
Supplementary Materials: ODD+D protocol  

 

This document describes the model, agents, and household decision-making in our model following the 

ODD+D protocol [1]. 

 

I. Overview  

I.i Purpose  

I.i.a What is the purpose of the study? 

Our forward-looking stochastic ABM framework aims to assess migration response to flooding from 

rising sea levels at the municipal to regional level across rural and urban coastal areas. Providing a more 

comprehensive representation, this model allows us to incorporate top-bottom data-driven population 

projections and fine-tune model parameters in a futuristic way. The study area chosen to apply the model 

on consists of 481 census tracts within 16 counties located in coastal Virginia and Maryland, United 

States.  

 

I.i.b For whom is the model designed? 

This model is designed for scientists and municipal disaster resilience planners to increase their 

understanding of local household migration dynamics under scenarios of flooding and sea-level rise. 

 

I.ii. Entities, state variables, and scales 

I.ii.a What kinds of entities are in the model? 

This agent-based model (ABM) includes the following entities: 

Household agents: spatially explicit entities that are initialized in the model based on census 2020 tract 

level population data, geographical borders, and an average household size specific to the case study 

area. Agents may undertake no action, implement adaptation measures, move to another tract within the 

same county, or migrate to another out-of-county census tract. In this model, the abstraction level of 200 

individuals per agent was considered to balance computational efficiency and statistical representation, 

resulting in an initial population of 2602 household agents in timestep t = 0. The total number of agents 

varies over time according to county-level population projections suggested by Hauer and CIESIN [2,3]. 

Geospatial patches: Spatially-static entities that represent the geographic map of the study area, and some 

number of which fall within each census tract’s borders based on the defined resolution in the model. An 

ID allocated to each patch defines its belonging to a tract, meaning that all patches falling within the 

borders of a tract have the same IDs. Since the finest spatial resolution in the model is census tracts, 

household agents’ creation, movement, and removal processes are tract-level (using tract IDs) and their 

location within the patches of each tract is selected randomly, as is not meaningful and interpretable to 

the model.  

 

I.ii.b By what attributes (i.e. state variables and parameters) are these entities characterized? 

Household agents possess attributes such as spatial location, satisfaction level, migration threshold based 

on household-level census data. 

Geospatial patches keep census tract information regarding residential setting (urban/rural), initial 

population, household size, population growth rate (derived from data-driven county-level population 

projections), and percent of census tract area inundated. 

 

I.ii.c. What are the exogenous factors / drivers of the model? 

There are two exogenous mechanisms deriving migration decisions in the model: 



Population dynamics mechanism: Before simulating the effect of flooding, we developed and calibrated a 

bottom-up baseline model to replicate best available population projections that are driven from 

historical data [2,3].  

 

Physical hazard mechanism: Sea-level rise and coastal flooding is a push factor in our model that may 

force people to migrate. We used on U.S. Army Corps of Engineers’ 2015 North Atlantic Coast 

Comprehensive Study [4,5] statistical coastal flood hazard data. We converted flooded area maps to a 

percentage of census tracts inundated and interpolated this data to get the percent inundated for more 

return periods. To feed this flood data into the model, a statistically valid 50-year sequence of flood 

intensity was required. We generated sequences of random values from uniform distribution and 

inverted them to obtain sequences of return periods. In order to capture the migration response under 

different flooding scenarios, four flood storylines were designed, the approach of which was a what-if 

scenario rather than the whole distribution of storms return periods. The description of the storylines is 

as follows: 

• Storyline 1: Frequent small floods (with the return period of 2-10 years) 

• Storyline 2: Frequent small floods and one severe storm (with a return period of 100 years or more) 

occurring early in the horizon (within the first 15 years) 

• Storyline 3: Frequent small floods, one large storm (with a return period of 10-100 years), and two 

severe storms (with a return period of 100 years or more) occurring late in the horizon (within the 

last 15 years) 

• Storyline 4: Frequent nuisance flooding, one large storms (with a return period of 10-100 years), 

and three severe storms (with a return period of 100 years or more).  

 

I.ii.d. If applicable, how is space included in the model? 

Space is included as census tracts where households are located and move, and flooding events occur. 

 

I.ii.e What are the temporal and spatial resolutions and extents of the model? 

The model runs at census tract spatial scale and can be implemented at a different location. It simulates 

household decisions in yearly timesteps spanning 50 years between 2021 and 2070. Inundation maps are 

available at census tract level under current sea-level rise scenario which are combined with our statically 

valid flood storylines generated for 2021-2070 time horizon. 

 

I.iii. Process overview and scheduling 

I.iii.a. What entity does what, and in what order? 

In each time step, which represents one year, the corresponding inundation data is updated. Based on the 

push-pull score of each census tract at that specific time step, a beta distribution representing the 

probability of satisfaction scores for residing agents is created for that census tract. Agents' satisfaction 

scores are then randomly sampled from the distribution of their current location. Agents compare their 

satisfaction with a migration threshold. Agents whose satisfaction falls below the migration threshold 

decide to move. 

To align with nationwide statistics on local and regional-scale mobility developed by the HJCHS [45], we 

randomly select 65% of these 'dissatisfied' agents to move within their county but to a different census 

tract, and the remaining agents move to census tracts in counties different from their current county. In 

their destination decision, agents stochastically select their destination in a way that census tracts with 

higher push-pull scores in this time step are more likely to be selected by migrants. 

The model does not explicitly simulate birth, death, aging processes, or in- and out-migration flows. 

Instead, we account for all these changes in the study area population by considering growth or decline 

in population projections for the simulation year. If the population across the study area increases, the 



required number of agents is created and randomly distributed to census tracts, which are more probable 

to be assigned for the new agents if their pull score (inherent desirability) is higher. Otherwise, excess 

agents are randomly selected for removal based on their dissatisfaction; the more dissatisfied an agent, 

the more likely they are to be eliminated.  

 

II. Design Concepts  

II.i Theoretical and Empirical Background  

II.i.a Which general concepts, theories or hypotheses are underlying the model’s design at the system level or at the 

level(s) of the submodel(s) (apart from the decision model)? What is the link to complexity and the purpose of the 

model?  

This study proposes a bottom-up framework for the long-term projection of municipal-scale migration 

due to coastal flood events. Considering heterogeneity in household level migration decisions and 

municipal scale adaptation policy making as well as the great variance of natural hazard across space, we 

adopt a stochastic forward-looking bottom-up approach to explore two main questions: 

• Can bottom-up decision rules replicate top-bottom data-driven projections? 

• How does the introduction of different flooding assumption result in outcomes that diverge from 

the projections? 

 

II.i.b On what assumptions is/are the agents’ decision model(s) based?  

The decision-making process for households in our model is grounded in the push-pull theory of 

migration, which posits that certain features either attract or repel individuals from specific locations. In 

our model, push-pull effects are derived from a combination of baseline desirability and the flooded area 

(percentage) of each census tract. 

The baseline desirability, represented by the pull score, for each census tract is determined using a 

logistic function. This function is based on the annual linear growth/decline rate obtained from top-

bottom population projections. The underlying concept is that lower growth rates correspond to greater 

dissatisfaction among agents, making them more likely to move. Conversely, higher growth rates make a 

location more attractive as a destination for migration. The strength of the baseline pull effect is 

controlled by the parameter 𝑘𝑝𝑢𝑙𝑙 in the logistic function. A 𝑘𝑝𝑢𝑙𝑙value of zero implies no weighting, 

resulting in random movement between census tracts regardless of their projected growth rate. As the 

𝑘𝑝𝑢𝑙𝑙value increases, the weighting becomes stronger, leading more agents to move to high-growth tracts. 
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Figure S1. Census tract growth rates are mapped to baseline pull scores through a logistic function with 𝑘𝑝𝑢𝑙𝑙  

parameter 

Agents in our model make migration decisions based on their satisfaction with their current location 

(whether to migrate or not) and with a potential destination (where to relocate). We assume that the 

satisfaction of agents within a census tract is a random variable governed by a beta distribution, and the 

parameters of this distribution are adjusted based on the push-pull score of that census tract. 

The beta distribution is limited to the range (0, 1) and is characterized by two shape parameters, α and β. 

Opting to represent agents' satisfaction scores with a beta distribution was a deliberate choice, as its range 

corresponds with the pull scores, and the distribution offers significant versatility in depicting various 

shapes, as illustrated in Figure 2. This adaptability was preferred since we lacked predefined assumptions 

about the distribution of satisfaction levels within the study area and aimed to calibrate it with a high 

degree of flexibility. 

 

Figure S2. Beta distribution. Shape parameters examples are illustrated 

As an initial and straightforward decision rule structure, we assumed that agents would decide whether 

to move or stay in a census tract based on a weighted average of the pull-push score from the baseline 

model and the severity of flooding they experience. This weight represents the significance of the 

flooding factor in decision-making. Various values were tested to observe how the migration response 

would deviate from top-bottom projections as agents placed more emphasis on the flooding aspect of the 

decision-making process. 

 

II.i.c Why is/are certain decision model(s) chosen?  

The push-pull theory of migration enables us to aggregate various migration drivers into a single metric 

that represents factors influencing an individual's inclination and ability to relocate. These factors 

encompass economic considerations, job opportunities, information about alternative localities, 

demographic characteristics (such as age, education level, and parenthood), and the psychic cost of 

migration [6].  

Given the inherent challenges in directly measuring and simulating individual behaviors, perceptions, 

preferences, and values, we embrace a stochastic approach. This method involves sampling a random 

satisfaction value from a known distribution, recognizing that individuals will exhibit diverse levels of 

satisfaction that are inherently unpredictable. 



To maximize the model's alignment with historically-derived top-bottom projections, we leverage the 

most flexible distributions for various components of our stochastic approach, allowing the model to 

calibrate itself effectively. 

 

II.i.d If the model/submodel (e.g. the decision model) is based on empirical data, where do the data come from?  

The population dynamics system uses Georeferenced U.S. County-Level Population Projections, Total 

and by Sex, Race and Age, Based on the SSPs, 2020-2100 by Hauer M, Center For International Earth 

Science Information Network-CIESIN-Columbia University [2,3]. This dataset is available on the internet 

since 2020 on NASA Socioeconomic Data and Applications Center (SEDAC) website. 

The flood hazard system leverages U.S. Army Corps of Engineers’ 2015 North Atlantic Coast 

Comprehensive Study [4,5] statistical coastal flood hazard data. The NACCS statistics represent the 

combined flood hazards from Nor’easters, tropical storms, and hurricanes and include the influence of 

astronomical tides. The NACCS statistical values are reported for present-day sea level at return periods 

(one over annual exceedance probability) ranging from 1 to 10,000 years. The NACCS probabilistic surge 

hazard methodology is consistent with the methodology now adopted by FEMA for establishing Flood 

Insurance Rate Maps. 

 

II.i.e At which level of aggregation were the data available? 

Population projection data was available at county level. Inundated area maps developed based on 

NACCS were available at census tract level for the study area. 

 

II.ii Individual Decision-Making  

II.ii.a What are the subjects and objects of the decision-making? On which level of aggregation is decision-making 

modelled? Are multiple levels of decision making included?  

Households make individual decisions to migrate to other places. Only a single level of decision making 

is included. 

 

II.ii.b What is the basic rationality behind agent decision-making in the model? Do agents pursue an explicit 

objective or have other success criteria?  

Household agents aim to reside in a census tract where their satisfaction from the push-pull effect 

(inherent desirability and attraction of the area as well as its exposure to flooding) at least meets a 

threshold. If their current location does not provide this level of satisfaction, they can reach this goal by 

migrating to another place. 

 

II.ii.c How do agents make their decisions? 

Agents evaluate their satisfaction against a predefined calibrated migration threshold. Agents with 

satisfaction levels below this migration threshold opt to relocate. Whether categorized as within-county 

or out-of-county migrants, agents stochastically choose their destination from a weighted list of census 

tracts, employing a push-pull score-based weighted random draw. This implies that census tracts with 

higher push-pull scores are more likely to be chosen as the destination for a migrating agent. 

 

II.ii.d Do the agents adapt their behaviour to changing endogenous and exogenous state variables? And if yes, how?  

The only exogenous variable driving household decisions are increasing flood extent under sea level rise. 

We assume that households know the inundated percentage of census tract area in the current timestep. 

Households thus adapt their behavior to changing coastal flood extent.  

 

II.ii.e Do social norms or cultural values play a role in the decision-making process?  

No. 



II.ii.f Do spatial aspects play a role in the decision process?  

Households determine their satisfaction by considering the inundated percentage in a specific time step 

and the inherent desirability of their current location. The scale of their relocation distance is defined by a 

random process that aligns with the statistics of U.S. annual displacements [7], leading to either within-

county or out-of-county moves. 

 

II.ii.g Do temporal aspects play a role in the decision process?  

Population change varies over time, based on a linear growth rate pulled from top-bottom population 

projections. Inundation percentage changes over time based on current sea-level rise scenario and 

NACCS statistics, affecting migration decisions. 

 

II.ii.h To which extent and how is uncertainty included in the agents’ decision rules? 

Agents’ satisfaction from their current location is a stochastic variable.  

Flood storylines are generated stochastically, accounting for uncertainties in flooding through time. So, 

push-pull scores of census tracts are impacted by the uncertainty of flood impacts.  

Accordingly, agents’ migration decision which is associated with their satisfaction score and their 

destination decisions are stochastic in their different components. 

 

II.iii Learning  

II.iii.a Is individual learning included in the decision process? How do individuals change their decision rules over 

time as consequence of their experience?  

No. 

 

II.iii.b Is collective learning implemented in the model?  

No. 

 

II.iv Individual Sensing  

II.iv.a What endogenous and exogenous state variables are individuals assumed to sense and consider in their 

decisions? Is the sensing process erroneous?  

Households perceive changes in coastal flood hazard and the inherent desirability of both their current 

location and potential destinations when considering migration to other census tracts. This sensing 

process is not prone to errors, but it lacks influence from past experiences, as there is no learning 

component incorporated into their decision model. 

 

II.iv.b What state variables of which other individuals can an individual perceive? Is the sensing process erroneous?  

Households do not sense the state variables of other individuals. 

 

II.iv.c What is the spatial scale of sensing?  

Households sense the flood extent and baseline desirability of their current census tract and other census 

tracts within the county or study area, depending on the scale of their intended relocation distance. 

 

II.iv.d Are the mechanisms by which agents obtain information modelled explicitly, or are individuals simply 

assumed to know these variables?  

No. 

 

II.iv.e Are the costs for cognition and the costs for gathering information explicitly included in the model?  

No. 

 



II.v Individual Prediction  

II.v.a Which data do the agents use to predict future conditions?  

Agents don’t predict future conditions in the current version of the model. 

 

II.v.b What internal models are agents assumed to use to estimate future conditions or consequences of their 

decisions?  

NA. 

 

II.v.c Might agents be erroneous in the prediction process, and how is it implemented? 

NA. 

 

II.vi Interaction  

II.vi.a Are interactions among agents and entities assumed as direct or indirect?  

Interactions between agents and their environment (flood hazard) are modeled directly. The population 

size in a census tract influences the number of households relocating to that area, attributed to the 

positive impact of a larger population on baseline desirability—an indicator of the census tract's 

development level. However, the current version of the model does not account for interactions among 

agents themselves. 

 

II.vi.b On what do the interactions depend? 

Interactions depend on the spatial location and its conditions in a timestep. 

 

II.vi.c If the interactions involve communication, how are such communications represented?  

Interactions currently do not involve communication. 

 

II.vi.d If a coordination network exists, how does it affect the agent behaviour? Is the structure of the network 

imposed or emergent?  

No coordination network exists. 

 

II.vii Collectives  

II.vii.a Do the individuals form or belong to aggregations that affect and are affected by the individuals? Are these 

aggregations imposed by the modeller or do they emerge during the simulation? 

There is no aggregation involved  

  

II.vii.b How are collectives represented? 

NA 

 

II.viii Heterogeneity  

II.viii.a Are the agents heterogeneous? If yes, which state variables and/or processes differ between the agents? 

Household agents are heterogeneous in state variables. Satisfaction of agents residing in the same census 

tract is a stochastic variable randomly pulled from census tract’s beta distribution. Agents’ location in the 

study area is also heterogenous since satisfaction distribution varies based on baseline desirability and 

flooding scores, resulting in exposure to different flood extents and census tract’s development level.  

 

II.viii.b Are the agents heterogeneous in their decision-making? If yes, which decision models or decision objects 

differ between the agents?  



Agents are heterogeneous in their decision-making. The decision to migrate from or stay in the current is 

a function of agent’s satisfaction. The decision to where to migrate involves relocation distance category 

and weighted random draw. 

 

 

II.ix Stochasticity  

II.ix.a What processes (including initialisation) are modelled by assuming they are random or partly random?  

Satisfaction score of agents is defined as a random variable. Satisfaction distributions vary by attributes of 

census tracts. Within-county or out-of-county scale of relocation is defined randomly but subject to 

HJCHS statistics. Migration destination is a weighted random draw.  

The annual change in study area population involves random processes. Agents created or eliminated 

based on the timestep’s population growth rate are randomly assigned using a weighted random draw 

from push-pull score probabilities. To create agents in the case of population increase, tracts with higher 

push-pull score are more probable to gained these new agents. If population decreases, tracts with lower 

push-pull score are more probable to lose agents. 

 

II.x Observation  

II.x.a What data are collected from the ABM for testing, understanding and analysing it, and how and when are 

they collected? 

The total population and percentage of agents moved for each census tract are tracked and exported after 

each timestep.  

Calibrated model parameters were pulled from calibration step to be fed to the flood-informed model. As 

the Calibrated parameter set, we selected the combination which resulted in the lowest relative root mean 

square error (Relative RMSE) between modeled and projected population [2,3] in each simulation year that 

also had an annual movement percentage within 2% of the HJCHS estimate of 10.7%. 

The performance of the flood-informed ABM was compared with the baseline model by calculating the 

deviation of each stochastic iteration under weight of 𝑊 from the average of stochastic iterations in the 

baseline scenario. The root mean square of relative deviations from the baseline was then used to 

characterize spatial and temporal variations. In order to measure temporal variability across the study area, 

we aggregated the relative deviations over all census tracts in each simulated year under each storyline. 

We also defined a measure for relative deviation in each census tract in year 2070. This measure was used 

to show spatial variation of deviation in the study area in year 2070 for example flood weights.  

 

III. Details 

III.i Implementation Details  

III.i.a How has the model been implemented?  

The model is implemented in Netlogo 6.2  

 

III.i.b Is the model accessible, and if so where?  

The model code and data is made publicly available on OSF via: 

https://osf.io/6r5ab/?view_only=aab370279b9d4c5bbd44b33238bf25c3. 

 

III.ii Initialisation  

III.ii.a What is the initial state of the model world, i.e. at time t=0 of a simulation run?  

In this section we describe to model application to coastal Virginia and Maryland. Data sources may vary 

based on the case study location; however, the procedure remains roughly the same.  



Census tract boundary shapefiles are pulled from the Census Bureau. For each census tract, households 

are created based on census tract population divided by 200, i.e. each agent represents 200 individuals of 

the real population. At t=0, a total of 2602 household agents are created in the study area. 

Each census tract is assigned with a push-pull score.  

In the flood-informed model, parameters are set to the calibrated values that obtained from calibration 

step 

 

III.ii.b Is the initialisation always the same, or is it allowed to vary among simulations?  

The initialization is always the same. 

 

III.ii.c Are the initial values chosen arbitrarily or based on data?  

Initial values are based on data. 

 

III.iii Input Data  

III.iii.a Does the model use input from external sources such as data files or other models to represent processes that 

change over time?  

The model makes use of census tract shapefile map and population data, top-bottom population 

projections available in the literature [2,3] and inundation maps developed for the study area based on 

NACCS statistics.  

 

III.iv Submodels  

III.iv.a What, in detail, are the submodels that represent the processes listed in ‘Process overview and scheduling’? 

The population dynamics system uses the push-pull theory of migration to replicate the best available 

population projections using bottom-up heterogenous migration decision rules. 

The flood hazard system incorporates the flooding information he NACCS statistical values are reported 

for present-day sea level at return periods (one over annual exceedance probability) ranging from 1 to 

10,000 years. The NACCS probabilistic surge hazard methodology is consistent with the methodology 

now adopted by FEMA for establishing Flood Insurance Rate Maps. 

The logic behind our migration decision submodel has been described above and associated details are 

discussed and formulated in the Methods section of the manuscript. 

 

III.iv.b What are the model parameters, their dimensions and reference values?  

Model parameters are fully described in Table 1 of the manuscript. 

 

III.iv.c How were the submodels designed or chosen, and how were they parameterised and then tested? 

The push-pull theory of migration is well established modeling framework of simulation migration flows 

[8–10]. In this model application of push-pull migration theory is calibrated on available population 

projections and applied to simulate annually continued migration in response to flooding through the 

year 2070. Our decision model uses different stochastic processes and simple heuristic rules to account for 

intricate human environmental interactions and allows for exploring the potential changes in population 

displacement as a consequence of flooding due to sea-level rise. 
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