
 

 
 

 

 
Water 2024, 16, 264. https://doi.org/10.3390/w16020264 www.mdpi.com/journal/water 

Article 

Groundwater Quality Assessment and Irrigation Water Quality 

Index Prediction Using Machine Learning Algorithms 

Enas E. Hussein 1, Abdessamed Derdour 2,3, Bilel Zerouali 4, Abdulrazak Almaliki 5, Yong Jie Wong 6,*,  

Manuel Ballesta-de los Santos 7, Pham Minh Ngoc 8, Mofreh A. Hashim 1 and Ahmed Elbeltagi 9 

1 National Water Research Center, Shubra El-Kheima 13411, Egypt; enas_el-sayed@nwrc.gov.eg (E.E.H.); 

mofrehhashim00@gmail.com (M.A.H.) 
2 Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, University Center of Naama, 

P.O. Box 66, Naama 45000, Algeria; derdour@cuniv-naama.dz 
3 Laboratory for the Sustainable Management of Natural Resources in Arid and Semi-Arid Zones, University 

Center Salhi Ahmed Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria 
4 Vegetal Chemistry-Water-Energy Research Laboratory, Faculty of Civil Engineering and Architecture,  

Department of Hydraulic, Hassiba Benbouali, University of Chlef, B.P. 78C, Ouled Fares,  

Chlef 02180, Algeria; b.zerouali@univ-chlef.dz 
5 Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099,  

Taif 21944, Saudi Arabia; a.almaliki@tu.edu.sa 
6 Department of Bioenvironmental Design, Faculty of Bioenvironmental Sciences, Kyoto University of  

Advanced Science, Kyoto 606-8501, Japan 
7 Field in Agricultural Chemistry and Soil Science, Scientific R&D Department, Fertilizantes y Nutrientes 

Ecológicos S.L. (FYNECO), Industrial Estate Ceutí, C/Río Taibilla S/N, 30562 Ceutí, Spain; 

m.ballesta@fyneco.es 
8 Research Center for Environmental Quality Management, Graduate School of Engineering,  

Kyoto University, Kyoto 520-0811, Japan; m.ngoc.pham.ktu@gmail.com 
9 Agricultural Engineering Department, Faculty of Agriculture, Mansoura University,  

Mansoura 35516, Egypt; ahmedelbeltagy81@mans.edu.eg 

* Correspondence: wong.yongjie@kuas.ac.jp or wong.yongjie.p80@kyoto-u.jp 

Abstract: The evaluation of groundwater quality is crucial for irrigation purposes; however, due to 

financial constraints in developing countries, such evaluations suffer from insufficient sampling fre-

quency, hindering comprehensive assessments. Therefore, associated with machine learning ap-

proaches and the irrigation water quality index (IWQI), this research aims to evaluate the ground-

water quality in Naama, a region in southwest Algeria. Hydrochemical parameters (cations, anions, 

pH, and EC), qualitative indices (SAR, RSC, Na%, MH, and PI),  as well as geospatial representa-

tions were used to determine the groundwater’s suitability for irrigation in the study area. In addi-

tion, efficient machine learning approaches for forecasting IWQI utilizing Extreme Gradient Boost-

ing (XGBoost), Support vector regression (SVR), and K-Nearest Neighbours (KNN) models were 

implemented. In this research, 166 groundwater samples were used to calculate the irrigation index. 

The results showed that 42.18% of them were of excellent quality, 34.34% were of very good quality, 

6.63% were good quality, 9.64% were satisfactory, and 4.21% were considered unsuitable for irriga-

tion. On the other hand, results indicate that XGBoost excels in accuracy and stability, with a low 

RMSE (of 2.8272 and a high R of 0.9834. SVR with only four inputs (Ca2+, Mg2⁺, Na⁺, and K) demon-

strates a notable predictive capability with a low RMSE of 2.6925 and a high R of 0.98738, while 

KNN showcases robust performance. The distinctions between these models have important impli-

cations for making informed decisions in agricultural water management and resource allocation 

within the region. 
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1. Introduction 

For the long-term development of many sectors, groundwater is a valuable resource, 

especially in arid regions [1]. However, the fast population increase, industrial and agri-

cultural expansion, climate change, and other factors have led to the severe degradation 

of and threat to groundwater quality in recent decades [2,3]. Due to the complexity of 

protecting groundwater resources for future generations while also meeting the needs of 

many economic activities, most notably agricultural activities, groundwater sustainability 

has become an important issue [4,5]. Agriculture is the main user of water resources [6–

8]. More than 70% of freshwater is used for agriculture in most of the world’s areas [9]. To 

feed a planet of 9 billion people by 2050, agricultural production is anticipated to increase 

by 50%, and water withdrawals are expected to increase by 15% [10,11]. In Algeria, the 

water resources sector mobilizes nearly 11.2 billion m3/year, of which 7.3 billion m3 are 

devoted to agriculture, i.e., more than 70%, and 3.6 billion m3 per year is allocated to drink-

ing water [12]. Large agricultural perimeters are irrigated in the north using boreholes and 

dams. At the same time, large aquifers in the south are used to irrigate perimeters through 

deep boreholes. The country’s irrigated areas have evolved from 905,293 ha in 2007 to 

1,640,000 ha in 2020 [13]. Small-scale irrigation systems have also grown significantly due 

to official subsidies and aid given to farmers and the liberalization of drilling and well 

digging [14]. The excessive use of groundwater in such regions, where the influence of 

climate variability is very pronounced, has been the cause of the degradation of this re-

source both from a quantitative and qualitative point of view. Water quality is a limiting 

element for life quality worldwide [15]. Therefore, it is crucial to consider the quality of 

these resources while using them for irrigation due to their impact on human health, 

where salinity levels and soluble salt compositions are the main issues with water quality 

in most irrigation situations [16]. Frequently, the unwise use of salty water leads to 

groundwater pollution, sodicity, soil salinity, and ion toxicity [17]. In addition, excessive 

salinity levels can negatively impact crop productivity, fertility requirements, physical 

soil conditions, and irrigation systems [17]. Consequently, increasing the quality of water 

is necessary to guarantee the development of excellent crops and the maintenance of soil 

integrity [16]. Around the world, research on the sustainability of water quality used for 

irrigation is expanding. Numerous studies have been conducted to carefully construct hy-

drochemical indicators for assessing irrigation water quality. For example, Tlili-Zrelli et 

al. [18] evaluated the quality of groundwater in the region of Grombalia in Tunisia using 

graphical and multivariate statistical methods. It has been shown that sodium adsorption 

ratios (SAR) are an effective method for evaluating irrigation water quality in many stud-

ies [19–22]. Furthermore, other research evaluated water quality using a statistical method 

for irrigation [23–27]. Research has also been conducted in Algeria on the quality of 

groundwater in many aquifers for irrigation. Many researchers worldwide have devel-

oped several other indicators to represent water quality for irrigation [28,29]. Among these 

indicators is the water quality index (WQI), developed by Brown and McClelland [30]. It 

was first defined by Horton [31]. A multivariate statistical analysis of water was employed 

by Meireles et al. [32] to develop a new water quality indicator (WQI) for irrigation, called 

the irrigation water quality index (IWQI). The variables included in the index were Elec-

trical Conductivity, the sodium adsorption ratio, Bicarbonate, sodium, and chloride. The 

authors also reclassified the WQI for irrigation, taking into account soil salinity and infil-

tration rates. Decision-makers can easily use this method to evaluate a water type’s quality 

and potential risks based on a wide range of parameters [33]. Additionally, IWQI enables 

the assessment and comparison of different water samples to prevent adverse effects on 

soil and plants [34]. Drilling wells for agricultural use in areas with significant groundwa-

ter salinization is made more affordable with the IWQI forecast [35]. This intelligent 

method is becoming more frequently employed for monitoring the quality of water in 

many research projects due to its usefulness in identifying a solution to a complicated 

issue and highlighting the input and output data relationship. Artificial neural networks 

(ANN) models, among other machine learning models, have been used to forecast outputs 
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as computer technology has advanced. Data-driven models called ANNs are products of 

the evolution of artificial intelligence [33,34]. This study aims to estimate the IWQI to eval-

uate the groundwater of Naama’s arid region in southwest Algeria for irrigation purposes. 

Additionally, we propose a methodology for forecasting IWQI using Extreme Gradient 

Boosting (XGBoost), Support vector regression (SVR), and K-Nearest Neighbours (KNN) 

models. The results were classified into different classes from excellent to unsuitable in 

order to facilitate its consideration. The accuracy of computed and forecasted IWQI values 

is then evaluated. The results will be helpful for predicting changes in water quality, ena-

bling better water resource management, planning, and decision-making concerning 

available resources, especially in arid locations. 

2. Materials and Methods 

2.1. The Description of the Study Area 

We are focusing on the Wilaya of Naama (29,514.14 km2) located in southwestern 

Algeria, between the latitudes of 33°22′7.84″ N and 33°22′7.84″ N and longitudes 

0°21′25.05″ E and 0°21′25.05″ E (Figure 1). The study area’s northern boundary is Wilaya 

of Tlemcen and Sidi Belabbes, west of the Algerian–Moroccan border, east of Wilaya of El-

Bayadh, and south of Wilaya of Bechar. In terms of agricultural activities, the northern 

section of this research region is marked by pastoral activities and livestock, occupying 

about 74% of the total area. At the same time, the southern part is characterized by small-

scale irrigation systems, with the cultivation of vegetables, cereal, and olive trees [36]. The 

primary water resources refer to groundwater with four principal aquifer systems: the 

quaternary alluvial aquifer, the tertiary limestones aquifer, the Jurassic sandstone reser-

voir, and the Albian aquifer. Among these, the flow rates vary between 5 and 80 L/s. These 

aquifers provide water for 1,893,122 animals grazing in the study area and 208,136 resi-

dents living there [37]. This region’s surface water resources are severely stressed due to 

climatic conditions [38]. The research area is an arid region with a mean annual rainfall of 

287 mm and a maximum yearly rate of evapotranspiration of 2000 mm [39]. Mineral soils, 

saline soils, and limestone magnetic soils make up the majority of the soil types in this 

region [40]. According to a land use analysis, the research area’s surface comprises 29.14% 

steppe ranges, 24.06% severely degraded ranges, 17.94% wind accumulations, only 6.74% 

dunes, 15.06% rocky outcrops, and 7.05% of forests [41]. Geologically, the tertiary sedi-

ments cover the study’s northern area, while the south is composed of cretaceous and 

Jurassic sediments [42]. The first important economic sector in the wilaya of Naama is 

agriculture, specifically pastoralism, with more than 2,203,460 Ha of the agricultural area, 

of which 28,283 Ha is irrigated [43]. The main crops cultivated are cereals and market 

gardening. All the efforts made by the state contribute to the consolidation of the various 

actions included in the framework of the national FNRDA program and the upgrading of 

all the farms on the one hand, and on the other hand, the increase in the area useful as 

agricultural land through the development of new lands. The main objective is the inten-

sification of agricultural pockets by tree planting as a means of combating desertification 

and the promotion of fodder crops to meet the needs of livestock. 
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Figure 1. Study area. 

2.2. Collection of Data, Analysis, and Calculation 

From the study area, 166 samples were collected, and ten elements were evaluated 

(Ca2+, K⁺, Na⁺, Mg2⁺, Cl⁻, NO₃⁻, SO₄2−, HCO₃⁻, Electrical Conductivity, and Hydrogen power 

(pH). A multiparameter portable quality type HANNA (HI98194) was utilized to assess 

Hydrogen power (pH), Electric Conductivity (EC), and temperature (T) in situ. To evalu-

ate the cation and anion elements, samples were collected and transported to the Sustain-

able Management of Natural Resources laboratory in Arid and Semi-Arid Zones at Naama 

and reserved at four degrees Celcius. The chemical analyses were completed using the 

procedures for the chemical examination of wastes and water (EPA-600/4-79-020) [44]. 

Magnesium (Mg), Calcium (Ca), and Bicarbonate (HCO3) were evaluated using the 

method of titration. Atomic absorption spectrometry was used to determine sodium (Na) 

and potassium (K). Chloride (Cl) concentrations were dosed by the Mohr method. In ad-

dition to sulphate (SO4), Nitrate (NO3) was also differentiated by the UV-Vis spectropho-

tometer. The assessment of the suitability of groundwater in the Naama region for irriga-

tion was established with the international standard (FAO). 

2.3. Suitability Indices for Irrigation 

Various groundwater indices are frequently used to evaluate groundwater suitability 

for agricultural use. Sodium percentage, sodium adsorption ratio, Magnesium hazard, 

Permeability Index, Potential salinity, and Kelly’s ratio. The conventional formulas from 
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(1) to (6), shown in Table 1, were used to determine the (SAR), (MH), (Na%), (PI), (KR), 

and (PS) correspondingly, where all ions are given in meq/L. 

Table 1. The irrigation water’s qualitative formulas. 

Parameter Formula Adopted  References 

Sodium adsorption ratio 

+

2 2

Na
SAR=

Ca +Mg

2

 
(1) [45] 

Sodium percentage 
( )

+ +

2+ 2+ +

(Na +K )
Na%=

Ca +Mg +Na
 (2) [28] 

Permeability Index 
( )

( )

+ -

3

2+ 2+ +

Na + HCO

PI= × 100
Ca +Mg +Na

 (3) [29] 

Magnesium hazard 
2+

2+ 2+

Ca
MH= × 100

Ca +Mg
 (4) [45] 

Kelly’s ratio 
+

2+ 2+

Na
KR=

Ca +Mg
 (5) [46] 

Potential salinity 
2-

- 4
SO

PS=Cl +
2

 (6) [47] 

2.4. Irrigation Water Quality Index (IWQI) 

It is recognized that the quality of irrigation water and many other factors, such as 

the nature of the soil, the type of crops, the climatic conditions, and the methods of irriga-

tion, play a significant role in profitability and agricultural yield. The increase in the sa-

linity of irrigation water negatively affects the soil and the plants. The mineral salts pre-

sent in the irrigation water can cause changes in the structure of the soil, thus modifying 

its permeability and aeration, which leads to a disturbance in the development of plants 

[48]. To obtain a clear view of the overall quality of irrigation water, the IWQI was em-

ployed to reflect the composite influence of numerous water quality parameters on that 

water’s overall quality [33,34]. Equation (7) is used in this model to calculate the irrigation 

water quality parameter (qi), which is determined by the tolerance limits of the parameters 

listed in Table 2: 

( )inf

max

amp

amp

xij x qi
qi qi

X

 −  
= −  (7) 

where 𝑞𝑖 is the quality of each parameter, 𝑞𝑖max stands for the maximum value of qi for 

every class, 𝑥𝑖𝑗  stands for every parameter’s observed value, and xinf  stands for the 

value corresponding to the parameter’s lower limit class and where 𝑞𝑖𝑎𝑚𝑝  is the ampli-

tude of quality measurement class, and 𝑋amp is the amplitude class. 

Table 2. Limiting values for parameters used in quality assessments (qi). 

𝒒𝒊 𝐄𝐂 (𝐮𝐒 𝐜𝐦−𝟏) 𝐒𝐀𝐑 𝐍𝐚+ 𝐂𝐥− 𝐇𝐂𝐎𝟑
− 

0–35 EC < 750 or SAR < 2 or Na < 2 or Cl < 1 or HCO3
− < 1 or 

 EC ≥ 3000 SAR ≥ 12 Na ≥ 12 Cl ≥ 10 HCO3
− ≥ 8.5 

35–60 1500 ≤ EC < 3000 6 ≤ SAR < 12 6 ≤ Na < 12 7 ≤ Cl < 10 4.5 ≤ HCO3
− < 8.5 

60–85 750 ≤ EC < 1500 3 ≤ SAR < 6 3 ≤ Na < 6 4 ≤ Cl < 7 1.5 ≤ HCO3
− < 4.5 
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85–100 200 ≤ EC < 750 2 ≤ SAR < 3 2 ≤ Na < 3 1 ≤ Cl < 4 1 ≤ HCO3
− < 1.5 

Finally, using Equation (8), the IWQI was calculated. Table 3 presents the relative 

weight of every parameter according to Meireles et al. [32]. 

1

n

i i

i

IWQI q w
=

=  (8) 

The IWQI ranges between 0 and 100. Five (05) categories were used to classify the 

irrigation water quality index IWQI from excellent to inappropriate, as shown in Table 4. 

Table 3. Relative weights used to calculate IWQI. 

Parameters Wi 

SAR 0.189 

EC 0.211 

Cl 0.194 

Na 0.204 

HCO3 0.202 

Total 1 

Table 4. IWQI classification. 

IWQI Type IWQI 

Unsuitable 0–40 

Satisfying  40–55 

Good 55–70 

Very Good 70–85 

Excellent 85–100 

2.5. Extreme Gradient Boosting (XGBoost) Algorithm 

XGBoost, which stands for Extreme Gradient Boosting, is a powerful and popular 

machine learning algorithm that is primarily used for supervised learning tasks, including 

classification and regression [49–51]. It was introduced by Tianqi Chen, a computer scien-

tist and machine learning researcher, in a research paper [52]. XGBoost is an ensemble 

learning method, meaning it combines the predictions from multiple models (usually de-

cision trees) to create a more robust model. An overview of XGBoost’s work was summa-

rised as follows: 

1. Gradient Boosting: XGBoost is a gradient boosting algorithm, which means it com-

bines multiple decision trees to create a stronger predictive model. 

2. Decision Trees as Base Learners: Decision trees are used as the base or “weak” learn-

ers in XGBoost. These trees are trained to minimize a specified loss function (e.g., 

mean squared error for regression or log-loss for classification). 

3. Iterative Training: XGBoost iteratively adds trees to the model. It starts with an initial 

prediction (e.g., the mean of the target variable) and then fits a tree to the residuals 

(the differences between predictions and actual values). 

4. Regularization: XGBoost includes regularization techniques (L1 and L2 regulariza-

tion) to control overfitting and enhance model generalization. 

5. Ensemble Learning: The predictions from multiple trees are combined to create the 

final model. Each new tree is weighted and added to the previous predictions. 

6. Parallel and Distributed Computing: XGBoost is designed for efficiency and can lev-

erage parallel and distributed computing to handle large datasets and complex mod-

els. 

7. Feature Importance: XGBoost provides feature importance scores, helping identify 

the most influential features in the model’s decisions. 
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8. Hyperparameter Tuning: To optimize model performance, users can fine-tune hy-

perparameters like learning rate, tree depth, and subsampling. 

2.6. Support Vector Regression (SVR) Algorithm 

SVR is a machine learning technique used for regression tasks. It is a variation of the 

Support Vector Machine (SVM) algorithm primarily used for classification. The second 

objective of SVR is to predict a continuous target variable (real numbers) based on input 

features [53–55]. First developed by Vladimir N. Vapnik and Alexey Ya Chervonenkis [56], 

the SVR is used when you have data that do not necessarily follow a linear pattern and 

may involve complex relationships.  

SVR introduces the concept of a margin of tolerance (ε) around the predicted hyper-

plane. The margin represents the acceptable prediction error, where data points outside 

this margin contribute to the loss function. SVR seeks to minimize this loss while respect-

ing the margin constraints to find a hyperplane that best fits the data. Support vectors are 

the data points closest to the margin (inside or on the margin boundary), where these 

points are the most influential data points, as they have the largest impact on defining the 

hyperplane [57]. SVR uses a loss function that captures the trade-off between minimizing 

the error (the difference between simulated and observed values) and maximizing the 

margin around the hyperplane. The loss function typically has two terms: minimizing the 

error and controlling the margin. The radial basis function (RBF) is the most common ker-

nel function used to transform the input data into a higher-dimensional space [58]. 

It controls the trade-off between maintaining a large margin and fitting the data based 

on regularization parameter, often denoted as “C”. A smaller C value results in a larger 

margin but may allow more errors, and conversely, training SVR based on Sequential 

Minimal Optimization (SMO) involves finding the optimal hyperplane and the support 

vectors. After training, SVR can make predictions for new data points by calculating their 

position relative to the hyperplane, where the predicted value is influenced by the position 

and distance from the hyperplane and the margin [59]. 

2.7. K-Nearest Neighbours (KNN) Algorithm 

KNN is a simple yet effective supervised machine learning algorithm for classifica-

tion and regression tasks. KNN is a non-parametric, instance-based algorithm, meaning it 

does not make any underlying assumptions about the data distribution and instead relies 

on the data itself to make predictions. The prediction process in KNN is briefly explained. 

It mentions that the prediction for a given sample is based on information from its K-

Nearest Neighbours in the feature space. K represents the number of neighbours consid-

ered when making predictions [60]. The KNN highlights the importance of choosing an 

appropriate value for k. It is emphasized that the choice of k should depend on the da-

taset’s specific characteristics and the desired accuracy level. The value of k significantly 

impacts the algorithm’s performance [61,62]. 

2.8. Performance Criteria 

The dataset consisting of 166 samples was divided into separate training and testing 

subsets to evaluate the proposed algorithms’ effectiveness. The training subset, compris-

ing approximately 70% of the data, equivalent to around 116 samples, was employed for 

optimizing model parameters and achieving peak performance. The remaining 30% of the 

data, roughly 50 samples, formed the testing set for conclusive model assessment. This 

70/30 data split ratio conforms to a widely recognized practice supported by the existing 

literature [63,64]. We used multiple performance metrics to assess the model’s effective-

ness, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Nash–Sut-

cliffe Efficiency (NSE), and the Pearson Correlation Coefficient (R). Concise explanations 

of each performance measure are presented below [65,66]. 
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i

n n

obs i obs s i s

i i

IWQI IWQI IWQI IWQI

R

IWQI IWQI IWQI IWQI

=

= =

− −

=

− −



 
 (12) 

where IWQIo,i and IWQIs,i represent the actual and simulated observations, respectively. 

N is the sample size of the database. 𝐼𝑊𝑄𝐼𝑜
̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐼𝑊𝑄𝐼𝑠

̅̅ ̅̅ ̅̅ ̅̅  represent the mean values of the 

actual and simulated samples, respectively. 

3. Results 

3.1. Descriptive Statistics of Physico-Chemical Parameters of Irrigation Water 

Electrical Conductivity (EC), Hydrogen power (pH), main ions (K+, Na+, Ca2+, Mg+, 

NO3
−, HCO3

−, SO4
2−, Cl−) are all listed in Table 5, along with their respective minimums, 

maximums, means, and standard deviations for all 166 samples. The pH of the research 

area averages at 7.71. Consequently, the groundwater is alkaline in the studied area. Water 

salinity and total dissolved solids in water can be measured using the practical and trust-

worthy index of Electrical Conductivity (EC). The values of EC of the study area varied 

from 290.00 µδ/cm to 6200.00 µδ/cm. According to FAO guidelines, 92.16% of Electrical 

Conductivity (EC) values of the research area are within an acceptable range (<3000 

µδ/cm) [67]. On the other hand, Calcium concentrations in the groundwater of the re-

search area range from 0.60 to 56.10 meq/L (Figure 2a). About 94.6% of the Calcium con-

centrations are within the permissible range of the FAO recommendations, which set a 

maximum value of 20 meq/L [67]. While 53.61% of Magnesium concentrations are within 

the FAO guidelines, as shown in Figure 2b (<5 meq/L) [67]. All sodium results (except only 

three samples) are within FAO standard limits (<40 meq/L), as these levels varied from 

0.22 mg/L to 48.48 mg/L [67]. Among the water sampling points in our study area, potas-

sium values range from 0.03 to 6.69 meq/L (Figure 2d), and the maximum concentration 

allowed in irrigation water stipulated by FAO is 2.00 meq/L [67]. As a result, all potassium 

results are within FAO standard limits (except one sample). The mean sulphate value in 

this study is 7.64 meq/L, ranging from 0.79 to 49.38 meq/L (Figure 3a). One hundred fifty 

samples of sulphate concentrations are within the guideline range established by the FAO 

(20 meq/L) [67]. The mean Nitrate concentration ranges between 0.02 and 6.29 meq/L in 

the groundwater samples (Figure 3b), with a mean value of 0.44 meq/L. Bicarbonate con-

centrations range from 0.33 to 8.67 meq/L (Figure 3c). We remark that all samples fall 

within the FAO’s permitted range, with a maximum value of 10 meq/L [67]. Our study 

region’s average chloride concentration ranges from 0.28 to 79.41 meq/L (Figure 3d). Ac-

cording to FAO guidelines, 94% of chloride values of the research area are within an ac-

ceptable range (<30 meq/L) [67]. 
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Figure 2. Geospatial distribution of (a) calcium; (b) magnesium; (c) sodium; (d) potassium. 
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Figure 3. Geospatial distribution of (a) sulphates, (b) nitrates, (c) bicarbonates, and (d) chlorides. 
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The irrigation water’s qualitative parameters like Magnesium hazard (MH), sodium 

percentage (Na%), sodium adsorption ratio (SAR), Permeability Index (PI), Potential salin-

ity (PS), and Kelly’s ratio (KR) are also reported in Table 3. The values of the sodium ad-

sorption ratio (SAR) ranged from 0.12 to 14.56. SAR values between 0 and 18 placed all 

samples in excellent and good irrigation categories. SAR findings indicate that 98.8% of 

these samples are excellent and suitable for irrigation (Table 6). As a result of SAR analysis, 

the irrigation water quality can be classified into four primary categories: “excellent” for 

water with SARs less than ten meq/L, “good” for water with SARs between 10 and 18 

meq/L, “doubtful” for water with SARs between 18 and 26 meq/L, and “unsuitable” for 

water with SARs more than 26 meq/L. The calculated values for sodium percentage (Na%) 

spanned from 6.78 to 83.35%. The percent sodium index increases the “permissible” cate-

gory of the samples to 15.66% while 4.82% are doubtful for irrigation, and decreases the 

excellent category to 32.53% compared to the SAR classification. According to Aravin-

thasamy et al. [68], a greater sodium concentration (>60%) may cause the deterioration of 

the physical properties of soil. It is possible to determine the suitability of groundwater 

for irrigation based on its Permeability Index (PI) values. PI values, on the other hand, 

range from 13.41 to 99.07 meq/L, with a mean value of 43.77 meq/L. According to Doneen 

[47], there are three different categories for the Permeability Index (PI): Class 1, acceptable 

when PI > 75; Class 2, which is good when PI is between 25 and 75%; and Class 3, which 

is unsuitable when PI < 25%). It is advised to use water under classes I and II for irrigation 

[47]. Only 3.61% of the samples in our study area have PI values greater than 25, making 

them unsuitable for irrigation. As shown in Table 6, all other samples are appropriate for 

irrigation according to Permeability Index Classification. The Magnesium hazard com-

puted values range from 2.86 to 91.74%. It is not advised to use water for irrigation when 

the Magnesium hazard value is superior to 50 [45]. Moreover, 46.99% of the samples in 

the area under study have Magnesium hazard values higher than 50%, making them un-

suitable for irrigation (Table 6). It is considered appropriate to irrigate water with a Kelly’s 

index of less than one due to the assumption that water with a Kelly’s index greater than 

one contains excessive sodium [46]. The values of KI vary between 0.03 and 4.94, with an 

average of 0.50. As shown in Table 6, 89.16% of groundwater samples in the study area 

were suitable for irrigation based on Kelly’s ratio. The values of the Potential salinity of 

the study area ranged from 1.35 to 83.47 meq/L, while the average value was 10.34 meq/L. 

Potential salinity (PS) results revealed that 43.98% of samples are “excellent” to “good” 

for irrigation, 24.10% of samples are “Good” to “Injurious”, and 31.93% are “Injurious” to 

“Unsatisfactory” for irrigation. 

Table 5. Descriptive statistics of physico-chemical parameters of irrigation water. 

 Min Value Max Value Mean Value  Standard Deviation 

EC (µδ/cm) 290.00 6200.00 1464.42 1100.87 

pH 6.58 10.60 7.71 0.51 

Ca2+ (meq/L) 0.60 56.10 7.01 7.05 

Mg2+ (meq/L) 0.25 46.67 6.29 5.76 

Na+ (meq/L) 0.22 48.48 6.81 8.65 

K+ (meq/L) 0.03 6.69 0.25 0.54 

Cl− (meq/L) 0.28 79.41 7.87 12.39 

SO4
2− (meq/L) 0.79 49.38 7.64 8.99 

HCO3
− (meq/L) 0.33 8.67 3.90 1.04 

NO3
− (meq/L) 0.02 6.29 0.44 0.60 

SAR 0.12 14.56 2.46 2.48 

Na% 6.78 83.35 29.49 14.93 

MH 2.86 91.74 48.60 13.00 

KR 0.03 4.94 0.50 0.55 

PS 1.35 83.47 10.34 13.09 

PI 13.41 99.07 43.47 13.31 
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Table 6. Classification of irrigation water’s qualitative parameters. 

Irrigation Indices Classification Type 
N° of 

Samples 

Percentage 

(%) 

SAR 

SAR > 26 Unsuitable 0 0 

18 < SAR < 26 Doubtful 0 0 

10 < SAR < 18 Good 2 1.2 

SAR < 10 Excellent 164 98.8 

Na% 

80–100 Unsuitable 1 0.60 

60–80 Doubtful 8 4.82 

40–60 Permissible 26 15.66 

20–40 Good 77 46.39 

<20 Excellent 54 32.53 

PI 

<25% Unsuitable 6 3.61 

>75% Good 4 2.41 

25–75% Suitable 156 93.98 

MH 
>50% Unsuitable 78 46.99 

<50% Suitable 88 53.01 

KR 
<1 Unsuitable 18 10.84 

>1 Suitable 148 89.16 

PS 

>10 Injurious to Unsatisfactory 53 31.93 

5–10 Good to Injurious 40 24.10 

<5 Excellent to good 73 43.98 

3.2. Irrigation Water Quality Index Assessments 

Table 7 shows the IWQI results for the groundwater samples of the Wilaya of Naama. 

Among the IWQI values, there was a wide range of values, ranging from 1.81 to 97.64, 

with an average value of 78.15. It has been concluded that the 75 samples falling into the 

excellent category represent 45.18% of the total samples (Figure 4). About 34.34% of sam-

ples fell into the very good category, and 6.63% fell into the good category. A total of 16 

samples fall into the satisfactory category, representing 9.64% of the total samples. Mean-

while, the IWQI in seven samples in the study area was characterized as unsuitable for 

irrigation. 
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Figure 4. Geospatial distribution of IWQI of the study area. 

Table 7. IWQI results. 

N° IWQI  Type N° IWQI Type N° IWQI Type N° IWQI Type 

GW150 97.64 Excellent GW117 88.79 Excellent GW80 82.38 V. Good  GW82 72.50 V. Good  

GW44 96.89 Excellent GW1 88.71 Excellent GW48 82.32 V. Good  GW64 72.44 V. Good  

GW43 96.52 Excellent GW111 88.51 Excellent GW163 82.20 V. Good  GW158 72.38 V. Good  

GW34 95.71 Excellent GW66 88.41 Excellent GW141 82.19 V. Good  GW160 72.25 V. Good  

GW112 95.17 Excellent GW115 88.37 Excellent GW79 81.71 V. Good  GW30 71.82 V. Good  

GW68 95.17 Excellent GW69 88.27 Excellent GW94 81.64 V. Good  GW15 70.34 V. Good  

GW45 94.91 Excellent GW56 88.26 Excellent GW20 81.36 V. Good  GW92 69.88 Good 

GW107 94.47 Excellent GW166 88.17 Excellent GW124 81.17 V. Good  GW125 68.79 Good 

GW106 93.91 Excellent GW8 88.14 Excellent GW104 80.74 V. Good  GW138 68.65 Good 

GW120 93.65 Excellent GW129 87.92 Excellent GW72 80.67 V. Good  GW122 68.44 Good 

GW137 93.25 Excellent GW140 87.91 Excellent GW131 80.24 V. Good  GW123 67.92 Good 

GW75 93.20 Excellent GW7 87.79 Excellent GW78 80.07 V. Good  GW110 67.43 Good 

GW76 92.84 Excellent GW4 87.55 Excellent GW97 79.86 V. Good  GW148 67.17 Good 
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GW113 92.83 Excellent GW32 87.19 Excellent GW86 79.72 V. Good  GW109 66.62 Good 

GW2 92.78 Excellent GW144 87.09 Excellent GW128 79.67 V. Good  GW52 66.34 Good 

GW105 92.70 Excellent GW132 87.06 Excellent GW70 79.58 V. Good  GW83 65.87 Good 

GW74 92.52 Excellent GW19 86.83 Excellent GW17 79.42 V. Good  GW126 65.54 Good 

GW90 91.78 Excellent GW10 86.65 Excellent GW5 79.16 V. Good  GW159 64.22 Satisfactory 

GW73 91.78 Excellent GW33 86.53 Excellent GW84 78.48 V. Good  GW46 62.59 Satisfactory 

GW11 91.65 Excellent GW157 86.48 Excellent GW53 78.03 V. Good  GW55 61.02 Satisfactory 

GW114 91.41 Excellent GW127 86.47 Excellent GW162 78.03 V. Good  GW61 60.10 Satisfactory 

GW67 91.18 Excellent GW65 86.35 Excellent GW28 77.57 V. Good  GW77 59.94 Satisfactory 

GW154 90.47 Excellent GW142 86.21 Excellent GW24 77.42 V. Good  GW47 58.52 Satisfactory 

GW152 90.47 Excellent GW121 86.06 Excellent GW27 77.31 V. Good  GW146 58.42 Satisfactory 

GW89 90.26 Excellent GW63 85.70 Excellent GW59 76.84 V. Good  GW41 57.40 Satisfactory 

GW151 90.19 Excellent GW139 85.69 Excellent GW81 76.40 V. Good  GW57 55.52 Satisfactory 

GW134 90.07 Excellent GW155 85.55 Excellent GW161 76.11 V. Good  GW98 55.31 Satisfactory 

GW119 90.07 Excellent GW143 85.30 Excellent GW23 75.82 V. Good GW40 52.76 Satisfactory 

GW87 89.84 Excellent GW156 85.18 Excellent GW12 75.62 V. Good  GW26 51.54 Satisfactory 

GW133 89.76 Excellent GW38 85.16 Excellent GW85 75.52 V. Good  GW29 45.46 Satisfactory 

GW165 89.69 Excellent GW96 85.15 Excellent GW14 75.34 V. Good  GW145 43.94 Satisfactory 

GW130 89.45 Excellent GW102 85.14 Excellent GW21 75.23 V. Good  GW62 43.70 Satisfactory 

GW93 89.30 Excellent GW136 85.03 Excellent GW35 75.05 V. Good  GW99 42.36 Satisfactory 

GW149 89.20 Excellent GW60 84.80 V. Good  GW36 74.66 V. Good  GW91 36.76 Unsuitable 

GW164 89.20 Excellent GW16 84.43 V. Good  GW118 74.29 V. Good  GW3 33.83 Unsuitable 

GW54 89.14 Excellent GW71 84.25 V. Good  GW6 73.79 V. Good  GW42 29.98 Unsuitable 

GW116 88.98 Excellent GW147 84.23 V. Good  GW22 73.76 V. Good  GW25 28.23 Unsuitable 

GW37 88.96 Excellent GW103 84.03 V. Good  GW101 73.56 V. Good  GW39 27.78 Unsuitable 

GW108 88.96 Excellent GW58 83.67 V. Good  GW100 73.37 V. Good  GW18 26.76 Unsuitable 

GW13 88.95 Excellent GW50 83.61 V. Good  GW31 73.30 V. Good  GW135 1.81 Unsuitable 

GW51 88.87 Excellent GW49 82.97 V. Good  GW9 73.29 V. Good    

GW153 88.80 Excellent GW95 82.89 V. Good  GW88 72.74 V. Good    

3.3. Machine Learning Analysis and Modelling 

A total of 166 data samples of five quality parameters and their actual outputs were 

used to train three machine learning models: XGBoost, SVR, and KNN algorithms. The 

input parameters are Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl−, SO₄2−, HCO₃−, NO₃⁻, EC, Mineralisation, and 

PH, and IWQI is the output response. The 166 data samples were categorized into five 

categories expressing irrigation water quality: excellent, very good, good, satisfactory, and 

unsuitable. Table 8 shows the IWQI status distribution. 

Table 8. Distribution of the IWQI data samples. 

 Excellent Very Good Good Satisfactory Unsuitable Total 

No. of data samples 75 57 11 16 7 166 

Before performing the analysis, eleven input combinations (models) were proposed 

and assessed based on five performance criteria.  

- Model 1: Ca2⁺; 

- Model 2: Ca2⁺, and Mg2⁺; 

- Model 3: Ca2⁺, Mg2⁺, and Na⁺; 

- Model 4: Ca2⁺, Mg2⁺, Na⁺, and K⁺; 

- Model 5: Ca2⁺, Mg2⁺, Na⁺, K⁺, and Cl⁻; 

- Model 6: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, and SO₄2⁻;  

- Model 7: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄2⁻, and HCO₃⁻; 



Water 2024, 16, 264 15 of 24 
 

 

- Model 8: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄2⁻, HCO₃⁻, and NO₃⁻; 

- Model 9: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄2⁻, HCO₃⁻, NO₃⁻, and EC; 

- Model 10: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄2⁻, HCO₃⁻, NO₃⁻, EC, and Mineralisation; 

- Model 11: Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄⁻⁻, HCO₃⁻, NO₃⁻, EC, Mineralisation, and PH. 

The models XGBoost, SVR, and KNN have been implanted using Python program-

ming, which iteratively performs training and testing with the specified applied data. Fig-

ure 5 shows the performance of the XGBoost, SVR, and KNN models. The RMSE de-

creased after the second epochs for SVR and KNN, reaching 4.852 and 3.745 for training 

and 3.595 and 2.692 for testing, respectively, where the RMSE of XGBoost continued to 

decrease for both training and validation to epochs or an iteration number of 45, giving 

its minimum 0.00089029 in training and 2.8272 in testing. Therefore, the best network per-

formance can be considered when the validation error is the lowest. 

The training, testing, and validation curves were reduced, as in Figure 5, and the er-

rors decreased, indicating that the XGBoost, SVR, and KNN models are reliable. It is im-

portant to know how the three models identify the quality parameters and the output 

response relationship (IWQI), as well as what the accuracy of the prediction model to ob-

tain the correct prediction of IWQI with the variation of the quality inputs is. 

 

Figure 5. (a) Training and (b) validation loss based on RMSE performance of the XGBoost, SVR, and 

KNN. 

This section presents the results of the analytical investigation. In initial assessments, 

we measured the effectiveness of basic models using RMSE and NSE as the evaluation 

metrics. Figure 6 illustrates the comparative RMSE and NSE values for the XGBoost, SVR, 

and KNN models during the testing phase. Among the 11 models analysed, several mod-

els stand out as top performers. Model 7 of XGBoost exhibits the best predictive perfor-

mance with an impressively low RMSE of 2.99 and the highest NSE of 0.954, demonstrat-

ing exceptional accuracy and goodness of fit. Additionally, XGBoost models 9 (Ca2⁺, Mg2⁺, 

Na⁺, K⁺, Cl⁻, SO₄2⁻, HCO₃⁻, NO₃⁻, and EC) and 10 (Ca2⁺, Mg2⁺, Na⁺, K⁺, Cl⁻, SO₄2⁻, HCO₃⁻, 

NO₃⁻, and EC) also showcase strong performance, boasting low RMSE values of 2.96 and 

2.83, along with high NSE values of 0.953 and 0.957, respectively. Model 4 (Ca2⁺, Mg2⁺, Na⁺, 

and K⁺) of SVR is another standout, featuring an RMSE of 2.69 and an exceptional NSE of 

0.961, making it one of the top-performing models in the SVR category. In contrast, the 

SVR model 1 ranks as the least accurate among the models, with an RMSE of 10.52 and an 

NSE of 0.483, indicating moderate predictive performance. Similarly, SVR models 9 and 
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10 also exhibit lower predictive performance with RMSE values of 4.42 and 4.39, accom-

panied by NSE values of 0.911 and 0.912, respectively. When selecting a model, it is crucial 

to prioritize predictive accuracy, and in this context, the XGBoost models, particularly 

model 7 and SVR model 4, emerge as the top choices, while SVR model 1 may require 

further improvement to achieve better results. When selecting a model, it is crucial to pri-

oritize predictive accuracy, and in this context, XGBoost model 10, KNN model 5 (Ca2⁺, 

Mg2⁺, Na⁺, K⁺, and Cl⁻), and other high-performing models are excellent choices, while 

other models may require further improvement to achieve better results. 

 

Figure 6. (a) RMSE,(b) NSE, (c) R, and (d) R2 performance for the 11 models using XGBoost, SVR, 

and KNN. 

In this comprehensive analysis, we have assessed the performance of 11 models 

across three machine learning algorithms, XGBoost, SVR, and KNN, based on R and R2, 

to gauge their predictive accuracy, goodness of fit, and overall performance (Figure 6). 

XGBoost model 10: Among the XGBoost models, model 10 emerges as the top choice. 

It not only demonstrated the lowest RMSE but also excelled in other metrics, including 

NSE, R, and R2. With an R2 value of 0.971, this model showcases exceptional predictive 

capabilities. Its consistently high rankings across multiple metrics underscore its robust-

ness, making it an excellent candidate for accurate predictions. KNN model 3 and KNN 

model 4: The KNN models, represented by models 3 and 4, also stand out as top-perform-

ing models. Both models exhibited R2 values of 0.971 and 0.970, indicating strong predic-

tive accuracy and goodness of fit. These models consistently outperformed other KNN 
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models and demonstrated competitive performance across various metrics. Within the 

SVR models, model 4 displays noteworthy performance. With an R2 value of 0.975, it ex-

hibits a high level of predictive accuracy and goodness of fit. This model is a strong con-

tender among the SVR models, showcasing its ability to provide reliable predictions. In 

conclusion, the choice of the best model depends on the specific project requirements. 

XGBoost model 10 and SVR model 4 are top contenders for tasks demanding the utmost 

accuracy and goodness of fit. KNN models 3 and 4 offer competitive performance and 

may be preferred for their simplicity and interpretability 

Figure 7 provides a comprehensive comparative analysis of the best-performing 

models, specifically XGBoost model 10, SVR model 4, and KNN model 5, based on essen-

tial evaluation metrics. This figure serves as a visual representation of the model’s predic-

tive capabilities and their suitability for different application scenarios. 

In the graph, we observe that XGBoost model 10 stands out with the highest Nash–

Sutcliffe Efficiency (NSE) of 0.957, emphasizing its superior predictive accuracy. This 

model also demonstrates the lowest Root Mean Square Error (RMSE) of 2.827 and an MAE 

of 1.834, indicating its ability to minimize prediction errors effectively. SVR model 4 main-

tains strong performance, with an NSE of 0.961 and competitive error measures, including 

an RMSE of 2.693 and an MAE of 2.115. This model strikes a balance between accuracy 

and goodness of fit. KNN model 5 highlights robust predictive capabilities with an NSE 

of 0.941, although it incurs a slightly higher RMSE of 3.595 and an MAE of 2.584. It offers 

a reliable option with a focus on simplicity.  

 

Figure 7. RMSE, NSE, and MAE performance for the best models XGBoost (model 10), SVR (model 

4), and KNN (model 5). 

Figure 8 indicates the correlation between the actual and predicted IWQI output us-

ing (a) SVR (model 4), (b) XGBoost (model 10), and (c) KNN (model 5). When comparing 

the input data of each model within the context of making predictions with limited data, 

several considerations come into play. The ability to generate accurate predictions with 

limited data is crucial, and it often depends on the complexity and adaptability of the 
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model. Here is a comparison of the input data for each of the best models, considering 

their suitability for such scenarios: 

 

Figure 8. Correlation between the actual and predicted IWQI output using (a) SVR, (b) XGBoost, 

and (c) KNN. 

When addressing the challenge of making predictions with limited data, the selection 

of the right modelling approach and input variables becomes pivotal. In this regard, the 

three best models, XGBoost model 10, SVR model 4, and KNN model 5, each offer unique 
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advantages. XGBoost, represented by model 10, is renowned for its adaptability and ro-

bust predictive capabilities. With a comprehensive set of input variables, it can effectively 

handle sparse datasets. However, success hinges on careful feature selection and param-

eter tuning to avoid overfitting. In contrast, SVR model 4, with its focused input variables, 

provides a simpler yet robust solution. Its reduced risk of over-parameterization makes it 

well-suited for limited data scenarios. KNN model 5, known for its simplicity and adapt-

ability, relies on nearest neighbours and can perform effectively even when data are 

scarce. 

Figure 9 compares the statistical parameters of observed and prediction values based 

on mean, minimum, maximum, variance, and standard deviation (STD). Mean: All three 

models have means that are very close to or slightly higher than the reference mean, indi-

cating that they capture the central tendency of the data well. For instance, the mean of 

XGBoost’s predictions (80.80293) is just slightly higher than the reference (80.01060). Min 

and Max: The minimum and maximum values of the predicted data by each model are 

generally within or near the range of the observed data. For example, KNN’s minimum 

value (39.16076) and maximum value (83.10271) are well within the observed data range. 

The variance of the predicted data by all three models is lower than the variance of the 

observed data, indicating that the models provide predictions with reduced variability. 

For instance, XGBoost and SVR have lower variances compared to the reference data. The 

STD of the predicted data by each model is also lower than the standard deviation of the 

observed data, indicating that the models offer predictions with less spread and are less 

variable than the observed data. XGBoost and SVR have lower standard deviations com-

pared to the reference data. 

 

Figure 9. Statistical comparison of observed and predicted values. 

4. Discussion 

In the discussion section, we have comprehensively evaluated the performance of 

three predictive models, XGBoost (model 10), SVR (model 4), and KNN (model 5), 

through a range of performance metrics and statistical parameters. XGBoost exhibited 
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strong predictive accuracy with high NSE, low RMSE, and MAE values, closely aligning 

with the reference data’s central tendency and demonstrating stability with lower vari-

ance and standard deviation. SVR showcased notable predictive capability, maintaining 

a high NSE and low RMSE (2.692) and MAE (2.1146) values, in addition to closely match-

ing the reference data’s central tendency and offering stable and consistent predictions. 

KNN, while having slightly lower R and R2 values, presented strong predictive perfor-

mance with a closely aligned central tendency and stable, less variable predictions sup-

ported by a lower variance and standard deviation. These findings collectively highlight 

the models’ potential for accurate, stable, and consistent predictions across various appli-

cations. The choice of the best model should be influenced by specific application require-

ments and priorities, taking into account predictive accuracy, model complexity, and sta-

bility. The results obtained from this study agree with research studies that have applied 

similar approaches for IWQI, which indicated the high performance and stability of ma-

chine learning models for IWQI prediction [35,69–71]. Lap et al. [72] indicated that the 

random forest (RF) model excels in accurately forecasting WQI values for the An Hai irri-

gation system in Vietnam, achieving a good Similarity score of 0.94. This analysis identi-

fies four crucial parameters—Coliform, Dissolved Oxygen (DO), Turbidity, and Total Sus-

pended Solids (TSS)—that exert the most significant influence on water quality. In El 

Kharga Oasis in the Western Desert of Egypt, Ibrahim et al. [73] found that both the ANFIS 

and SVM models demonstrated the capability to accurately simulate IWQIs, as evidenced 

by high determination coefficients (R2) in both the training phase (R2 = 0.99 and 0.97) and 

the testing phase (R2 = 0.97 and 0.76). In a study by Nguyen et al. [74] for WQI calculations 

in the Red River Delta, Vietnam, two types of machine learning models were employed. 

The results revealed that the machine learning model outperformed the deep learning 

model in terms of prediction accuracy, where the gradient boosting model demonstrated 

the highest level of predictive accuracy, followed by the XGBoost, RNN, and LSTM mod-

els. The accuracy of each of these models was notably high, with predictions ranging from 

84% to 96%. Trabelsi and Bel Hadj Ali [75] applied RF, SVR, ANN, and AdaBoost for pre-

dicting IWQI in the downstream Medjerda river basin in Tunisia. The findings indicate 

that the AdaBoost model stands out as the most suitable choice for predicting all parame-

ters, with correlation coefficients (r) ranging between 0.88 and 0.89. On the other hand, 

the random forest model is well-suited for predicting four specific parameters, namely 

TDS, SAR, PS, and ESP, with R in the range of 0.65 to 0.87. 

Finally, despite the uncertainty and limitations of machine learning algorithms, these 

results highlight the potential of XGBoost, SVR, and KNN as valuable tools for ground-

water quality prediction. They can provide essential insights and serve as a basis for fur-

ther research and monitoring. However, their utility should be complemented by expert 

knowledge and traditional hydrogeological methods for more robust decision-making 

and practical applications. Finally, this section emphasizes the need for further research 

to validate the models under different data conditions, including more dispersed ground-

water quality data. We also highlight potential avenues for future research aimed at refin-

ing the models in response to varying data characteristics. 

5. Conclusions 

Arid and semi-arid regions often rely solely on groundwater for irrigation. The man-

agement of water resources for drinking and irrigation can be enhanced by understanding 

and evaluating the irrigation water quality index. Based on data collected from 166 bore-

holes in Naama, located in southwestern Algeria, the study aims to determine the irriga-

tion water quality index (IWQI), which consists of many physico-chemical parameters. 

Furthermore, this research rigorously evaluated three predictive models, namely 

XGBoost, SVR, and KNN, for estimating the IWQI variable. The models were thoroughly 

assessed using multiple performance metrics, including NSE, RMSE, MAE, R. 
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The results of the irrigation water qualitative parameter analysis of the groundwater 

samples of the study area revealed that most of them were “suitable.” Based on the find-

ings of IWQI, we found that 45.18% of samples were categorized as “excellent”, 34.34% of 

samples were considered as “very good”, 6.63% of samples fell into the good category, 

9.64% of the total samples were categorized as “satisfactory”, and 4.21% of samples in the 

study area were characterized as “unsuitable” of irrigation. 

In IWQI modelling, XGBoost (model 10) emerged as a strong performer, with high 

NSE and low RMSE and MAE values, signifying its predictive accuracy. It is closely 

aligned with the reference data in terms of mean, minimum, and maximum predictions 

while offering reduced variability. 

SVR (model 4) demonstrated a notable predictive capability, boasting high NSE 

(0.96112) and low RMSE (2.6925) and MAE (2.11462) values. It closely matched the refer-

ence data’s mean and exhibited consistent predictions within the observed data range. 

Lower variance and standard deviation values emphasized its stability. We found four 

important parameters that have the greatest impact on water quality, including Ca2⁺, Mg2⁺, 

Na⁺, and K. 

KNN (model 5) showcased strong predictive performance with competitive NSE, 

RMSE, and MAE values. Although it had slightly lower R and R2 values, its predictions 

closely followed the reference data, with reduced variance and standard deviation, indi-

cating stability. 

This study may offer useful and valuable information for decision-makers to com-

prehend the present state of the water quality for irrigation in the Wilaya of Naama. This 

will allow for a better and more sustainable management of water resources in the study 

area and similar regions. Finally, the application of metaheuristic algorithms in conjunc-

tion with machine learning is a promising avenue for future research and practical imple-

mentations. 
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