domain expertise helps us
to ensure the development of appropriate models that are tailored to meet the anticipated
objectives and align with the existing infrastructure, thus enabling seamless integration.
This collaborative approach enables the development of AI models that are well suited
to address the intricacies of the target operations, enhancing the prospects of successful
implementation.

From the representative body of the literature reviewed in this paper, FL and MPCs
were observed as the most implemented AI techniques in either full or pilot-scale plants.
This observation perhaps speaks of the trade-off between the complexity and difficulty
of implementing AI control strategies. It was also observed that the common approach
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towards the minimization of energy and the cost of operating a WWTP is the optimization
of DO, but the theoretically recommended DO setpoint range is 2.0 ± 0.5 mg/L, which
does not allow for a wide optimization search space. Another minimization approach
would be to have a single objective optimization of the air flow rate with constraints on
the final effluent properties to ensure that treatment quality is not compromised or to
have a multi-objective optimization of the air flow rate and residual DO concentrations
using desired final effluent characteristics as a constraint. A multi-objective optimization
approach gives an operator a range of equally optimal solutions, while a single-objective
optimization provides just one optimum point.

5. Conclusions

The water–energy nexus is a critical aspect of sustainable development, and wastewa-
ter treatment plays a crucial role in ensuring public health and safety. However, meeting
regulatory standards often results in higher operating costs and energy requirements for
wastewater treatment plants, which can be a major challenge for municipalities. The
application of AI in controlling the cost and the energy-intensive processes of WWTPs
has demonstrated significant potential for addressing this challenge. AI strategies with
high accuracies capture nonlinearities in the system that are not accounted for when using
mechanistic models. While most AI control strategies have not yet been widely imple-
mented beyond scientific experimentation, some, such as FL and MPCs, are gradually being
accepted into pilot and full-scale use. This transition from conventional controllers to AI
strategies is likely to follow a similar path as the transition from on–off controllers to PIDs
and cascade controllers. However, it is important to note that the implementation of AI
strategies in wastewater treatment should be carried out in a parsimonious and responsible
manner to ensure their effectiveness and sustainability.

Overall, the introduction of disruptive technologies into workspaces invariably faces
skepticism and reluctance, and the integration of AI control within the WWT industry is
no exception. The author’s perspective on the evolution of AI in WWTP process control
suggests an initial implementation in treatment units associated with minimal risks. Estab-
lishing trust in AI systems within these low-risk units could catalyze their wider adoption
in more complex and higher-risk units. Consequently, this progression will necessitate
the development and implementation of robust policies and guidelines governing the
utilization of AI across varying levels of risk. Establishing these frameworks becomes
pivotal in ensuring the responsible and effective deployment of AI within the wastewater
treatment industry.
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