
Citation: Zhang, S.; Law, A.W.-K.

Performance of Reynolds Averaged

Navier–Stokes and Large Eddy

Simulation Models in Simulating

Flows in a Crossflow Ultraviolet

Reactor: An Experimental Evaluation.

Water 2024, 16, 271. https://doi.org/

10.3390/w16020271

Academic Editors: Ramesh Agarwal,

Jin-Hyuk Kim and Wei Li

Received: 16 December 2023

Revised: 9 January 2024

Accepted: 10 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Performance of Reynolds Averaged Navier–Stokes and Large
Eddy Simulation Models in Simulating Flows in a Crossflow
Ultraviolet Reactor: An Experimental Evaluation
Shuai Zhang * and Adrian Wing-Keung Law

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; cwklaw@ntu.edu.sg
* Correspondence: author: shuai.zhang@ntu.edu.sg

Abstract: Computational Fluid Dynamics (CFD) has been increasingly adopted as a design tool for
the simulation of UV disinfection efficiency and the optimization of the configuration of a UV reactor.
However, the performance of CFD with different turbulence closures may vary significantly. In the
present study, an experimental evaluation was performed to assess the performance of CFD with five
Reynolds Averaged Navier–Stokes (RANS) turbulence closures and three Large Eddy Simulation
(LES) sub-grid scale (SGS) models. A simplified crossflow reactor with a single lamp sleeve was
fabricated for the experimental measurements and numerical simulations. Overall, the superior
performance of LES compared to RANS models in flow predictions within a complex configuration
is demonstrated.

Keywords: UV disinfection; Computational Fluid Dynamics (CFD); Large Eddy Simulation (LES);
Reynolds Averaged Navier–Stokes (RANS)

1. Introduction

Ultraviolet (UV) disinfection, as an alternative among the assortment of treatment
methods, has shown high efficiency in water, wastewater, and ballast water treatments [1].
The microbial inactivation inside a UV reactor is governed by the total amount of UV light
that the microorganism receives, namely the UV exposure dose. Thus, both the UV light
intensity distribution and water flow prediction are needed for the calculation of the UV
dose. In the past few decades, integral approaches to UV disinfection simulation have been
commonly employed, which consist of a fluence rate model for UV light intensity distribu-
tion, a numerical model for flow prediction, and a microbial inactivation kinetic model for
the fluence response of target microorganisms. These models have been extensively studied
individually [2–5] and systematically [6–9]. Among these studies, Computational Fluid
Dynamics (CFD) has been commonly adopted as a powerful numerical model for flow
prediction to predict the performance of a UV reactor and to conduct the configurational
optimization [6–14].

Despite the increasing adoption of CFD, it is worth noting that flow prediction is
challenging due to the complex flow pattern inside compact UV reactors with many UV
cylindrical lamps [7,15,16]. As far as we are aware, Liu et al. [7] first showed that the
efficiency of a disinfection reactor is sensitive to the RANS turbulence model selection.
Wols et al. [15] further investigated the performance of CFD simulations by comparing the
standard k-epsilon turbulence model and Large Eddy Simulation (LES) with experimental
measurements. LES was found in their study to predict disinfections better than RANS
models. Zhang et al. [16] pointed out in their review work that unsteady flow structure
effects and the complexity of reaction systems are key challenges for disinfection process
simulations. Shah et al. [17] summarized the CFD performances in previous studies and
again pointed out the reduced accuracy of RANS in flow predictions within UV reactors.
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Despite the reduced accuracy of RANS with certain turbulence models, studies using
RANS models [11,12,18–23], however, remained the dominant approach for UV reactor
simulations in recent decades due to their efficiency. We note particularly that correct
simulations of flow separation around cylindrical UV lamps are key to the improvement
of numerical accuracy. Recently, an inspiring study by Bose and Yeo [24] on atmospheric
boundary layer flow problems again demonstrated the weakness of RANS models in
predicting the flow separation behind a smooth hill, which is comparable to the flow
behind a UV lamp. All in all, the usage of RANS models for UV disinfection simulations
could result in the reduced accuracy of flow predictions as well as consequent inactivation
efficiency. Therefore, it is necessary to evaluate the performance of the RANS and LES
models for a satisfactory prediction inside complex UV reactors in order to develop an
improved understanding of the tradeoff.

In the present study, we performed an experimental validation for five RANS tur-
bulence closures (models) and three LES sub-grid scale (SGS) models, all of which are
well-developed and commonly used models. A typical configuration of the UV disinfection
for ballast water treatments is a closed crossflow reactor with UV lamp sleeves usually
placed perpendicular to the flow with a staggered pattern, which involves the wall inter-
action. Therefore, a customized closed conduit in which the flow passed a horizontally
orientated cylindrical sleeve was adopted for measurements of the velocity field with the
approach of Particle Image Velocimetry (PIV). The experimental and numerical methodolo-
gies are described in Sections 2 and 3, respectively. The results and discussion are presented
in Section 4. Finally, conclusions are drawn in Section 5.

2. Experimental Methodology
2.1. Experimental Setup

A lab-scale model was fabricated (Zoncepz Solutions, Singapore, Singapore) using
transparent acrylic sheets with a thickness of 10 mm to quantify the hydrodynamics behind
the single lamp sleeve of crossflow UV reactors. As illustrated in Figure 1, the cylinder
(sleeve) had an outer diameter (Øo) of 30 mm and was placed at the mid-depth of the
model. The reactor was designed with a rectangular cross-section of 71 mm (height) ×
50 mm (width), as it was more convenient for PIV measurements to be conducted with
a flat surface rather than a curved surface (as with a circular cross-section) [25]. The
reactor began with a circular inlet tube that had an inner diameter (Øi) of 24 mm and was
followed by an abrupt change in the cross-sectional area of the conduit, which led to the
flow separation. To achieve a uniform flow, a porous plastic block was placed near the
inlet tube and an acrylic sheet with 56 holes was attached to the bounded wall to hold the
porous block. The upstream region occupied approximately 1.3 m, within which the flow
became fully turbulent.

The PIV technique was adopted for measurement, with the seeding particle size chosen
to be 50 µm for all the experiments. To capture the motion of seeding particles in the model,
a dual-cavity frequency-doubled pulsed Nd:YAG laser and a charge-coupled device (CCD)
camera were combined as an integral system. The pulsed laser system emitted a light sheet
with a wavelength of 532 nm for illumination. The CCD camera captured images with a
resolution of 1600 × 1186 at a frame rate of 15 Hz. The specifications of the system were
summarized in [26].
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Figure 1. Lab-scale UV reactor (unit in mm): (a) three-dimensional view and (b) top view.

2.2. Experimental Procedures

During the experiments, the flow circulation was maintained by connecting the model
with a reservoir tank. Water was pumped continuously from the reservoir, and the flow
rate was controlled by a digital flow meter. The laser light sheet was adjusted to coincide
with the center plane parallel to the vertical direction, and the camera was focused on the
laser sheet to capture the scattered light. The seeding particles were added to the tank to
obtain a fully mixed solution with a concentration of 0.1 g/L. The time interval between
two frames was adjusted according to various flow rates and was determined through
calibration runs. The measurements were conducted at three flow conditions, as shown in
Table 1.

Table 1. Flow conditions of experiments.

Cases 1 2 3

Flow Rate Q0 (L/s) 0.63 1.18 1.55

Cross-Sectional Averaged Velocity U0 (m/s) 0.176 0.332 0.437

Re 6600 12,400 16,400

To investigate the hydrodynamics around the cylinder, especially the variations in
velocity profiles behind the cylinder where a recirculation zone (wake region) is usually
present in turbulent flows [27], a total of 279 image pairs were recorded at 2 Hz during
each measurement which lasted for 138 s. These image pairs were post-processed using
the Dantec Dynamic Studio software for the time-average velocity field. The velocity
field was first derived through “Adaptive Correlation”, based on recorded images, and
then filtered by “Moving Average Validation”. A time-averaged velocity vector map was
finally generated by averaging the vector fields at individual time instances. To examine
the velocity field, velocity profiles were extracted along vertical lines at seven locations,
which included 75 mm upstream, and then 50, 75, 100, and 125 mm downstream. The
streamwise velocity profiles along the streamwise centerline (y = z = 0) were also extracted
to investigate velocity variation along the centerline.
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3. Numerical Methodology
3.1. Governing Equations

The RANS equations can be written in Cartesian tensor form [28,29] as a Continuity
equation:

∂ρ

∂t
+

∂

∂x i
(ρui) = 0 (1)

and momentum equation:

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂P

∂xi
+ ρgi +

∂

∂xj

[
µ

(
∂ui
∂xj

)]
+

∂τij

∂xj
(2)

where gi is the gravitational acceleration in the i direction, ρ is the fluid density, P is the
pressure, t is the time, and u is the velocity. Compared to the Navier–Stokes equations, the
RANS equations involve additional terms, τij = −ρu′

iu
′
j, which are the Reynolds stresses.

These terms must be solved with additional equations to ensure the closure of equations.
For the k-ε-type and k-ω-type closures, the Boussinesq hypothesis, based on the

assumption that the stresses can be incorporated through turbulent viscosity or eddy
viscosity, is adopted in the following manner [30]:

τij = −ρu′
iu

′
j = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3

(
ρk + µt

∂uk
∂xk

)
δij (3)

where µt is the turbulent viscosity, ui is the mean velocity component, δij is the kronecker
delta, and k is the turbulent kinetic energy which is calculated by

k =
u′

iu
′
i

2
=

1
2

(
u′2 + v′2 + w′2

)
(4)

Three k-ε closures, including the standard, Re-normalization Group (RNG), and realiz-
able k-ε closures, together with two k-ω closures, including the standard and Shear-stress
transport (SST) k-ω closures, are introduced to solve the turbulent viscosity. Details are
described in Appendices A.1–A.3, B.1 and B.2.

In LES models, eddies are filtered into large and small parts based on the local grid
sizes, and large eddies are computed directly by the instantaneous Navier–Stokes equations,
while small ones are modeled based on the Boussinesq hypothesis. The filtered continuity,
momentum, and concentration transport equations in Cartesian coordinates for LES models
are as follows [31]:

Continuity equation:
∂ρ

∂t
+

∂

∂x j

(
ρ
∼
u j

)
= 0 (5)

Momentum equation:

∂

∂t

(
ρ
∼
ui

)
+

∂

∂x j

(
ρ
∼
ui

∼
u j

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂
∼
ui

∂xj

)]
+

∂τij

∂xj
(6)

where the tilde indicates spatially filtered variables; τij = −ρ
∼

uiuj − ρ
∼
ui

∼
u j are the sub-grid

scale (SGS) stresses.
The sub-grid-scale turbulence closures are typically based on the Boussinesq hypothe-

sis, which calculates the sub-grid-scale turbulent stresses as follows [31,32]:

τij −
1
3

τkkδij = −2µt
∼
Sij (7)
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where µt is the SGS viscosity, τkk is the isotropic part of the SGS stresses which can be added

to the filtered static pressure term or neglected, and
∼
Sij is the strain rate tensor given by

∼
Sij =

1
2

(
∂
∼
ui

∂xj
+

∂
∼
u j

∂xi

)
(8)

In the present study, three SGS models, including Smagorinsky–Lilly, Dynamic Kinetic
Energy (DKE), and Wall-Adapting Local Eddy-Viscosity (WALE), are introduced to solve
the SGS viscosity, and details are described in Appendices C.1–C.3.

3.2. Numerical Setup

Figure 2 shows the three-dimensional computational domain created in Gambit which
was a mesh generator for ANSYS Fluent, where the origin of the coordinate was set to
the center of the cylinder (tube sleeve). The computational domain was based on the
physical setup in the experiments, as shown in Figure 1, with the same dimensions but a
simplification of the upstream configuration. Within the physical setup shown in Figure 1,
there was a substantial distance (over 1.5 m) upstream for the flow to develop into a fully
turbulent state before reaching the cylinder. However, the region of interest was mainly the
area behind the sleeve where flow separation happened. To save computational effort, only
a 0.3 m length in the upstream domain was simulated, and it was numerically examined
to be sufficient to cover the upstream region (about 0.05 m based on the experiments as
presented in the following sections) affected by the presence of the cylinder.
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Figure 2. Model geometry: (a) overview and (b) top view.

3.3. Meshing and Boundary Conditions

The domain was meshed into structural meshes with 2.0 million cells. The grid size
ranged from 0.5 mm to 2 mm, and the near-wall regions were further refined by adaptation.
To check the grid independence, the results from three grid schemes were compared with
each other. Figure 3 shows the velocity profiles of Re = 12,400 at x = 100 mm downstream
simulated based on the standard k-ε closures and the LES approach with the WALE SGS
model with three different grid schemes. The grid scheme with 2 million cells was found to
be sufficient for both k-ε and LES simulations. The inlet boundary condition was set to a
uniform velocity, with three corresponding inlet velocities of 0.176, 0.332, and 0.437 m/s.
The turbulence intensity was estimated to be 2% for the inlet. The outlet was set as a
pressure outlet and the other boundaries were set as no-slip wall boundaries.
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3.4. Solver Settings

ANSYS Fluent was adopted as the solver for the simulations, and a pressure-based
transient solver was used. In the present study, the LES approach with SGS models,
including the Smagorinsky–Lilly (S-L), WALE, and DKE models, as well as the RANS
approach with the standard, RNG and realizable k-ε, and standard and SST k-ω closures,
was used for comparisons. The near-wall modeling approach was chosen for LES, and the
log-law wall function was chosen for the k-ε closures and k-ω closures. The time step was
adjusted using the Courant–Friedrichs–Lewy condition [33] so that the Courant number
was less than one. The convergence criteria for the continuity, velocities, and k values were
all set to 10−6.

To determine the necessary duration for time averaging of the LES simulation results,
the velocity profiles at x = 100 mm obtained from various time durations are compared in
Figure 4, where the results were obtained from the LES (results were time-averaged from
t = 0 to the specific time) and standard k − ε closure predictions (results were extracted at
the specific time). Even though the RANS model solved the flow in a Reynolds averaged
manner, the sufficient simulation time still needed to be determined to avoid the effect of
the initial condition. From the comparison of different time durations, the simulation time
of 15 s was found to be fully sufficient for RANS predictions, and the duration of 25 s was
sufficient for LES.
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4. Results and Discussion

The mean velocity characteristics at the center plane were obtained from various
turbulence closures and were compared with the present experimental data. The velocity
profiles along the vertical direction (z axis) were first extracted from the center plane
(y = 0) at various streamwise locations (x axis), including x = −75 mm, 50 mm, 75 mm,
100 mm, and 125 mm. The effect of the Reynolds numbers could be assessed by comparing
the velocity profiles at the same streamwise location under various Reynolds numbers.
The longitudinal velocity profiles along the centerline (y = z = 0) from x = −75 mm to
x = 300 mm were also extracted to investigate the velocity variation along the centerline in
this section.

4.1. Velocity Profiles in Upstream Region

It is critical to examine the steady flow profile in the upstream section before the
cylinder. Figure 5 shows the vertical velocity profiles in the upstream at x = −75 mm
with the three Reynolds numbers. From the experimental data, it can be observed that the
velocity profile was slightly more uniform for higher Reynolds numbers. This suggests that
the flow field might not be fully developed at the lowest Re, and it was probably due to the
insufficient upstream length.

Despite the experimental imperfection, all the numerical results obtained from the
different approaches collapsed into a single curve and were somewhat close to the exper-
imental data, revealing the similar performance of these approaches in the prediction of
steady upstream flow. A slight difference in the velocities at the centerline between the
experimental data and the predicted results can be observed at the highest Re, with the
variation around 2%, which was within the experimental uncertainty.
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4.2. Velocity Profiles in Wake Region

It was concluded from Figure 5 that the different approaches all provided reasonably
good predictions of the steady flow profile in the upstream section. However, behind the
cylinder, there existed a wake region in which velocity fields were significantly affected by
the cylinder, and the performance of conventional RANS closures was reported to yield
poor accuracy [7] in this region. Therefore, the characteristics of the flow in the wake
region behind the cylinder required further investigation. In this section, the mean velocity
profiles were extracted from various turbulence closures as well as experimental results at
different streamwise locations for comparison.

Figure 6 shows a comparison of the velocity profiles at x = 50 mm obtained from the
various CFD approaches and experimental observations. From the figure, the velocity
profile featured two peaks and one trough, with a local minimum along the centerline.
The two peaks were due to flow acceleration with the presence of walls both at the top
and bottom where the velocity decreased to zero. The presence of a trough located at
the centerline in the wake region was consistent with previous studies [34,35] when the
flow passed a cylinder. From the figure, both LES and RANS models with a k-ω closure
were found to yield better agreement with the experiments, while RANS with a k-ε closure
yielded much higher peaks and lower local minimum values. In terms of the trough, LES
produced better predictions with a higher Re.

Further downstream, the velocity profiles at x = 75 mm were extracted and are plotted
in Figure 7, in which the curves also generally had two peaks and one trough. Compared
with Figure 6, the differences between the extreme values (peaks and troughs) became
smaller, indicating the effect of the cylinder was weakened. From the figure, RANS with the
three different k-ε closures still far over-predicted the peak values and under-predicted the
minimum values. RANS with the three different k-ω closures gave much better predictions
of the minimum values but over-predicted the peak values. In comparison, LES, especially
the DKE and WALE SGS models, showed its capability of simulating both extreme values
reasonably well.

Figure 8 shows the velocity profiles at x = 100 mm. Compared with Figures 6 and 7, the
flow profile tended to be much more uniform. In general, RANS models with k-ε closures
were unable to reproduce this trend. Among the k-ω closures, the standard k-ω closure
better predicted the minimum values at the centerline, but both the standard and SST k-ω
closures over-predicted the peaks. In comparison, the LES predictions were consistent with
the experimental results. Within LES, the WALE and DKE SGS models were found to be
better than the S-L model, which tended to yield more uniform results at large and medium
Re values.
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In summary, RANS models with k-ε closures were not able to reproduce velocity
variations in the wake region, and the k-ω closures provided better predictions but over-
predicted the peaks when the flow went downstream from the cylinder. In general, LES,
especially the WALE and DKE SGS models, provided the closest results to the experimental
data in the wake region.
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4.3. Velocity Profiles beyond Wake Region

With increasing distance from the cylinder to the downstream, the effect of the cylinder
eventually disappeared, and the velocity profiles became uniform in general. Figure 9
shows the velocity profiles at x = 125 mm, and from the figure, the velocity became almost
uniform, proving that the influence of the wake region can be negligible at this point.
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From the figure, it can be observed that RANS models with k-ε closures were not able
to simulate this transition and they tended to predict a much larger wake region. The k-ω
closures generally captured this transition better, even though the standard k-ω closure
tended to reproduce large wake regions at high Re values. However, both the standard and
SST k-ω closures predicted much higher velocities compared with the experimental data. In
comparison, LES was able to capture this transition well and the predicted velocities were
closer to those in the experimental data. Among all the LES models, the LES S-L model
was the best performer.

4.4. Longitudinal Velocity Profiles at Centerline

To better understand the flow characteristics, the magnitude of streamwise velocity
along the centerline of the reactor was plotted from x = −75 to 300 mm, as shown in
Figure 10. It was found that the centerline velocity started to drop from x = −50 mm until
reaching zero at the surface of the cylinder. Once the flow passed the cylinder, the velocity
increased from zero to a local peak, then decreased again to a local minimum located at
around x = 42 mm and seemed invariant with Re. The minimum location was the location
where the direction of streamwise velocity changed from negative to positive [35]. Beyond
that, the velocity began to positively increase until reaching a steady state.
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4.5. Discussion

The better performance of the LES model than any of the RANS models shown in the
present study was anticipated and could be explained by the superior theory of LES to
RANS. In turbulent flows, the transports of mass, momentum, energy, and other quantities
are mainly affected by large eddies which are strongly determined by the boundary con-
ditions, and thus are anisotropic [28]. On the contrary, small eddies are isotropic or tend
to be isotropic and are rarely affected by boundaries. In the two types of RANS models,
namely the k-ε-type and k-ω-type models, the Boussinesq hypothesis is adopted, which
assumes that Reynolds stresses can be incorporated through turbulent viscosity or eddy
viscosity (expressed by Equation (3)), to solve Navier–Stokes equations. The underlying
assumption of the Boussinesq hypothesis is that the turbulent viscosity is assumed to be
isotropic, which may not be true for large eddies, and would therefore lead to false results,
which was revealed in the present study.

In contrast, eddies in LES are filtered into large and small parts based on the local
grid sizes, and LES models resolve Navier–Stokes equations by computing the relatively
large eddies using direct numerical simulation without any hypotheses and simulating the
small eddies using appropriate assumptions, namely the SGS models. LES is a workable
alternative because previous observation reveals that the scale of eddies ranges from the
macro-scale to the micron-scale and most of the energy is contained in the large eddies [36].
Therefore, by direct simulations of large eddies, LES is expected to yield better predictions
of the flow than RANS closures. For small eddies, the SGS models can give reasonable
results even with relatively coarse grids.

In the present study, among the RANS closures, the k-ω closures yielded better predic-
tions than the k-ε closures in the wake region. This phenomenon can be attributed to the
better ability of k-ω closures, by substituting the dissipation rate in k-ε closures with the
specific dissipation rate (in Appendices B.1 and B.2), in coping with the adverse pressure
gradients, wall boundary layers, and shear flows [37,38] which exist in the wake region
behind the cylindrical sleeve (UV lamp). However, such an ability of k-ω closures adversely
becomes a weakness in the far field beyond the wake region, as shown in Figure 10. It is
worth noting that SST yielded better predictions than the standard k-ω closure in the far
field region, due to its combination of the standard k-ω in the near-wall region and the k-ε
closure in the far field [39].

5. Conclusions

The hydrodynamics of the flow passing a cylinder within a closed conduit was inves-
tigated by both RANS and LES approaches with various turbulence closures and LES SGS
models, respectively. Overall, RANS models with k-ε closures yielded the least accurate
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results with far under-estimations of the longitudinal velocity in the wake region, while
the k-ω closures were in satisfactory agreement with the experimental data near to the
cylinder but continuously over-predicted in the far field; LES provided the best fit with
the experimental data. Overall, the results illustrated that LES is a better approach than
RANS in predicting the flow field around complex boundaries, including possible flow
separation, and is thus more suitable for flow field predictions within a UV reactor. In view
of the need for reliable predictions of the flow field and inactivation, LES with suitable
SGS models is therefore recommended for UV reactors with intensive wall interactions.
It is recommended that the LES approach for both the mean flow and Reynolds stress
distributions, integrated with a fluence rate model for UV light intensity and a kinetic
model for microbial inactivation, should be further evaluated in the future for the design of
UV disinfection reactors.
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Appendix A.

Appendix A.1. Standard k-ε Closure

In the standard k-ε closure, the flow is assumed to be fully turbulent and the molecular
viscosity is neglected. The turbulent kinetic energy and its dissipation rate can be computed
from the following equations [40]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε − YM + Sk (A1)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (A2)

where Gk = −ρu′
iu

′
j

∂uj
∂xi

is the generation of the turbulent kinetic energy due to the mean

velocity gradients; Gb = − 1
ρ

(
∂ρ
∂T

)
gi

µt∂T
Prt∂xi

is the generation of the turbulent kinetic energy

due to buoyancy; YM = 2ρε
(√

k
a2

)2
is the contribution of fluctuating dilatation in the

compressible turbulence to the dissipation rate, where a is the sound speed and Sk and Sε

are user-defined source terms; and σk and σε are the turbulent Prandtl numbers for k and ε,
respectively.

After the turbulent kinematic energy and its dissipation rate are obtained, the turbulent
viscosity can be calculated by

µt = ρCµ
k2

ε
(A3)

Appendix A.2. RNG k-ε Closure

Based on the standard k-ε closure, two other closures (RNG and realizable k-ε closures)
were developed to improve the performance. The RNG k-ε closure was developed from the
standard k-ε closure with refinements based on the renormalization group theory [41].
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The transport equations of the RNG k-ε closure are similar to those of the standard
closure:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
αkµe f f

∂k
∂xj

)
+ Gk + Gb − ρε − YM + Sk (A4)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

(
αεµe f f

∂ε

∂xj

)
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
− Rε + Sε (A5)

where αk and αε are the inverse effective Prandtl numbers, and µe f f is the effective viscosity
calculated by RNG theory, which calculates the turbulent viscosity as

d
(

ρ2k
√

εµ

)
= 1.72

µe f f
µ√(

µe f f
µ

)3
− 1 + Cv

d
(

µe f f

µ

)
(A6)

The Rε term is calculated by

Rε =
Cµρ

(
Sk
ε

)3(
1 − Sk

εη0

)
1 + β

(
Sk
ε

)3
ε3

k
(A7)

where η0 and β are constants. Using Equation (A7), the ε Equation (A5) can be rewritten as

∂
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∂

∂xi
(ρεui) =

∂

∂xj

(
αεµe f f

∂ε

∂xj

)
+ C1ε
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2ερ
ε2

k
(A8)

where C∗
2ε is computed by

C∗
2ε = C2ε +

Cµρ
(

Sk
ε

)3(
1 − Sk

εη0

)
1 + β

(
Sk
ε

)3 (A9)

The value of C∗
2ε varies with S, which represents the strain rate. When S = 0, C∗

2ε = C2ε,
which is consistent with the standard closure. Therefore, the RNG closure is more sensitive
to the effects of the strain rate.

Appendix A.3. Realizable k-ε Closure

The realizable k-ε closure differs from the standard k-ε closure by two additional modi-
fications: an alternative formulation for the turbulent viscosity, and a modified transport
equation for ε. The term “realizable” means that certain mathematical constraints need to
be satisfied on the Reynolds stresses, which is consistent with the physics of the turbulent
flows. The limitation of the realizable k-ε closure is that, for the computational domain
containing both stationary fluid zones and rotating zones, it can produce non-physical
turbulent viscosities.

The transport equations with the realizable k-ε closure can be written as follows [42]:

∂
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∂xi
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∂xi
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νε
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ε

k
C3εGb + Sε (A11)
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Similar to other k-ε closures, the turbulent viscosity is calculated using Equation (A3).
Here, Cµ is no longer a constant. Instead, it is calculated by

Cµ =
1

A0 + As
kU∗

ε

(A12)

where

U∗ ≡
√

SijSij +
∼
Ωij

∼
Ωij (A13)

Appendix B.

Appendix B.1. Standard k-ω Closure

The standard k-ω closure is an empirical closure based on transport equations for the
turbulent kinetic energy and specific dissipation rate, ω, instead of the dissipation rate. The
turbulent kinetic energy and the specific dissipation rate can be calculated by [38]

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[
Γk

∂k
∂xj

]
+ Gk − Yk + Sk (A14)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

[
Γω

∂ω

∂xj

]
+ Gω − Yω + Sω (A15)

where Gk = −ρu′
iu

′
j

∂uj
∂xi

is the generation of the turbulent kinetic energy by the aver-
aged velocity gradients; Gω = α ω

k Gk is the generation of the specific dissipation rate;
Yk = ρβ∗ fβ∗kω and Yω = ρβ fβω2 are the dissipation of the turbulent kinematic energy
and specific dissipation rate, respectively; Γk = µ + µt

σk
and Γω = µ + µt

σω
are effective

diffusivities for the turbulent kinetic energy and specific dissipation rate, respectively; and
Sk and Sω are source terms.

After solving the transport equations, the turbulent viscosity can be expressed as

µt = α∗
ρk
ω

(A16)

where α∗ is the low Reynolds number correction, given by

a∗ = a∗∞

(
a∗0 + Ret/Rk

1 + Ret/Rk

)
(A17)

where Ret = ρk
µω , Rk = 6, and a∗0 = 0.024. When the Reynolds number increases, Ret

increases accordingly and, finally, a∗ = a∗∞ = 1.

Appendix B.2. SST k-ω Closure

The Shear-stress transport (SST) k-ω closure was developed by combining the formu-
lation of the k-ω closure in the near-wall region with the k-ε closure in the far field, which
hereby was converted into the k-ω formulation. Compared to the standard k-ω closure,
the SST k-ω closure includes some refinements and is more accurate and reliable for flows
including transonic shock waves and adverse pressure gradient flows.

The transport equations for the SST k-ω closure are similar to those for the standard
k-ω closure [39]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[
Γk

∂k
∂xj

]
+ Ĝk − Yk + Sk (A18)
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∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

[
Γω

∂ω

∂xj

]
+ Gω − Yω + Dω + Sω (A19)

where Ĝk = min(Gk, 10ρβ∗kω) is the generation of turbulent kinetic energy due to the
mean velocity gradients; Gω = ω

k Ĝk is the generation of the specific dissipation rate;
Yk = ρβ∗kω and Yω = ρβ fβω2 are the dissipation of the turbulent kinematic energy and
specific dissipation rate, respectively, due to the turbulence; Dω = 2(1 − F1)ρ

1
ωσω,2

∂k
∂xj

∂ω
∂xj

is
the cross-diffusion term; and Sk and Sω are source terms.

The turbulent viscosity is obtained by

µt =
ρk
ω

1

max
[

1
α∗ , SF2

a1ω

] (A20)

where S is the strain rate magnitude, and F2 is the blended function.

Appendix C.

Appendix C.1. Smagorinsky SGS Model

The Smagorinsky SGS model was originally developed by [31] for the closure of SGS
viscosity. Later, [32] further developed the model, and thus the model is also called the
Smagorinsky–Lilly SGS model. The sub-grid-scale turbulent viscosity is modeled in the
Smagorinsky SGS model as follows:

µt = ρL2
S

∣∣∣∣∼S∣∣∣∣ (A21)

where
∣∣∣∣∼S∣∣∣∣ ≡

√
2
∼
Sij

∼
Sij and LS are the mixing length, given by

LS = min(κdwall, CS
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where  𝐿௦  and  𝑆௜௝
ௗ   are computed by 

𝐿௦ ൌ 𝑚𝑖𝑛൫κd, 𝐶௪𝑉ଵ/ଷ൯    (A29)

), (A22)

where κ is the Von Karman constant, dwall is the distance to the wall,
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where  𝐿௦  and  𝑆௜௝
ௗ   are computed by 

𝐿௦ ൌ 𝑚𝑖𝑛൫κd, 𝐶௪𝑉ଵ/ଷ൯    (A29)

is the grid scale,
and CS is the Smagorinsky constant, which usually ranges from 0.1 to 0.2. However, CS
may not be a universal constant, thus limiting the prediction capability.

Appendix C.2. Dynamic Kinetic Energy SGS Model

In the Dynamic Kinetic Energy (DKE) model, the transport of the SGS turbulent kinetic
energy is defined by [43]

ksgs =
1
2

(
u2

k − u2
k

)
(A23)

which is obtained by solving the following transport equation:

ρ
∂ksgs

∂t
+ ρ

∂ujksgs

∂xj
= −τij

∂ui
∂xj

− Cερ
k3/2

sgs
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where  𝐿௦  and  𝑆௜௝
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f
+

∂

∂xj

(
µt∂ksgs

σk∂xj

)
(A24)

where the constant σk is equal to one and the constant Cε is determined dynamically.
The sub-grid-scale turbulent viscosity is thus computed by

µt = Ckρk1/2
sgs
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where  𝐿௦  and  𝑆௜௝
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f (A25)

where Ck is a constant which is determined dynamically, and
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where  𝐿௦  and  𝑆௜௝
ௗ   are computed by 
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f is the filter size that can
be computed by
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where  𝐿௦  and  𝑆௜௝
ௗ   are computed by 

𝐿௦ ൌ 𝑚𝑖𝑛൫κd, 𝐶௪𝑉ଵ/ଷ൯    (A29)

f ≡ V1/3 (A26)
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where V is the volume of the computational cell. The SGS stress is thus different and can
be written as

τij −
2
3

ρksgsδij = −2µtCkρk1/2
sgs
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Appendix C.3. Wall-Adapting Local Eddy-Viscosity SGS Model

In the Wall-Adapting Local Eddy-Viscosity (WALE) model, the sub-grid-scale turbu-
lent viscosity is modeled as [44]

µt = ρL2
S

(
Sd

ijS
d
ij

)3/2

(
Sd

ijS
d
ij

)5/2
+
(

Sd
ijS

d
ij

)5/4 (A28)

where Ls and Sd
ij are computed by

Ls = min
(
κd, CwV1/3

)
(A29)

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
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In the Wall‐Adapting Local Eddy‐Viscosity (WALE) model, the sub‐grid‐scale turbu‐

lent viscosity is modeled as [44] 
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where  𝐿௦  and  𝑆௜௝
ௗ   are computed by 
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ijg
2
kk, gij =

∂ui
∂xj

(A30)

where Cw = 0.325.
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