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Abstract: Data scarcity plays the crucial role in hydrological modeling, causing the uncertainties in
hydrological model calibration and parameterization. Therefore, while considering the sensitivity of
the parameter optimization, it is essential to determine which parameters have the most significant
implications on model performance, especially when there is limited hydro-climatological informa-
tion. Previous studies have underscored the significance of data adjustment parameter sensitivity
and its consequential influence on both Xinanjiang (XAJ) model performance and the determination
of the acceptable minimum data length, particularly in data-scarce regions. Nevertheless, it is es-
sential to consider the recession constant sensitivity as it has been identified as the most sensitive
parameter on an annual scale while keeping the data adjustment parameters constant during a period
of data scarcity. Hence, the objective of this study is to extend the previous research by examining
the relationship between recession constant sensitivity and data adjustment parameters in shorter
datasets leading to more reliable parameter estimation for data-scarce basins. Five U.S. river basins
were analyzed using the 28-year dataset and shorter subsets to highlight the impacts of recession
constant sensitivities with different data lengths. This study explores the impact of recession constant
sensitivities over the hydrological parameter estimation using two approaches (cg): (i) assessing the
relationship between the recession constant (cg) and the data adjustment parameter (Cep), for the
28-year dataset, and (ii) investigating the significant impacts of the sensitivity of cg over Cep in shorter
datasets, which can affect the estimation of the acceptable minimum data length in the data-scarce
basins. The polynomial regression analysis was applied to compare and evaluate the model results,
varying over the recession constant with different data lengths. The findings indicated that the
influence of the recession constant over the data adjustment parameters in the 28-year dataset is
limited in the annual scale. However, there is a significant impact of recession constant sensitivity
over the model performance while calibrating the model with subsets, particularly in the worst-case
scenario. This study underscores the importance of the recession constant sensitivity for reliable
continuous hydrological model predictions, especially in data-scarce areas.

Keywords: XAJ model; recession constant; data adjustment parameter; model performance;
sensitivity

1. Introduction

Hydrological models have been regarded as a powerful and essential tool for handling
water and environmental resources as the magnitude of harm they inflict is increasing in
both financial and social aspects [1]. In this context, hydrological modeling methods are
advanced tremendously in terms of complexities with a wide range of application areas,
including the study of the climate change and land use paradigm, flood forecasting, and
rainfall–runoff modeling [2–5].
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Among all the factors affecting the degree of reliability of the model performance,
the availability of data can decide the model reliability in any condition. In other words,
data scarcity can lead to the limitations of the hydrological model performance. There-
fore, in order to make reliable decisions, decision-makers and modelers are important for
paying particular attention to the range of potential outcomes arising due to data scarcity
(especially in developing countries). Hamilton (2007) [6] highlights the data shortage for
employing the hydrological models and its related impact concerning making decisions
from model results. Subsequently, the hydrological modeling uncertainties resulting in an
increasing competing demand of the scarce water resources become challenging in many
regions, especially where the data scarcity and limitations can affect the model calibration
predictions. Assessing the modeling process’s uncertainty and quantifying it contributes
to determining how reliable the predictions remain. Consequently, the importance of
understanding the uncertainties within hydrological modeling due to data scarcity has
grown significantly [7–9]. In the domain of hydrological study, modeling uncertainties can
be categorized into three major groups, which are known as (i) data uncertainty, (ii) model
structure uncertainty, and (iii) parameter uncertainty [10–13].

Among these, parameter uncertainties arising from the challenges of optimizing model
parameters and model estimation have been frequently identified in recent studies. Hence,
the model results are essential to be adjusted based on parameter calibration as it can assess
the model predictions with the corresponding observations [14–16]. Also, addressing the
issues associated with parameter uncertainties in hydrological modeling has been a major
focus in recent studies [17–19]. Parameter uncertainties during a period of data scarcity
can also lead to inadequate model performance, over-parameterization, and poor model
robustness. As the majority of model parameters are difficult to predict precisely, they need
to be evaluated through a calibration procedure using the available data. Moreover, the
increased number of parameters to be adjusted in modeling can often result in the extra
workload in the model calibration process [2,18].

Hence, identifying an accurate representation of suitable parameter values for pa-
rameter estimation is of importance in hydrological modeling [7–9,20]. To propose the
above-identified issues, it is crucial to detect the most sensitive parameters in model cali-
bration and parameter optimization when there are data limitations. Therefore, this study
aims to explore the relationship of each sensitive parameter in parameter estimation and its
influence over model performance during a period of data scarcity.

In this context, the application of conceptual hydrological models for model calibra-
tion is mainly considered because it can effectively represent the underlying uncertainties
associated with inputs, parameters, and the presumed model validation [21–28]. In the
context of limited information, it is difficult to identify which modeling structures are the
most effective. Furthermore, only a few studies have tried to assess the implications of
hydrological models in data-scarce basins (e.g., [17,29]). More importantly, in practical use,
it is frequently challenging to ascertain the functionalities, constraints, and capacities of
any hydrological model providing accurate results only from the low data input under
all scenarios [30]. According to the study, conceptual models specialize in minimal data
requirements and broad applicability in real-world hydrology [31].

Furthermore, according to Parajka et al. (2013) [32], the selection of a hydrologi-
cal model is usually based on the prior knowledge of the hydrological system, the data
availability, and prior practical experience. From the literature gathered [33–36], it was dis-
covered that some research has already been carried out on the application of the Xinanjiang
model (XAJ model) and resulted in good accuracy in model performance. In addition, even
though the XAJ model can originally be applicable in humid and semi-humid regions with
robust capacity, it can also effectively achieve better model results in dry river basins [37].
Therefore, this study utilized the XAJ, a widely used probability-distributed model for
hydrological studies, to evaluate the most influential parameters [38,39].

Studies, such as Lu and Li (2014) [33], have examined parameter sensitivities within
the Xinanjiang (XAJ) model using global sensitivity analysis techniques across different



Water 2024, 16, 286 3 of 21

timescales for model calibration improvement. They revealed the data adjustment parame-
ters as the most sensitive parameters in the optimization of the XAJ model at an annual
scale. Furthermore, their work notably highlighted the increased sensitivity of the recession
constant on an annual timescale, while the data adjustment parameters remained constant.
Zin and Lu (2022) [36] have proposed the influence of data adjustment parameters in param-
eter optimization and its impact over the XAJ model performance for data-scarce regions.

Through this research initiative, we aim to validate the relationship between the data
adjustment parameter (Cep) and the recession constant (cg) while only limited datasets are
available, emphasizing the critical role of recession constant sensitivity. This approach can
identify which parameters influence the model’s calibration and performance without over-
parameterization [40]. This study seeks to provide valuable insights into the significant
impact of cg on Cep within shorter subsets, addressing constraints on parameter estimation
and determining the acceptable minimum data length, particularly in data-scarce regions.

2. Materials and Methods
2.1. Study Basins

Five river basins in the USA were investigated during this study, including the same
two basins from the recent study [36], as illustrated in Figure 1. The selection was based
on the 30-year climate normal (1981–2010) released by NOAA’s National Climatic Data
Centre (NCDC). The selection of the study basins was originally considered in accordance
with the previous experiences in calibrating the XAJ model by Rahman and Lu (2015) [34]
and Zin and Lu (2022) [36]. According to the studies [33,34,36,41,42], these basins possess
robust datasets, and the XAJ model could accurately estimate their runoff. Therefore, this
study attempted to utilize the study basin (MOPEX ID: 903504000, MOPEX ID: 902387500,
MOPEX ID: 902472000, MOPEX ID: 903443000, and MOPEX ID: 911532500) to focus on the
sensitivity of the recession constant over model performance in data-scarce areas. With the
assessment including the same two basins permits comparing the parameter optimization
and the minimum data length estimation from two different approaches. Furthermore,
it provides a way to correlate the relationship between parameter sensitivity and model
performance. Table 1 illustrates a brief overview of the physical characteristics of the
researched basins.

Table 1. Studied MOPEX basins, locations, and basin characteristics.

Location
MOPEX ID Long Lat State

Drainage Area
(km2)

Data Length (year) MP * (mm/year) MPE * (mm/year)

903504000 −83.62 35.13 NC 135.00 28 1893 762.00
902387500 −84.94 34.58 GA 4144.0 28 1480 901.00
902472000 −89.41 31.71 MS 1924.0 28 1492 1060.0
903443000 −83.62 35.29 NC 740.00 28 2156 817.00
911532500 −124.05 41.79 CA 1577.0 28 2687 740.00

Note: * indicates mean precipitation (MP) and mean potential evapotranspiration (MPE).

2.2. Data Description

The U.S. MOPEX dataset [43] was employed to develop the basin scale daily precipita-
tion P (daily mean aerial precipitation calculated from ground-based gauge precipitation),
potential evaporation Ep (developed from NOAA Evaporation Atlas), and discharge Q
(developed from USGS hydro-climatic data) information utilized in this research. Table 2
presents comprehensive descriptive data statistics of the examined basins.
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Figure 1. Stream gauge location map of studied basins over USA.

Table 2. Descriptive statistics of studied basins

MOPEX ID
Mean

Precipitation
(mm/year)

Median
Precipitation

(mm/year)

Minimum
Precipitation

(mm/year)

Maximum
Precipitation

(mm/year)

Standard
Deviation

903504000 1890 2051.98 1427.09 4424.72 571.450
902387500 1480 1481.05 1046.53 1930.67 228.240
902472000 1492 1550.62 1135.21 4615.13 674.880
903443000 2156 2064.90 1349.55 6646.70 1018.10
911532500 2687 2718.04 1644.96 7172.92 1176.72

Considering the lack of data and limitations in practical modeling research, the XAJ
model is calibrated using the 28-year dataset and subsets from each basin to assess the
model’s effectiveness. For the subsets, the 28-year dataset is divided into shorter data
lengths with different year intervals starting from 6-year to 28-year subsets [36].

Here, we defined the input datasets In,m, including P and Ep, and Qn,m
obs as the observed

runoff, where n is the length of datasets and m is the number of subsets (m = 1, 2, . . . , 28−n+1).

2.3. Analytical Framework of the Study

The analytical framework of this study comprises three steps as indicated in Figure 2.

Step 1: Involves the selection of the XAJ model, followed by parameter optimization and
calibration using a 28-year dataset to estimate the reference recession constant (cg,ref).

Step 2: Encompasses the calculation and evaluation of the Cep values for each subset, and
Cn,m

ep is achieved through the model calibration with cg,ref.
Step 3: Outlines the procedure for evaluating the recession constant for the subsets, cn,m

g .
The evaluation is based on the model output obtained while running with Cn,m

ep .
A detailed explanation of each step will be provided in the subsequent sections.
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2.4. Description of XAJ Model and Its Parameters

In this study, we utilized the Xinanjiang model, a conceptual hydrological model,
developed by the Flood Forecast Research Institute of the East Chinese Technical University
of Water Resources [44]. This model is originally designed for humid and semi-humid
areas of China to estimate runoff generation within a basin [33,44]. In addition, it has
proven effective in estimating in dry basins as discussed in Section 1 [37]. The model also
demonstrates robust physical characteristics.

Figure 2. Analytical framework of this study.

2.4.1. Selection and Calibration of Model Parameters

The simulated XAJ model utilized in this research comprises fifteen parameters, as
detailed in Table 3 [44–46]. The complexity arising from the connections and interactions
among the numerous parameters required in calibration can be minimized by the level of
parameter estimation. Li and Lu [47] conducted the sensitivity of the XAJ model parameters
at different time scales using the sensitivity analysis techniques by Morris [48]. This study
reveals that the sensitivity of the XAJ model parameters varies across annual, monthly, and
daily time scales. It can be categorized into the following groups:

Group 1: Data adjustment parameters, sensitive on the annual scale.
Group 2: Runoff component separation and routing-controlling parameters, sensitive on

the daily scale.
Group 3: Runoff generation-controlling parameters, sensitive on the annual scale while the

Group 1 parameters are kept constant.

2.4.2. Relationship between Data Adjustment Parameter (Cep) and Recession Constant (cg)

The data adjustment parameter and linear reservoir recession are common parts in
many widely used hydrological models, e.g., the NWS River Forecast System-Catchment
Modeling and TANK model [49]. According to Lu and Li [33], the sensitivity of the variables
impacting runoff generation (cg) appears sensitive yet again on an annual scale in the XAJ
model while maintaining Cp and Cep as constant. Nevertheless, the recent study [36] mainly
explored the impact of the sensitivity of the data adjustment parameter (Group 1) over the
parameter estimation and model performance, applying both longer datasets and subsets.
Therefore, the impact of recession constant sensitivity over the data adjustment parameter,
especially during a period of data scarcity, needed to be considered.
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Table 3. Description of the parameters in the Xinanjiang model.

Parameter Physical Meaning Range Pre-Optimized Values, ϕ0

MOPEX ID

903504000 902387500 902472000 903443000 911532500

Group I

Ratio of measured
Cp precipitation to actual 0.8–1.2 1 1 1 1 1

precipitation
Ratio of potential

Cep evaporation to pan 0.8–1.2 0.7908 1.25 1.2806 0.9865 0.7184
evaporation

Group II

Areal mean free water
SM capacity of the surface 1–50 40 30 50 40 30

soil layer (mm)
Areal mean of the free

EX water capacity of the 0.5–2.5 1.2 0.5 0.5 1.2 0.5
surface soil layer (mm)
Outflow coefficients of 0–0.7;

KI the free water storage to KI + KG = 0.7 0.1 0.3 0.55 0.1 0.3
interflow

Outflow coefficients of 0–0.7;
KG the free water storage to KI + KG = 0.7 0.6 0.4 0.15 0.6 0.4

groundwater
cs Recession constant of the 0.5–0.9 0.6 0.85 0.75 0.6 0.4

lower interflow storage
Recession constant for

ci the lower interflow 0.5–0.9 0.9 0.75 0.8 0.9 0.75
storage

cg Recession constant of the 0.9835–0.998 0.98 0.987 0.983 0.98 0.983
groundwater storage

Group III

b Exponent of the tension–water 0.1–0.3 0.3 0.15 0.15 0.3 0.15
capacity curve

Ratio of the impervious
imp to the total area of the 0–0.005 0.02 0.01 0.01 0.02 0.01

basin
WUM Water capacity in the 5–20 20 20 20 20 20

upper soil layer (mm)
WLM Water capacity in the 60–90 80 80 80 80 80

lower soil layer (mm)
WDM Water capacity 10–100 60 160 160 160 160

in the deeper soil layer (mm)
C Coefficient of deep 0.1–0.3 0.15 0.15 0.15 0.15 0.15

evapotranspiration

Note: ϕ0 indicates the 13 pre-optimized parameter values, which is a subset of all 15 parameters in the XAJ model.

According to the general water balance equation for the vertical water flux, the rela-
tionship between the adjustment parameter and the recession constant parameter can be
observed as shown in the following equation:

CpPg = CepEp + R + ∆S (1)

where Pg is the actual rainfall calculated from a single rain gauge, Ep is the annual evapora-
tion, R is the annual runoff depth, and ∆S is the changes in the water storage.

However, in this study, we considered that the baseflow storage can be affected by the
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recession constant cg at the beginning and end of the year under certain circumstances. To
resolve this approach, ∆S must be taken into consideration, which is a highly subjective
task that might have significant effects on the close relationship between Cep and cg.

2.4.3. Assessment of Data Adjustment Parameter (Cep)

Here, the estimation of the data adjustment parameter, Cep, is detailed through the
aridity index method emphasized by Li and Lu [41]. According to that, correlating the
runoff coefficient and data aridity index could support the reduction in the parameter space
for Cp and Cep rather than separate assessments. Therefore, to reduce such an inaccuracy
and improve the efficiency of parameter estimation, the interaction between the runoff
coefficient and the data aridity index is applied to parameter estimation.

Within the limitations of the pan aridity index (ζg,pan) and annual runoff coefficient
(R/Pg), the values of Cp and Cep might be determined by the following logarithmic form [41],

ln (R/Pg) = −α(Cep/Cp)ζg,pan + ln Cp (2)

Here, estimation for the 28-year dataset and subsets is outlined by function Y, and
Cn,m

ep represent the estimated Cep values for the subsets, In,m. The subsequent equation
explains the data adjustment parameter estimation in the subsets, In,m.

Cn,m
ep = Y(Qn,m

obs , In,m) (3)

2.4.4. Assessment of Recession Constant (cg)

Three runoff components [33] consisting of the surface runoff, interflow, and baseflow
are routed using three linear reservoirs as follows:

Qx(t + 1) = cxQx(t) + (1 − cx)Rx x = s, i, g (4)

where subscript x indicates the runoff component, s is for the surface flow, i is for the
interflow, and g is for the baseflow; cs, ci, and cg are their recession coefficients. Usually,

0 < cs < ci < cg < 1

Based on the related literature [33], among the 15 parameters in the XAJ model, the
most sensitive parameter at the annual scale when keeping the data adjustment param-
eters constant is cg. Therefore, this study introduced the sensitivity of cg over the data
adjustment parameters. The recession constant values were initially calculated based on
the time constant, T, not to exceed the limits between 0 and 1. T is related to cg by the
following expression,

T = − ∆t/ln cg (5)

whereas T is the time constant of the baseflow system in days, and cg is the recession
constant in a t dimensionless quantity whose value depends on the time unit chosen (days).

2.4.5. XAJ Model Calibration

To implement Step 1 in Figure 2, let the function specify the XAJ model calibration, X,
and let the input datasets comprise the vector In,m. Let the simulated runoff, Qn,m

cal , via the
XAJ model calibration for In,m, be specified by the following equation:

Qn,m
cal = X(In,m, Cep, cg | ϕ0) (6)

where Cep represents the adjustment parameter (the most sensitive parameter at the annual
scale in the XAJ model), cg is the recession constant (sensitive at the annual scale when
the adjustment parameters are kept constant), and ϕ0 represents the application of 13 pre-
optimized parameter values, which is a subset of all 15 parameters in the XAJ model as in
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Table 2. These parameters are fixed in this study. As these parameter values are not inferred
through the calibration process, ϕ0 will be excluded from the following equation for clarity.

Qn,m
cal = X(In,m, Cep, cg) (7)

2.4.6. Evaluation of Model Performance Using Nash–Sutcliffe Efficiency

The Nash and Sutcliffe (1970) coefficient of efficiency is widely used in the evaluation
of hydrological modeling [50–55]. Simulated runoff information is derived utilizing the
well-known Nash–Sutcliffe efficiency [56].

The definition of the Nash–Sutcliffe efficiency is as follows:

NSE = 1 − ∑n
t=1(Qobs(t)− Qcal(t))

2

∑n
t=1

(
Qobs(t)− Qobs

)2 (8)

where Qcal is the simulated runoff, Qobs is the observed runoff, and Qobs is the mean value of
the observed runoff.

This study calculates the observed and simulated runoff from the XAJ model driven
by the subsets, In,m. It can be expressed as follows:

NSEn,m = NSE(Qn,m
obs , Qn,m

cal ) (9)

where Qn,m
obs is the daily observed runoff.

At an annual scale, the parameters affecting the Qn,m
cal are mainly Cep and cg. Thus,

Equation (9) can also be written in the following function:

NSEn,m = NSE(Cn,m
ep , cn,m

g | Qn,m
obs , ϕ0) = NSE(Cn,m

ep , cn,m
g ) (10)

2.4.7. Estimation of Reference Recession Constant (cg,ref)

The simulated recession constant, cg,ref, is initially estimated by comparing the model
results using the linear polynomial regression analysis. The values of cg,ref were selected
based on the cg values with the best model performance in the longest datasets (Figure 2).

NSE(C28,1
ep , cg,re f ) ≥ NSE(C28,1

ep , cg) (11)

where C28,1
ep refers to the estimated adjustment parameter value using a 28-year data length.

2.5. Estimation of Cn,m
ep for Subsets

To highlight the sensitivity impact of the recession constant in shorter datasets, the
data adjustment parameter values for the subsets are essential to optimize the recession
constant values for the subsets as indicated in Step 2 of Figure 2. To compare the impacts of
the parameter sensitivity in a shorter data length, we first identify the estimated Cep values
for the subsets based on three conditions: the maximum, minimum, and median annual
model results, NSE. Let Cn,m

ep,best, Cn,m
ep,worst, and Cn,m

ep,median be the maximum, minimum, and
median Cn,m

ep values in the subsets (In,m), when running the model using cg,ref.
The maximum, minimum, and median annual NSE can be specified using Cn,m

ep and
cg,ref in the subsets by using the following equations:

max(NSE(Cn,m
ep , cg,re f )) = NSE(Cn,m

ep,best, cg,re f ) (12)

min(NSE(Cn,m
ep , cg,re f )) = NSE(Cn,m

ep,worst, cg,re f ) (13)

median(NSE(Cn,m
ep , cg,re f )) = NSE(Cn,m

ep,median, cg,re f ) (14)
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2.6. Estimation of cn,m
g for Subsets

For the comparison of the sensitivity influence of the recession constants over the
parameter estimation in a shorter data length, we apply the maximum, minimum, and
median calibrated data adjustment parameter values (Cn,m

ep,best, Cn,m
ep,worst, and Cn,m

ep,median) in
the model calibration to receive the maximum, minimum, and median recession constant
values (cn,m

g,best, cn,m
g,worst, and cn,m

g,median) in the subsets (refer to Step 3 in Figure 2).

2.7. Comparative Evaluation of Recession Constant Sensitivity in Subsets

Finally, the maximum, minimum, and median annual NSE results using cn,m
g,best, cn,m

g,worst,
and cn,m

g,median are estimated by comparing the NSE results calibrated with cg,ref using the
following equations:

NSE(Cn,m
ep,best, cn,m

g,best) ≥ NSE(Cn,m
ep,best, cg,re f ) (15)

NSE(Cn,m
ep,worst, cn,m

g,worst) ≥ NSE(Cn,m
ep,worst, cg,re f ) (16)

NSE(Cn,m
ep,median, cn,m

g,median) ≥ NSE(Cn,m
ep,median, cg,re f ) (17)

where cn,m
g,best, cn,m

g,worst, and cn,m
g,median are calculated based on the maximum, minimum, and

median model outputs while running Cn,m
ep,best, Cn,m

ep,worst, and Cn,m
ep,median with cg,ref.

2.8. Application of Linear Polynomial Regression Analysis for Data Comparison

In this study, a polynomial regression analysis was applied to attain and analyze the
relationship between cg and the annual Nash using both of them and the subsets to access
the best approximation between these two parameter values [57,58].

3. Results and Discussion

The impact of limited data on parameter estimation stands out as a pivotal factor
influencing both the reliability and precision of the model. Thus, in designing long-term
hydrological models, the time-related character of sensitivity becomes critical [59]. For
effective calibration and predictions during a period of data scarcity, the XAJ model has
its limitations. Challenges in calibration and validation arise from restricted calibration
data for accurate parameter estimation, insufficient data for robust model predictions, the
impact on parameter sensitivity with spatial and temporal variation, increased uncertainties
within the model performance due to data scarcity, and potential over-parameterizations.
Consequently, it is necessary to consider the influence of sensitive parameters on the XAJ
model performance when there are data limitations.

A recent study [36] has indicated that the performance of the data adjustment parame-
ter (the most sensitive parameter at the annual scale) estimation is enhanced with longer
datasets. As illustrated in Figure 3, it is evident that there is considerable variation in the
optimization of the data adjustment parameter values in shorter datasets. In a recent study,
Lu and Li [33] proved that the variables impacting runoff generation (cg) appear sensitive
yet again on an annual scale in the XAJ model while maintaining Cp and Cep as constant.
Based on this finding, this study attempted to analyze the sensitivity of recession constant
estimation in accordance with the data adjustment parameter during the period of data
scarcity. Consequently, understanding the sensitivity of the recession constant over the
model performance becomes critical.

To emphasize the sensitivity of the recession constant, the XAJ model calibration
was conducted through two approaches, as detailed in Figure 2. First, the model was
calibrated and evaluated using reference recession constant values (cg,ref) optimized with
longer datasets. Second, the model performance was accessed and compared using the
recession constant for the subsets (cn,m

g ).
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Figure 3. Box plot with Cep values using 75th percentile and 25th percentile in MOPEX ID
(a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

3.1. Reference cg for 28-Year Datasets (cg,ref)

The pre-optimized recession constant values in the five MOPEX studied basins were
initially computed based on the time constant, T, as in Equation (5), to be achieved within
the interval [0,1]. These resulting cg values were incorporated into the XAJ model calibration
alongside the remaining pre-optimized parameters, ϕ0 . Utilizing the annual Nash results,
the estimation of the simulated cg for each basin was assessed through a polynomial
regression analysis.

Typically, to attain better calibration, model users employ the longest available data
series. In this study, the simulated recession constant, estimated using a 28-year dataset,
was employed as the reference. Nevertheless, the purpose of this study is to analyze the
sensitivity of the recession constant during a period of data limitations to highlight its
impact on the parameter calibration and model performance [26,60]. Consequently, it
becomes essential to estimate the recession constant values in the shorter datasets. To
address this, the optimization of the Cep values (Cn,m

ep ) for shorter datasets is essential for
the consideration of the recession constant values for the subsets. Figure 4 reveals the
estimation of cg,ref, by comparing the annual Nash, NSE, calculated using the pre-optimized
cg values.

3.2. Derivation of Data Adjustment Parameter (Cn,m
ep )

To assess the sensitivity of the recession constant over the data adjustment parameter
for consecutive subsets (In,m), it was crucial to optimize the data adjustment parameter
values, Cn,m

ep , for the subsets by applying cg,ref.
The values of Cn,m

ep for the subsets (see Figure 5) were classified into three categories
based on the model (NSE) values calibrated using the reference cg,ref in each subset, In,m :

(i) Cn,m
ep,best (selected when the annual Nash values, NSE, are highest after the model

calibration with cg,ref in each subset, In,m);
(ii) Cn,m

ep,median (selected when the annual Nash values, NSE, are median after the model
calibration with cg,ref in each subset, In,m);

(iii) Cn,m
ep,worst (selected when the annual Nash values, NSE, are lowest after the model

calibration with cg,ref in each subset, In,m).
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Subsequently, the polynomial regression analysis was conducted to determine the cor-
responding cn,m

g for the subsets in each category (cn,m
g,best, cn,m

g,median, and
cn,m

g,worst) respectively.

3.3. Comparative Evaluation of Annual Nash Results, NSE, Using cn,m
g,best and Cn,m

ep,best in Subsets

After the model calibration using the reference cg, the Cep (Cn,m
ep,best) corresponding to

the highest annual Nash results were selected and calibrated for cn,m
g,best optimization (see

Figure 6).
Figure 7 represents the results of the NSE values for both cg,ref and cn,m

g,best. As depicted
in Figure 7, it was observed that as the data length increases, both NSE values compared
from both cg,ref and cn,m

g,best exhibit a declining trend. This suggests that longer datasets might
face challenges aligning with the model’s best performance. In contrast, the 6-year subsets
displayed the most significant upward trends in both NSE results, which was attributed to
shorter datasets being more compatible with cn,m

g,best. Beyond this trend pattern, a compari-
son was conducted between the NSE values in the subsets while conducting this with cg,ref

and cn,m
g,best.

Figure 4. Estimation of reference cg (cg,ref) from annual NSE results using 28-year datasets in MOPEX
IDs (a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

Figure 7 illustrates that the NSE values in each subset exhibited a relative increase
when running the model with cn,m

g,best. However, no significant difference was observed with
the NSE resulting from the model calibration using both cg,ref and cn,m

g,best. As indicated in
Figure 8, the percentage of the relative difference in the NSE values between cg,re f and
cn,m

g,best in the case of the 6-year datasets was 0.000243 for MOPEX ID: 903504000, 0.117651
for MOPEX ID: 902387500, 0.001037 for MOPEX ID: 902472000, 0.264031 for MOPEX ID:
903443000, and 0.048047 for MOPEX ID: 911532500, respectively. It is clear that the results
exhibit marginal sensitivity to the model performance during the calibration with cn,m

g,best,
indicating limited space for improving the model performance as illustrated in Figure 7.
Given the results, it is likely that the impact of the sensitivity of cn,m

g,best over Cep in parameter
estimation in shorter datasets can also be considered limited. Consequently, the potential
impact of the sensitivity of cn,m

g,best can also be limited to the performance of the model as well
as the minimum data length estimation. On the other hand, the recent estimation of the
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minimum data length remains consistent while considering the sensitivity of the parameter
estimation with cg in the best parameter optimization scenario within the subsets.

Figure 5. Estimation of Cn,m
ep for subsets using cg,ref in MOPEX IDs (a) 903504000, (b) 902387500,

(c) 902472000, (d) 903443000, and (e) 911532500.

Figure 6. Estimation of cn,m
g,best for subsets by using linear polynomial regression analysis in MOPEX

IDs (a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.
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Figure 7. Comparison of NSE values using cg,ref and cn,m
g,best for subsets in MOPEX IDs (a) 903504000,

(b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

Figure 8. Relative difference in NSE values between cg,ref and cn,m
g in subsets based on all three

categories (cn,m
g,best, cn,m

g,median, and cn,m
g,worst) in MOPEX IDs (a) 903504000, (b) 902387500, (c) 902472000,

(d) 903443000, and (e) 911532500.

3.4. Comparative Evaluation of Annual Nash Results, NSE, Using cn,m
g,median and Cn,m

ep,median
in Subsets

In this section, the values of Cep (Cn,m
ep,median) were selected based on the median values

of the model output (NSE) following the model calibration with cg,ref for the 28-year datasets.
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Subsequent to the Cn,m
ep,median selection using the model outputs with cg,ref, the model calibra-

tion was executed to establish the relationship between the NSE and the cn,m
g,median results.

In Figure 9, the cn,m
g,median can be approximated by the model output (NSE) using the linear

polynomial regression analysis. Here, while taking the cg values in the median range, the
trend resulting from both NSE values using cg,ref and cn,m

g,median for all the studied basins has
slightly increased as the data length increased.

While considering the cg values within the median parameter optimization perfor-
mance scenario, the NSE values exhibited a slight upward trend across all the subsets
as the data length increased. Furthermore, the NSE values when utilizing cn,m

g,median were
slightly higher than those with cg,ref. In this case, the percentage of the relative difference
in the NSE values from cg,ref and cn,m

g,median in the 6-year subsets can be observed as 0.143159
for MOPEX ID: 903504000, 0.111729 for MOPEX ID: 902387500, 0.001622 for MOPEX ID:
902472000, 0.231673 for MOPEX ID: 903443000, and 0.152241 for MOPEX ID: 911532500,
respectively (see Figure 8). This demonstrates that some of the differences resulted in the
best-case scenario. Despite this minor difference, it is reasonable to conclude that the model
outcomes using median values did not indicate a considerable amount of limitations over
the model performance while calibrating during the period of data scarcity as indicated in
Figure 10.

Figure 9. Estimation of cn,m
g,median for subsets by using linear polynomial regression analysis in MOPEX

IDs (a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.
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Figure 10. Comparison of NSE values using cg,ref and cn,m
g,median for subsets in MOPEX IDs (a) 903504000,

(b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

3.5. Comparative Assessment of Annual Nash Results, NSE, Using cn,m
g,worst and Cn,m

ep,worst
in Subsets

According to Li and Lu [47], to estimate the most sensitive parameter, it can be
considered both the best and worst condition for the sensitivity analysis for the parameter
optimization. However, to expect good model performance, the worst condition for the
parameter optimization is essential to take into consideration. This approach to achieving
strong model performance under challenging conditions is imperative. Figure 11 reveals
the values of cn,m

g,worst optimized from the Cn,m
ep,worst values described in Table 4.

Compared to the model performances in the best-case and median-case scenarios,
a significant difference is evident with those from cn,m

g,worst and cg,ref (see Figure 12). The
percentage of the relative difference in the NSE values in each basin for the 6-year datasets
is 1.111107 for MOPEX ID: 903504000, 0.183231 for MOPEX ID: 902387500, 0.053648 for
MOPEX ID: 902472000, 0.442889 for MOPEX ID: 903443000, and 0.320853 for MOPEX ID:
911532500, respectively. However, the relative difference between the NSE results calibrated
using cg,ref and cn,m

g,worst decreases gradually when running the model with longer datasets in
all the study basins. This result showed there is a comparatively high relative difference
in the NSE values and highlighted the significant impact over the model performance by
utilizing the NSE values with cn,m

g,worst in the shorter datasets in all the study basins.
Unlike the previously mentioned categories, the influence of cg on the estimation of Cep

becomes pronounced in the worst-case scenario (Figure 8). Additionally, the sensitivity of
cg further magnifies its impact on model performance under these conditions. The insight
provided by Figures 13 and 8 clearly illustrates the variations in the NSE values among the
three categories across all the studied basins.
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Figure 11. Estimation of cn,m
g,worst for subsets by using linear polynomial regression analysis in MOPEX

IDs (a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

Figure 12. Comparison of NSE values using cg,re f and cn,m
g,worst for subsets in MOPEX IDs (a) 903504000,

(b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.
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Figure 13. Comparison of NSE values in subsets based on all three categories (cn,m
g,best, cn,m

g,median, and

cn,m
g,worst) in MOPEX IDs (a) 903504000, (b) 902387500, (c) 902472000, (d) 903443000, and (e) 911532500.

Table 4. Detailed description of Cn,m
ep,worst and cn,m

g,worst values in MOPEX IDs (a) 903504000, (b) 902387500,
(c) 902472000, (d) 903443000, and (e) 911532500.

MOPEX ID

Subsets (a) 903504000 (b) 902387500 (c) 902472000 (d) 903443000 (e) 911532500

Cn,m
ep,worst cn,m

g,worst Cn,m
ep,worst cn,m

g,worst Cn,m
ep,worst cn,m

g,worst Cn,m
ep,worst cn,m

g,worst Cn,m
ep,worst cn,m

g,worst

6 0.5869 0.98155 1.1664 0.98673 1.3523 0.98702 0.9408 0.97941 0.9584 0.98318
7 0.6114 0.98235 1.1331 0.98548 1.2522 0.98411 0.9662 0.98022 0.9644 0.98413
8 0.6705 0.98235 1.1894 0.98548 1.2689 0.98381 0.9467 0.98096 0.9351 0.98413
9 0.6877 0.98182 1.2826 0.98728 1.2907 0.98426 0.952 0.98060 0.8556 0.97952

10 0.6992 0.98098 1.2653 0.98825 1.3156 0.98522 0.9688 0.98096 0.8752 0.98058
11 0.6954 0.98182 1.2574 0.98597 1.2822 0.98547 0.9863 0.98114 0.8559 0.98058
12 0.6940 0.98155 1.1682 0.98687 1.311 0.98496 0.9907 0.98131 0.8166 0.97678
13 0.7099 0.98209 1.1957 0.98715 1.3273 0.98559 0.9997 0.98165 0.8366 0.97791
14 0.7289 0.98235 1.1779 0.98741 1.3046 0.98534 1.0104 0.98165 0.7986 0.97653
15 0.7337 0.98209 1.2303 0.98754 1.3123 0.98702 0.9983 0.98214 0.815 0.97701
16 0.7322 0.98260 1.2374 0.98754 1.3199 0.98692 0.9905 0.98182 0.8059 0.97653
17 0.7379 0.97750 1.2769 0.98754 1.3247 0.98672 0.9973 0.98198 0.8224 0.97747
18 0.7377 0.98182 1.2919 0.98741 1.3103 0.98692 1.0057 0.98198 0.8428 0.97724
19 0.7517 0.97972 1.2381 0.98715 1.3158 0.98712 1.014 0.98317 0.8347 0.97653
20 0.7450 0.98037 1.2190 0.98741 1.2928 0.98454 0.9987 0.98275 0.8278 0.97701
21 0.7474 0.98155 1.2240 0.98754 1.2918 0.98454 0.9687 0.98165 0.805 0.97678
22 0.7543 0.98005 1.2330 0.98754 1.265 0.98349 0.9558 0.98198 0.7971 0.97578
23 0.7510 0.98037 1.2326 0.98766 1.2587 0.98265 0.9592 0.98182 0.8002 0.97604
24 0.7526 0.97938 1.2303 0.98766 1.2779 0.98349 0.9655 0.98198 0.8067 0.97653
25 0.7591 0.98037 1.2255 0.98754 1.2717 0.98282 0.9467 0.98131 0.8231 0.97791
26 0.7672 0.98037 1.2239 0.98766 1.2755 0.98426 0.9531 0.98149 0.8193 0.97813
27 0.7797 0.98005 1.2413 0.98766 1.2699 0.98349 0.9608 0.98149 0.801 0.97791
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4. Conclusions

A recent study explored the impact of data adjustment parameter estimation on model
performance in data-scarce regions. Given the common use of the data adjustment parame-
ter and recession constant in hydrological modeling, it is crucial to assess the influence of
recession constant sensitivity over the data adjustment parameter, particularly during a
period of data scarcity.

Utilizing a linear polynomial regression analysis on the 28-year U.S. MOPEX datasets
and subsets from five river basins, this study considered parameter optimization, focusing
on the estimation of the recession constant and data adjustment parameter values calcu-
lated using the aridity index method and the time constant using the XAJ model. Multiple
steps of parameter optimization were executed for parameter estimation in the shorter
subsets, and the resulting model outputs were evaluated using Nash–Sutcliffe efficiency
(NSE) values.

A data analysis based on the relative difference method revealed that the potential
impact of the recession constant and its interaction with the data adjustment parameter is
limited in longer datasets. Investigating the shorter datasets based on three scenarios, the
study highlights that recession constant sensitivity has limited potential to enhance model
performance in best and median scenarios. In contrast, while recession constant sensitivity
moderately influences model performance in shorter datasets, a notable difference in model
performance is evident, particularly within a 12-year minimum data length, under the
worst-case scenario in all the study basins.

This finding underscores the crucial role of recession constant sensitivity in parameter
optimization, especially during a period of limited data availability where the parameter
optimization is not in a favorable condition. The analysis demonstrates the robust relation-
ship between the recession constant parameter and the data adjustment parameter across
varying data lengths in longer datasets. Importantly, the study emphasizes the necessity of
considering recession constant sensitivity in shorter datasets, particularly in basins with
restricted data availability, where it can significantly impact model performance, especially
under worst-case scenarios.

This research offers valuable insights applicable beyond the realm of the XAJ model,
extending its relevance to various hydrological modeling approaches. This study did
not consider the basin characteristics and the geology. Despite the limitations (the XAJ
model performance under the data limitations) and assumption (an exclusive focus on
annual scale sensitivity instead of seasonal assessment and the statistical significance), this
study contributes insights into the influence of recession constant sensitivity in parameter
estimation and its importance in developing countries with limited data availability for
robust model predictions. This, in turn, aids in determining precise and acceptable mini-
mum data length estimations, particularly in regions with limited data availability, such as
developing countries.
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Abbreviations

The following abbreviations are used in this paper:

XAJ Xinanjiang model
Cep Data adjustment parameter
cg Recession constant
ζg,pan Pan aridity index
n Length of datasets
m Number of subsets
T Time constant
C28,1

ep Data adjustment parameter for 28-year data length
Cn,m

ep Data adjustment parameter for subsets
ϕ0 Thirteen pre-optimized parameter values
Cn,m

ep,best Data adjustment parameter with maximum NSE for subsets
Cn,m

ep,median Data adjustment parameter with median NSE for subsets
Cn,m

ep,minimum Data adjustment parameter with minimum NSE for subsets
cg,re f Reference recession constant
cn,m

g Recession constant for subsets
cn,m

g,best Recession constant with maximum NSE for subsets
cn,m

g,median Recession constant with median NSE for subsets
cn,m

g,minimum Recession constant with minimum NSE for subsets
P Daily precipitation
Ep Potential evaporation
R Annual runoff depth
S Water storage
In,m Input datasets
Qn,m

obs Observed runoff
Qn,m

cal Simulated runoff
NSE Nash–Sutcliffe efficiency
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