
Citation: Nourali, Z.; Shortridge, J.E.;

Bukvic, A.; Shao, Y.; Irish, J.L.

Simulation of Flood-Induced Human

Migration at the Municipal Scale: A

Stochastic Agent-Based Model of

Relocation Response to Coastal

Flooding. Water 2024, 16, 263.

https://doi.org/10.3390/

w16020263

Academic Editors: Ngai Weng Chan

and Christopher Barrow

Received: 5 December 2023

Revised: 2 January 2024

Accepted: 6 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Simulation of Flood-Induced Human Migration at the
Municipal Scale: A Stochastic Agent-Based Model of
Relocation Response to Coastal Flooding
Zahra Nourali 1,* , Julie E. Shortridge 1,2, Anamaria Bukvic 2,3 , Yang Shao 2,3 and Jennifer L. Irish 2,4

1 Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; jshortridge@vt.edu
2 Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA; ana.bukvic@vt.edu (A.B.);

yshao@vt.edu (Y.S.); jirish@vt.edu (J.L.I.)
3 Department of Geography, Virginia Tech, Blacksburg, VA 24061, USA
4 Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
* Correspondence: znourali@vt.edu; Tel.: +1-(540)-267-1470

Abstract: Human migration triggered by flooding will create sociodemographic, economic, and
cultural challenges in coastal communities, and adaptation to these challenges will primarily occur at
the municipal level. However, existing migration models at larger spatial scales do not necessarily
capture relevant social responses to flooding at the local and municipal levels. Furthermore, projecting
migration dynamics into the future becomes difficult due to uncertainties in human–environment
interactions, particularly when historic observations are used for model calibration. This study
proposes a stochastic agent-based model (ABM) designed for the long-term projection of municipal-
scale migration due to repeated flood events. A baseline model is demonstrated initially, capable
of using stochastic bottom-up decision rules to replicate county-level population. This approach is
then combined with physical flood-exposure data to simulate how population projections diverge
under different flooding assumptions. The methodology is applied to a study area comprising 16
counties in coastal Virginia and Maryland, U.S., and include rural areas which are often overlooked in
adaptation research. The results show that incorporating flood impacts results in divergent population
growth patterns in both urban and rural locations, demonstrating potential municipal-level migration
response to coastal flooding.

Keywords: agent-based modeling (ABM); human migration; climate change; coastal flooding;
socio-ecological systems

1. Introduction

Changing precipitation patterns, droughts, land degradation, flood events, and sea-
level rise already affect many coastal socio-ecological systems (SES). These and other
potential climate change impacts on human systems can drive complex, uncertain changes
to the population size, resource use, and economic activity of future societies [1], and in
some cases, exacerbate human migration patterns [2–7]. The fact that climate-induced
migration can itself cause subsequent environmental consequences such as deforestation
and degradation of natural resources implies the bidirectional relationship between envi-
ronment and migration [8]. Accordingly, predicting human migration and understanding
how relocation dynamics will be influenced by different environmental changes is crucial
for both adaptation planning and environmental conservation, as an important input in
the decision-making process of many governments and organizations. The United Nations
Framework Convention on Climate Change (UNFCCC) has already brought up discussions
on the compensation problems for the areas where residents are possibly forced to migrate,
such as small-island states confronted by rising sea levels [9].
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In response to these challenges, there is a growing body of research on climate-
influenced migration that can generally be categorized into three approaches: theoretical
frameworks, empirical methods, and agent-based modeling (ABM). Early migration the-
ories were based on economic reasoning (e.g., employment opportunities and income)
as the main driver triggering the migration processes [10]. It is also conceptualized us-
ing a pull–push model accounting for aspects that attract and repel people to move [11].
This foundation led to further studies that consider other drivers of migration such as
environmental, social, political, and demographic forces [12–15]. Empirical approaches
typically use statistical methods to quantitatively identify relationships between environ-
mental change and migration, emphasizing the role of climatic event type and migration
characteristics [16–23]. However, empirical approaches require large volumes of data to
identify causal relationships, which limits their applicability in contexts with sparse data.
While useful to characterize factors influencing migration on a large-scale population level,
such methods cannot capture complex granular factors that influence migration decisions
at the individual or household level [24]. Finally, empirical analyses of migration behavior
can only assess historically observed relationships, which are not necessarily reflective of
future migration patterns. For instance, Hauer [25] assumes that migrations happen only
among locations that have already experienced migrations historically. However, research
that integrates future climate change projections suggests that migration patterns will not
necessarily keep up with historically observed patterns [26]. Finally, empirical methods do
not capture heterogeneous decision making and behaviors across large populations and
only find general patterns and relationships out of collective data.

Agent-based modeling (ABM) provides an alternative mechanism to represent het-
erogeneous decision-making processes and human responses to natural disasters where
individual-level variation in behaviors leads to emergent collective outcomes, such as
evacuation [27–30] and migration [31,32]. Numeric simulations of multi-agent systems
can capture effects stemming from heterogeneity across different types of actors [33].
ABM can allow social, economic, and environmental factors to be incorporated into a
migration model that considers social-ecological feedbacks, evolutionary learning, and
out-of-equilibrium dynamics to better capture complex system characteristics of migration
patterns due to climate change [34]. These factors can be combined with spatial data to
develop a spatially explicit simulation of climatic risks and associated individual responses.
The latter is important as SES often shows high levels of spatial variability. Through spatial
ABMs, possible interactions between social systems and spatially explicit environmental
systems (such as the dynamics of sea-level rise and inundated areas across spatial scale) can
be better tracked. The added value of ABM is its ability to explore dynamic paths of SES,
which usually involve abrupt changes and transitions emerging from cumulative effects of
social interactions and adaptive behaviors, since other modeling approaches that assume
perfect information and static or rational behavior may be misleading [35].

ABM has been recently used to study migration in response to different environmental
factors, including studies that assess different theoretical foundations [36] and incorpo-
rate temporal dimensions [37–39]. One key challenge in ABM in any context is model
validation [40], with multiple studies calling for more systematic and rigorous model val-
idation processes [35,41]. Forward-looking ABMs which consider sea-level rise as one
of the environmental drivers in their model [31,32] usually validate simulations only by
feeding historical data to the initialization step. However, developing and validating
forward-looking models using historical data may not produce valid projections of migra-
tion into the future. The lack of calibration to compare model results in forward-looking
ABMs can affect the credibility of their long-term migration projections in the context of
climate change.

Existing empirical models of climate-induced migration primarily focus on livelihood-
based migration at international or national scales [42,43]. Spatially explicit ABM can
complement this work by tracking displacements for more detailed regional assessment
and planning. For instance, Hassani-Mahmooei and Parris [31] investigate internal migra-
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tion across all divisions of Bangladesh using a temporal-spatial ABM. Models of migration
decision making over smaller scales (municipal to regional) can be beneficial in addressing
multiple issues. First, national-scale findings are not necessarily representative of the
specific migration drivers and their impacts on regional and municipal scales. This is
particularly important in adaptation planning, as many actions in response to SLR and
flooding (such as infrastructure hardening or zoning changes) are taken by local govern-
ments or regional agencies. Local mobility in response to climate stressors could have
significant implications for municipalities, for instance, by exacerbating population loss in
rural communities or intensifying urban housing shortages. While national-scale studies
mostly consider migration from a livelihood perspective (for example, subsistence farmers
who must migrate when crop yields decline), many other factors combine to influence
human spatial behavior and vary among regions and social groups [44]. At smaller spa-
tial scales, people’s displacements occur across shorter distances which may not lead to
different jobs or wages. Thus, the factors that drive people to move at local scales may
be quite different than at large scales and include factors such as housing, family, and
educational opportunities [45]. Existing ABMs of local mobility responses to sea-level
rise or flooding typically adopt an economic focus on housing market dynamics based
on utility maximization [32,46–48]. However, this does not account for other factors that
influence relocation decision making, such as disaster impacts on infrastructure and com-
munity services [49]. Finally, a quick comparison between the portion of rural versus urban
governance structures which do have adaptation and land-use planning sections (31%
versus 71%) shows that rural settings are usually overlooked in adaptation research [50].
At the same time, they are often even more vulnerable to climate impacts due to factors
such as demography, occupations, earnings, literacy, poverty incidence, and dependency
on government funds [51]. A small spatial scale can allow distinguishing between urban
and rural settings and their unique characteristics, compare their migration response, and
investigate outcomes on their municipal structure.

To address the aforementioned gaps, this study proposes a stochastic ABM for flood-
induced migration at the municipal to regional level across rural and urban coastal areas.
This ABM is based on the push–pull theory of migration which posits that the decision
to migrate stems from numerous factors driving people away from certain locations and
attracting them to others [52–54]. A set of bottom-up agent-level decision rules is calibrated
to replicate county-level population projections from NASA’s Socioeconomic Data and
Applications Center (SEDAC). This step provides a baseline model of population movement
in the study region and demonstrates that individual decision rules can be formulated to
replicate macro-scale behavior in best-available population projects. This model is then
used to assess the impact on census tract-level population distribution under different
assumptions about the relative role of flooding in individual migration decisions under
multiple 50-year storylines of nuisance and extreme flooding. This model is then utilized
to determine how flooding alters the spatial and temporal patterns of population change
relative to baseline projections that do not consider flooding. This general approach can
provide a foundation for further investigations on flood-induced migration based on
available public data that can be expanded to accommodate various decision rules and
projections of coastal flood risk.

2. Materials and Methods

The proposed method revolves around the concept of simulating migration behavior
in response to flooding through a bottom-up mindset using ABM. In an ABM, a system is
depicted as a group of independent decision-making entities known as agents. Each agent
autonomously evaluates its circumstances and makes decisions based on a predefined set
of rules. These agents may engage in a set of actions based on the interactions defined in the
system they represent. ABM captures the emergent behavior arising from the interplay of
individual entities within their environment. Emerging phenomena such as flood-induced
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human migration as a whole exceed the mere sum of its parts due to the inherent dynamics
of this system.

This research developed a stochastic ABM based on the push–pull migration theory
for flood-induced migration across flood-prone rural and urban areas of coastal Virginia
and Maryland. Initially, a baseline model was developed and calibrated to simulate
individual agent migration decisions as a stochastic process, relying on the underlying pull
score of the census tract in which they currently live, without considering flood impacts.
This model was then used to simulate migration patterns under different storm surge
flood storylines derived from the U.S. Army Corps of Engineers’ North Atlantic Coast
Comprehensive Study storm surge hazard assessment [55] and under different sea-level
rise scenarios. Migration simulations were conducted with different assumptions about
the importance of storm surge flooding relative to other factors that influence migration
decisions and evaluated the degree to which storm surge flooding causes future projections
to deviate from our baseline model (Figure 1). Model simulations were run for a 50-year
simulation period from 2021 to 2070, to assess how repeated and aggregated individual
relocation decisions impact municipal-scale population patterns in flood-prone areas over
the long term.
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Figure 1. Schematic overview of proposed ABM.

2.1. Study Area

The study area considered in this research comprises 16 coastal counties within the
states of Virginia and Maryland, U.S. This study location includes both urban and rural
coastal areas with both increasing and decreasing population over the past decade (Figure 2).
Sea levels have risen significantly faster in the Mid-Atlantic U.S. region compared to the
global average due to land subsidence from sediment compaction, glacial isostatic rebound,
groundwater extraction, and weakening Gulf Stream currents, making this area the second
largest population center at SLR-related risks in the U.S. [56–59]. The rate of SLR in coastal
Virginia is predicted to increase 13.1% to 71% by 2100 [60], which is exacerbated due
to the low-lying topography in this area [61]. Higher sea level increases the extent of
flooding even without the occurrence of rainfall. Even though sea levels have only risen
by around 12.7 cm, the annual frequency of minor flooding events has increased by 33%
in some areas of Virginia since 2000 [62]. While rarely damaging, minor flooding can
lead to notable disruptions affecting quality of life, such as school closures, infrastructure
shutdowns, and difficulty accessing community services. Sea-level rise also increases the
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risks and potential impacts from larger flood events in the region, including tropical storms
and hurricanes. The annual accelerating frequencies and cumulative effects of floods are
becoming a threatening problem in several locations with strategic importance to national
security, including Norfolk, Virginia [62].
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2.2. Baseline Model

The goal of the baseline model was to develop a set of stochastic agent decision rules
that could effectively replicate broad-scale population projections in the study area. For this
purpose, best-available dataset of county-level population projections based on SSPs [64,65]
was utilized. These top-bottom data-driven projections were obtained from transforming
county-level historic U.S. census data to cohort-change ratios (CCRs) and cohort-change
differences (CCDs), projecting CCDs and CCRs using Autoregressive Integrated Moving
Average (ARIMA) models, and feeding them to Leslie matrix population projection models,
subject to SSPs’ control to avoid runaway population growth. A key advantage of the
statistical approach used to generate these projections is the explicit ability to account
for statistical error terms and quantify uncertainty in future projections. Consequently,
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incorporating these details into agent-based modeling simulations would be a valuable
area of additional research.

In an ABM, agents can individually assess their situation and take actions based on
a set of decision rules [66], which can aggregate into emergent phenomena where group-
level behavior differs from the individuals alone. The factors that influence population
growth and decline in urban and rural areas are highly complex, including proximity to
employment opportunities and wages [67], housing prices [68], and public services such
as taxes, education, unemployment insurance benefits, and public safety [69]. Explicitly
simulating all of these factors is beyond the scope of this work. As an alternative, our
baseline model combined a “pull score” that describes the relative desirability of each
census tract based on population growth projections.

U.S. Census tracts were used as the spatial unit within the model, allowing for the
integration of physical flood inundation data in later steps. The forward-looking simulation
is conducted yearly so that each time step represents a year from 2021 to 2070. Each
agent in the model represents a group of 200 individuals, which serves as a representative
sample of the real population in the study area. The abstraction level of 200 individuals
per agent was made to balance computational efficiency and statistical representation,
aligning with prior research that successfully aggregated agents to simulate the climate-
induced migration behavior of extensive populations [31]. As the stochastic nature of the
model required running multiple simulations to determine system behavior under each
scenario, aggregating individuals into groups allows capturing the inherent heterogeneity
within the population while reducing computational complexity. This value results in
an initial population of 2602 agents in 2021, representing a study area population of
520,400 individuals. In each time step, agents are randomly assigned a satisfaction score
based on the push–pull score of the census tract in which they currently live; these push–
pull scores are derived from county-level population projections [64,65]. The current model
uses the satisfaction score as an aggregate measure summarizing the numerous factors that
influence an individual’s desire and capability to relocate, such as economic reasons and job
opportunities, information concerning alternative localities, demographic characteristics
such as age, education level, and parenthood, and psychic cost of migration [70]. Because
of the challenges inherent in measuring and simulating these factors explicitly at the
individual scale, a stochastic approach is adopted that samples a random satisfaction value
across a known distribution, with the acknowledgment that individuals will vary in their
satisfaction in ways that are impossible to predict.

NetLogo [71] is used as the modeling toolkit which is a programmable environment
for simulating natural and social phenomena. The overview of the modeling approach
is shown in Figure 3. The model is initiated through a setup phase, where the spatial
features of the model are integrated into the NetLogo environment, push–pull factors for
each census tract are calculated, and agents are generated across the study area. For each
year of the simulation, a two-phase process is used to simulate agent moves within the
study area (blue box in Figure 3), and agent moves in and out of the study area (red box in
Figure 3). The details of each step of the model process are discussed in more detail in the
following sections.

2.2.1. Data Sources

Census tract-level data and geographic boundaries within the study area [63] were
used to define the spatial setting of the model. For the baseline model, push–pull scores
for each census tract were defined based on population projections to 2070. A common
critique of model-based projections of future conditions, including but not limited to ABMs,
is that calibrating models using historical data inherently assumes that future events and
consequences will follow historical trends. This is unlikely to be the case in situations
with the multi-dimensional uncertainties and complexities inherent to socio-environmental
systems. To address this issue, county-level population projections [64,65] for the study
region were used to develop and calibrate the baseline model. These projections were
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created by developing autoregressive models of projected rates of population change based
on observed data from 1960–2016 [64,65]. These projections do not explicitly consider
potential environmental influences that could impact population changes in a given area,
such as sea-level rise. Thus, these are used as baseline projections for how the population
would likely evolve if flooding impacts are not considered, and then this baseline is used
as a comparison for different flood scenarios.
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Projections from the Shared Socioeconomic Pathway SSP2 were used to calculate
an annual linear growth rate. These projections, representing population trends at the
county level, were then disaggregated into census tracts within each county based on
their respective 2020 population (Figure 4). While linear population trends will not be
applicable in all cases, a comprehensive analysis using least squares regression of the
2020–2070 projections demonstrated that in all but one county in the study area, at least 74%
of the projection could be explained by a linear trend. To convert the county-level growth
rates to the individual census, the county growth rate was used as the mean of a normal
distribution from which census tract growth rates were sampled, with higher-populated
tracts receiving higher percentile values. This process facilitated an effective distribution of
the county-level population projections to the census tract level, accounting for variations
in population size and growth patterns within and across counties.
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2.2.2. Individuals’ Behavior and Decision Making

In this model, the approach taken for the agents to make migration decisions is
associated with two groups of factors, including (1) push factors that encourage an agent
to leave their current location (e.g., lower inherent desirability or larger area percentage
flooded), and (2) pull factors that determine where agents relocate to. Agents will evaluate
their current location based on pull–push factors to decide if they prefer to migrate. Then,
they evaluate other locations again based on pull–push factors to decide where to move.
To account for the numerous factors not explicitly represented in the model, a stochastic
approach is employed where agents’ satisfaction is randomly sampled based on a beta
distribution with parameters that vary depending on the push–pull score of the agents’
location. A summary of the model parameters and state variables used to represent agent
behavior are presented in Table 1 and described in more detail in the following sections.

Table 1. State variables and global model parameters.

Name/Symbol Numeric Domain Definition and Interpretation

St
at

e
V

ar
ia

bl
es

Growth Rate (G) (−1300, 4500)
Applies to census tracts; annual rate of population change
(persons per year) derived from Hauer projections [64,65] for
the study area.

Push–Pull Score (P) (0, 1) Applies to census tracts in baseline model; derived from state
variable G and parameter kpull .

Satisfaction (S) (0, 1)
Applies to agents; random variable sampled from a beta
distribution. The beta distribution parameters are calculated
from P of their current location and global parameters δ and υ

Flood Extent (F) (0, 1)
Applies to census tracts in the flood model (not included in
the baseline model). Describes the percentage of a census tract
inundated in each year y.

Flood-influenced
Push–Pull (P*) (0, 1) Applies to census tracts in flood model; derived from state

variables P and F.
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Table 1. Cont.

Name/Symbol Numeric Domain Definition and Interpretation

G
lo

ba
lM

od
el

Pa
ra

m
et

er
s

kpull (0, 1)

Used to convert census tract growth rates into pull scores.
Lower values result in more equal pull scores across census
tracts; higher values result in more unequal pull scores.
Calibrated value of 0.0006.

δ (0, 1)

Used to convert census tract P into beta distribution for
sampling agent S. Higher values result in more discrepancy in
S scores across high and low P census tracts. Calibrated value
of 0.2.

υ (4, 20)
Used to convert census tract P into beta distribution for
sampling agent S. Higher values result in more variance in S
scores within a single census tract. Calibrated value of 15.

MT (0.1, 0.5)
Move threshold. Agents decide to move if S < MT. Higher
values result in more agents moving during each model year.
Calibrated value of 0.35.

Push–pull scores for each census tract were calculated based on linear rates of popu-
lation growth or decline. Rates of census tract population change G, which ranged from
–1300 to 4500 persons per year in the study area, were translated into a pull score P for each
census tract i ranging between 0 and 1 using a logistic function governed by a parameter,
kpull (Equation (1)). The logistic function allows transforming the growth rates into a [0, 1]
bounded probability scale, while the use of a kpull parameter (Figure S1) allows the process
to be replicated in other study areas using the same projection source.

Pi =
1

1 + exp
(
−kpull × Gi

) (1)

A kpull value of zero results in a uniform distribution and leads to random movement
between census tracts regardless of their projected growth rate [65]. Greater kpull values
result in greater differences in the pull scores of high and low growth rate tracts. Thus,
increasing kpull results in greater migration flows to high-growth tracts.

Within a given census tract, agents will vary in terms of their desire and ability to
move based on numerous factors that are difficult to measure, let alone simulate. This
inclination to move, referred to as agent satisfaction S, was thus represented using a random
variable sampled from a beta distribution, the parameters of which would change based
on the pull score P of agent’s location. The beta distribution is confined to the interval
(0, 1) and governed by two shape parameters α and β. Agents’ satisfaction scores were
modeled using a beta distribution because its interval aligns with the range of pull scores
and the distribution offers great flexibility in modeling various shapes of distributions,
including symmetrical, skewed, U-shaped, inverted U-shaped, and straight lines (Figure
S2). This flexibility was desirable as there was no predetermined assumption about the
distribution of satisfaction levels within the study area and we sought to calibrate it with a
high level of flexibility. The mean (µ) and variance (var) of beta distribution are formulated
by Equation (2) and Equation (3), respectively:

µi = E[Si] =
α

α + β
(2)

var[Si] =
αβ

(α + β)2(α + β + 1)
(3)
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To calculate a beta distribution for agents within a census tract based on the pull score
P, two parameters δ and υ were defined. The parameter δ defines the relationship between
tract pull score P and the mean µ of the beta distribution as in Equation (4).

µi = 0.5 + δ (Pi − 0.5); ∀δ ∈ (0, 1); (4)

A value of δ equal to 0 leads to a mean value for the distribution of agent satisfaction
µ = 0.5 regardless of P, meaning that tracts’ pull score has no influence on expected agent
satisfaction. As the value of δ increases, the mean value of the distribution for S will move
from 0.5 toward the value of P, resulting in higher satisfaction scores for agents in high
pull-score tracts. A value of δ equal to 1 leads to µ = P for tract i.

The parameter υ represents the sum of shape parameters α and, β (Equation (5)) and
indirectly controls the variance of the beta distributions across each census tract. Higher
values of υ lead to lower variance in the distribution of satisfaction S. Thus, a high value of
both δ and υ would result in a high correspondence between census tract pull P and agent
satisfaction S, due to low-variance distributions of S centered on different mean values.
Figure 5 demonstrates the effect of changing δ and υ on the distributions used to sample
agent satisfaction within low (P = 0.3) and high (P = 0.8) pull-score tracts. For the purposes
of this model, υ was constrained to the interval (4, 20). Given a set of model parameters
δ and υ and a census tract pull score P, the beta distribution parameters α and β can be
calculated as in Equations (6) and (7):

υ = α + β; ∀υ ∈ (4, 20) (5)

α = υ[0.5 + δ (P− 0.5)] (6)

β = υ− α (7)
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Since the distribution of satisfaction is unknown and dependent on the study area and
perceptions and values of the residing people, this distribution is allowed to have different
shapes based on the inherent desirability of a location through parameters δ and υ, while
considering the possibility of its being bell-shaped (µ = 0.5) as well. Several factors can
contribute to the possibility of considering people‘s satisfaction distribution as normally
distributed, similar to various other phenomena. The first significant factor is the level of
complexity and randomness. In complex systems or processes involving a large number
of random variables, the cumulative effect tends to produce a normal distribution. This is
because the likelihood of extreme values occurring in multiple variables simultaneously
decreases, promoting a bell-shaped curve [72]. Second is the effect of statistical aggregation.
Many measurements in science, economics, and social sciences involve the aggregation
of numerous small, independent influences. When these influences are combined, the
resulting distribution often conforms to the normal pattern.

At each time step of simulating pull–push effects, agents’ satisfaction scores are
sampled from the associated distributions. A threshold was considered for migration
decisions to be made, with which agents’ satisfaction scores S were compared. If their
satisfaction was less than this move threshold MT, they decided to migrate. Agents’
decisions about their migration destination were based on the pull score P of the tracts,
meaning that tracts with higher pull scores are more likely to be migrants’ destinations.
Agents did so using NetLogo’s built-in weighted random draw method in destination
selection, where the likelihood of a census tract being selected as a destination is directly
proportional to that census tract’s pull score. In summary, numeric ranges were established
as follows: tract-level G scores in our study area varied from −1300 to 4500. P, S, F, and P*
are assigned values within the range of 0 to 1 for standardization purposes. The parameter
δ modifies the mean of the satisfaction distribution based on P, resulting in a mean value
between 0.5 and P. Additionally, the parameter υ adjusts the sum of shape parameters in
the satisfaction distribution, with a specified range (4, 20). This range is selected to account
for distribution variances, leading to a diverse array of distribution shapes. MT is a level to
which satisfaction score is compared, which is set to values below 0.5 to mitigate excessive
migration flows.

2.2.3. Baseline Model Calibration

The global parameters kpull , δ, υ, and MT were calibrated by systematically testing all
combinations of values for parameters within the bounds presented in Table 1. For each
combination of parameter values, the relative root mean square error (Relative RMSE) be-
tween the modeled and projected population [64,65] in each simulation year was calculated
as in Equation (8).

Relative RMSE =

√√√√√∑T
t=1 ∑Y

y=1

(
MPopt,y−SPopt,y

SPopt,y

)2

T ×Y
(8)

where MPopt,y is county’s simulated population obtained from the model in year y and
tract t, SPopt,y is county’s projected population projection for the corresponding year and
tract, T is the total number of census tracts in the study area, and Y is the number of
simulation years.

The ABM model was also evaluated to be consistent with nationwide statistics on local
and regional scale mobility developed by the Harvard Joint Center for Housing Studies [45].
Based on this data, 13% of the U.S. population moves each year. Of these moves, 65%
are within the same county, and 17% are towards different counties, but in the same state.
For the baseline model, the combination of parameter values with the lowest RMSE was
selected that also had a movement percentage within 2% of the HJCHS estimate of 10.7%.
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2.3. Flood-Informed Model
2.3.1. Physical Flood Inundation Modeling

To represent potential flood events over the period of simulation, statistical coastal
flood hazard data were utilized from the U.S. Army Corps of Engineers’ 2015 North Atlantic
Coast Comprehensive Study [55,73]. The NACCS statistics represent the combined flood
hazards from Nor’easters, tropical storms, and hurricanes and include the influence of
astronomical tides. The NACCS statistical values are reported for present-day sea level at
return periods (one over annual exceedance probability) ranging from 1 to 10,000 years. The
NACCS probabilistic surge hazard methodology is consistent with the methodology now
adopted by FEMA for establishing Flood Insurance Rate Maps. The NACCS present-day
flood statistics were used to estimate a percentage of each census tract inundated for the
floods with return periods of 1, 2, 5, 10, 20, 50, 100, 200, and 500 years. These percentage
inundation values were linearly interpolated to yield estimates of inundation percentages
for storms with return periods between the nine return periods listed above. This study
assumes flooding scenarios under current sea levels as an initial step in demonstrating how
flood impacts can be incorporated into a baseline ABM calibrated to long-term projections
that do not explicitly consider sea-level rise or other environmental factors. This general
approach could accommodate multiple methods for representing future flood scenarios
under different assumptions about sea-level rise informed by different data sources. Under
different SLR projections, it is expected that the proposed overall approach would not
change but that the increasing intensity of floods may intensify migration flows and patterns
observed here.

While the NACCS hazard statistics are presented in terms of the return period, the
ABM required sequences of flood events through time to simulate the impact that repeated
flood events of differing intensities could have on migration behavior. To address this
requirement, four 50-year flood storylines were generated representing different long-term
scenarios of flood occurrence. To create these storylines, uniform distribution was used to
generate 300 sequences of fifty (the number of years in our simulation) random numbers
between 0 and 1 and inverted them to obtain sequences of flood return periods. For
example, a random number of 0.5 would equate to a two-year flood occurring, whereas
a random number of 0.1 would equate to a 10-year flood occurring. Then, a search was
conducted across this ensemble of statistically feasible 50-year flood sequences to identify
sequences that demonstrated behavior consistent with four conceptual storylines (Figure 6)
that represent feasible long-term sequences of flood events in the region:

Storyline 1: Frequent small floods (with a return period of 2–10 years).
Storyline 2: Frequent small floods and one severe storm (with a return period of 100 years
or more) occurring early in the horizon (within the first 15 years).
Storyline 3: Frequent small floods, one large storm (with a return period of 10–100 years),
and two severe storms (with a return period of 100 years or more) occurring late in the
horizon (within the last 15 years).
Storyline 4: Frequent nuisance flooding, one large storm (with a return period of 10–100 years),
and three severe storms (with a return period of 100 years or more).

Because the time step of the ABM is yearly, these 50-year flood storylines represent
a single instance of flooding per year, and thus cannot account for the effect of multiple
flood events in a year. While this may underestimate the impact of minor flooding with a
return interval of less than one year, as well as the occurrence of multiple large floods in a
single year, these details could be incorporated into more sophisticated flood storylines in
further work.
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2.3.2. Adjustment of Decision Rules

As a simple initial decision rule structure, it was assumed that agents would make
decisions about moving from or staying in a census tract using a weighted average of the
pull–push score (P) from the baseline model and the severity of flooding they experience.
Flooding severity was represented by the percentage of the census tract that is inundated
in a given year (F). While the pull–push score is calculated the same as the way it was in
the baseline model (Equation (1)), flood-influenced push–pull score for census tract i is
updated as Equation (9).

P∗ i = (1−Wi)× Pi + Wi × (1− Fi) (9)

The weight W represents the relative importance of flooding in comparison with
the census tract’s baseline desirability. Different values of W were tested to see how the
migration response would differ from baseline model projections as flood impacts become
an increasing influence on the decision-making process.

P*
i is then used to obtain the mean of satisfaction beta distribution and its shape

parameters. From this distribution, Si is calculated for its residing agents to compare with
the threshold MT as in Equations (2)–(7) but calculated as a function of P*

i.

µi = 0.5 + δ(P∗ i − 0.5) ∀δ ∈ (0, 1); (10)

It should be mentioned that agents’ decisions about migration destinations are made
only based on the pull–push score of destination options. This assumes that agents do not
have a detailed awareness of flood impacts or vulnerability in their destination. However,
this advancement could be incorporated into our general framework in future research.
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2.3.3. Model Simulations and Analysis

Because the model leverages a stochastic approach to modeling agent behavior,
50 simulations were conducted for each weighting scheme, using the mean and stan-
dard deviation of which to characterize average population projections under different
scenarios and variability stemming from stochastic behavior. The performance of the
flood-informed ABM was compared with the baseline model by calculating the deviation
of each stochastic iteration under the weight of W from the average of stochastic iterations
in the baseline scenario. Equation (11) shows baseline population projections against which
the flood-informed models were compared:

Popt,y,0 =
∑N

n=1

(
Popt,y,n,0

)
N

(11)

where N is the number of stochastic iterations, equal to 50. The root mean square of relative
deviations from the baseline was then used to characterize spatial and temporal variations:

RDw,n =

√√√√√∑Y
y=1 ∑T

t=1

(
Popt,y,n,W−Popt,y,0

Popt,y,0

)2

T ×Y
(12)

where RDW,n is the relative deviation from baseline of stochastic iteration n under flood
weight of W, Popt,y,n,W is the population of stochastic iteration n in tract t and year y under
flood weight of W, Y is the number of years simulated (50), and T is the total number of
census tracts (430).

To measure temporal variability across the study area, the relative deviations were
aggregated over all census tracts in each simulated year under each storyline.

ARDw,y =

√√√√√∑T
t=1

(
Popt,y,W−Popt,y,0

Popt,y,0

)2

T
(13)

where ARDW,y is the annual relative deviation for year y under flood weight of W from
baseline averaged across all census tracts. Additionally, a measure was defined for relative
deviation in each census tract in year y. This measure was used to show spatial variation of
deviation in the study area for a specific year (2070) and flood weight.

TRDw,t,y =
Popt,y,W − Popt,y,0

Popt,y,0
(14)

TRDW,t,y is the tract-level relative population deviation for tract t from year 2021
through year y under flood weight of W.

3. Results
3.1. Baseline Model Calibration

The baseline model was calibrated by running 256 simulations in a full factorial ar-
rangement of the four global model parameters (kpull , δ, υ, and MT) to identify parameter
values that best replicated population projections [64,65] and broad-scale movement pat-
terns. The ranges of values tested for each parameter and the final results of calibration are
mentioned in Table 2.
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Table 2. Calibration parameters, ranges, and calibrated values.

Parameter Minimum Value Maximum Value Increment Calibrated Value

kpull 0.0002 0.0008 0.0001 0.0006
δ 0.2 0.8 0.2 0.2
ε 10 16 2 12

MT 0.25 0.40 0.05 0.35

The comparison between the projected and simulated populations resulted in a
minimum relative RMSE of 0.17 in 2070 for the whole study area and an average of
12.6% of agents migrating each year. To ensure that the calibrated ABM was accurately
replicating population trajectories, projected and modeled population trajectories were
compared for counties with high growth (G > 700 persons per year), moderate growth
(0 < G < 700 persons per year) and declining (G < 0 persons per year) populations. This
comparison along with a scatter plot of projected versus modeled population across all
census tracts and years is presented in Figure 7. While the model reliably replicates pop-
ulation trajectories in the counties experiencing rapid growth (blue lines) and moderate
growth (green lines), its performance is poorer in counties experiencing population decline.
This is possibly due to the format of the logistic function and its lower bound being set
to zero for the push–pull score of negative-growth counties; refining this process would
be a valuable area for further research. Despite this limitation, these results indicate that
the bottom-up stochastic decision rules of the ABM can reasonably replicate top-down
projections from [64].
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3.2. Flood-Informed System Behavior

In order to see how flooding impacts the system behavior given the uncertainty about
the relative role of flood impacts in decision making, multiple values of flood weight were
simulated and compared with baseline model projections (W = 0). Figure 8 demonstrates
the difference between model projections under each flood storyline and the baseline
scenario for different values of flood weight. The starting point of all the lines is the same,
which is our baseline scenario where the weight of flooding is equal to zero. As the weight
applied to the census tract-flooded extent in calculating the push–pull score (Equation (10))
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increases, different types of relative divergence from the baseline model emerge from
individual-level decision making. Although it is unlikely that high weights of flooding
represent realistic preferences, the purpose here is to explore how the system responds
under different assumptions about flood importance.
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Figure 8. Relative deviation from baseline scenario under different storylines using different values
for the flood weighting factor. The solid line represents the average deviation across the 50 stochastic
iterations, and the dashed lines represent the range (µ− 2σ, µ + 2σ) of deviation across the stochastic
iterations to capture the effect of randomness on the model output.

The response under different storylines follows a trend similar to deviation under
nuisance flooding of storyline 1, and system behavior shows sensitivity to severe flooding
events with subtle bumps. Two severe flooding events in storyline 4 do not show a
significant synergic effect. This could potentially be due to the fact that highly vulnerable
areas to flooding have already experienced high flows of out-migration when another large
flooding event occurs late in the time horizon. It is possible that considering experience
memory for agents results in more different behavior under different flood sequences,
which needs to be further investigated; however, with the simple assumptions in the
decision rules of this model, the system’s migration response to different flood weighting
schemes is not highly sensitive to the severity of flooding events.

The relative deviation measures formulated in Equations (13) and (14) only represent
the degree to which flood-informed model simulations diverge from the baseline model but
do not reveal the direction of population deviations or the specific years or locations where
these deviations occur. To spatially characterize flood-induced changes in population pro-
jections, Figure 9 presents a tract-level map of relative deviations from baseline to identify
areas more prone to in- and out-migration flows. The maps in Figure 9 demonstrate this spa-
tial variation in 2070 under four flood storylines and two different flood weight values. In
general, spatial patterns of population deviation were consistent across flooding storylines.
The locations that lose population when flood impacts are incorporated, indicated in shades
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of red, mostly include urban areas. However, the locations that gain population include
both urban and rural settings. Comparing migration maps with flood exposure in the study
area also reveals that highly inundated areas do not necessarily lose population. Thus, the
migration flow cannot be fully explained by urban/rural classifications or flooding alone.
In a small number of census tracts, the direction of change relative to baseline projections
changes from positive to negative depending on the flood storyline. This demonstrates the
complexity of climate migration in the face of multiple intervening factors affecting general
migration patterns. The increase in the flooding factor from 0.3 to 0.6 triggers stronger mi-
gration flows and more change in population distribution highlighted as relative deviation
values from baseline in Figure 9, but the general spatial patterns are consistent.
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different storylines with flooding weight values of 0.3 and 0.6.

The time series of relative deviation across the study area, illustrated in Figure 10,
shows a nonlinear increase through time, which is enhanced under a higher weight of
flooding in agent decision making. When the flood weight W equals 0.3, storyline 1
(nuisance flooding with no extreme events) results in a significantly lower deviation from
baseline than the storylines that do entail large flood events. However, at higher values
of W, the deviation through time in the nuisance flooding storyline is more aligned with
the others. In addition, the gradient of change in deviation from baseline in both graphs
shows a decreasing trend through time for all storylines. This is notable because large flood
events included in storylines 2, 3, and 4 do not result in a significant spike in deviation, and
the gradient of change is almost similar over different storylines. This may stem from the
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fact that all storylines include frequent nuisance flooding that occurs in most years and acts
as a chronic, long-term influence on location push–pull scores that outweighs the impact of
infrequent large floods. The decreasing gradient of change could indicate that people have
already moved from areas highly exposed to flooding to safer locations toward the end
of the time horizon. The same time steps ahead do not lead to high out-migration flows
anymore as in the past.
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4. Discussion

This study presents a novel stochastic ABM of long-term changes in local-scale mi-
gration patterns influenced by repeated coastal flooding. The ABM framework can enrich
systems’ understanding and modeling by incorporating bounded rationality, heterogeneity,
interactions, evolutionary learning, and out-of-equilibrium dynamics of human behavior in
a spatially explicit model [35]. Moreover, bottom-up approaches such as ABM can support
a more detailed exploration of micro-level displacement patterns that usually emerge from
differing individual decisions, but are masked through behavior generalization approaches
commonly extracted from large amounts of data in top-bottom data-driven models.

This research demonstrates that bottom-up individual decision rules can replicate
externally derived population projections, providing a baseline for incorporating local-scale
factors such as nuisance and extreme flooding. This provides an alternative to models
calibrated to historic population changes, and allows an understanding of how flooding
could impact future population shifts relative to projections that do not include this hazard.
This approach thus complements top-down data-driven models that have been widely ap-
plied to investigate migration response to climatic events. Top-down approaches primarily
rely on historic patterns for calibration. However, inherent uncertainties, the significant
number of interactive subsystems and feedback loops [74] constrain the reliability of model
projections. This is particularly true in the case of models that incorporate human behav-
ior, as research has shown that structural decisions in terms of how human behavior is
modeled can result in significant uncertainty that greatly exceeds uncertainty stemming
from model parameterization and calibration [75]. Accordingly, variable human decision
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making suggests that good historical performance does not necessarily guarantee future
accuracy [76], especially when migration projection is triggered by climate change over a
long-term time horizon.

In the face of acknowledged uncertainties, it is helpful to be explicit about what
a model (agent-based or otherwise) can and cannot tell us. Aligning with the existing
literature, it is asserted that models of highly complex socio-environmental systems are
unlikely to be useful as consolidative models that can be used in a predictive sense, as
the significant uncertainty and unpredictability in human behavior and its drivers will
undermine the reliability of any prediction derived from them [77].

As an alternative, researchers have proposed adopting an exploratory modeling
approach that interprets models as computational experiments that reveal system-level
outcomes if different assumptions embedded in the model are correct [78]. Adopting
this perspective, validating the model against best available population projections based
on historical data provides a mechanism for assessing whether bottom-up decision rules
can replicate these projections which were derived based on an autoregressive approach.
Once this has been confirmed, this serves as a mechanism for experimentally evaluating
how the introduction of a new factor (flooding) results in outcomes that diverge from
the projections.

The proposed approach also acts as a practical shortcut, circumventing potential
uncertainties and intricacies linked to modeling individual population components such as
fertility and mortality. This approach is especially beneficial given the frequent challenges
associated with obtaining the required data. Another notable aspect of the population
projection dataset [64] specifically used in this study is its capacity to offer projections
under five socio-economic pathways (SSPs), each contributing to significant variations in
geographic growth patterns. Beyond enhancing our comprehension of demographic shifts
in small areas of the United States, utilizing this dataset amplifies the method’s adaptability,
making it applicable to diverse regions with varying data availability. Additionally, it
facilitates the consideration of different SSPs in the planning process, further enriching the
method’s overall flexibility.

The increasing encounters with recurrent flooding and recent major coastal dis-
asters are gradually changing attitudes toward relocation among residents and other
stakeholders [79]. A survey of coastal residents found that 87% would consider relocating
now or in the future due to flooding [80]. Understanding the impact this flood-driven
mobility will have on municipalities and their adaptation capacities requires tools that can
accurately replicate population-level behavior at fine spatial scales. Moreover, adaptive
policy frameworks need to reflect behavioral processes and incentives at the individual,
household, community, and organizational levels [81]. Bottom-up approaches that build
upon the proposed framework can thus serve as a valuable tool for evaluating and compar-
ing diverse coastal adaptation strategies, of course within the constraints of the modeled
representation of coastal community drivers and processes [82]. For instance, by combin-
ing the proposed framework with simulations of coastal adaptation, e.g., [83], ABM can
facilitate more informed policy-making processes in response to coastal flooding.

The spatial representation and diversity in the environmental context in ABMs are
often needed to capture spatial heterogeneity of inputs and outputs. However, existing
research mostly chooses the spatial representation based on the available data, without
systematically justifying their spatial resolution or extent [35]. In this study, a detailed
spatial scale (census tract) was intentionally selected and other data sources were rescaled
to this level to discern potential implications of local-scale relocation. Detailed spatial
representation allows for the incorporation of small-scale variations in flooding and tracking
relocations over short distances, which can be stimulated by different migration purposes
represented by stochastic agent behavior. Although census block level as the unit of analysis
could provide a more spatially detailed representation of relocation behavior in comparison
with census tract, their use over the longer term presents methodological issues: first,
census blocks’ boundaries frequently change after the census is conducted each decade
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based on changes in block population. While this can also occur with census tracts, it
happens much less frequently. For instance, while in the study area comprising 16 counties,
the initial number of census tracts was 430 according to census 2010; this count increased
to 481 in census 2020 due to boundary adjustments. Second, the proposed model was
constructed as a framework adaptable for the inclusion of social and economic attributes,
most of which are accessible at the census tract level. The census tract level was chosen due
to data availability constraints, as several of these variables are not readily accessible at the
census block level. Given these challenges, the loss in granularity from using the census
tract level does not detract from the objectives of this study, which aims to conceptualize a
bottom-up model that integrates population movement at the municipal level in response
to flood events. Thus, instead of a high-resolution track of each household’s movement,
insights into potential changes in population distribution were gained. This information
can be beneficial for the future use of policymakers in flood-prone municipalities, while
keeping the required computational effort to apply this framework at a feasible level. Note
that the use of census tract spatial scale in previous research on population and policy with
ABM [84,85] increases the meaningfulness of this choice of spatial unit for the purpose of
informing policy decisions at the municipality scale. Nevertheless, the incorporation of
finer-scale spatial processes and data is a potentially valuable area of future research.

This stochastic ABM framework is presented as a first step in modeling individual
migration decisions at local scales. As such, a simple representation of human behavior
was adopted that could accommodate a more sophisticated representation of migration
decision making in many ways. The current framework assumes that migration patterns in
the study area follow the estimations provided by HJCHS as well as our suggested heuristic
decision rules. Nonetheless, it is worth acknowledging that ABM frequently involves
simplifications and assumptions about intricate social and ecological processes, potentially
leading to an oversimplification of real-world dynamics and constraining the model’s
precision [86]. The structural model choices made regarding the representation of human
behavior significantly impact the credibility and validity of modeling insights. Therefore,
evaluating the implications of these choices should be regarded as a crucial aspect of future
modeling efforts [75]. Primary data collection such as surveys can further complement the
ABM model by incorporating additional variables and yielding more robust results [87].
Individual-level details of ABM in the context of climate-related migration decisions could
be further advanced by incorporating behavioral psychology and decision theories in the
computational modeling of climate migration phenomena. This approach also provides a
ground to explore relocation complexities and categories of communities’ response and
comparison of the results with previously suggested theoretical classifications such as
forced migrants, trapped population, and adaptive migrants [88].

The general framework presented here could also provide a foundation for the testing
of different theoretical assumptions in a spatially explicit data-informed manner. For
instance, how will migration response vary under sudden and unexpected hazards versus
repeated nuisance events, and how does learning from experience and exposure to flood
hazards at the individual level influence migration decisions? The proposed approach
could also accommodate a more detailed and comprehensive representation of physical
hazards. For example, our approach could incorporate an explicit representation of sea-level
rise to simulate migration response under different SLR projections, where greater flood
intensities could exacerbate the migration flows. Another way to consider a more precise
representation of the physical system is to capture heterogeneity in land use within a given
census tract. Assuming that high levels of inundation result in a high impact of flooding
on residents could result in overestimating the flood impact in areas with low population
density but high percent inundated area. An alternative to solve this issue can be updating
the model using downscaled population projections, e.g., [89,90] in rural areas to overcome
this overestimation. Finally, the proposed ABM approach rests on the assumption that the
projections used for the baseline model are a reasonable representation of feasible future
conditions. As such, the model can be tested against multiple population projections to



Water 2024, 16, 263 21 of 25

account for uncertainty. There is a notable capacity in social system representation as well,
which has not yet been of much consideration in population–environment assessments [88].

Ultimately, the modeling framework presented here could help advance the incorpora-
tion of coupled social, organizational, biophysical, and hazard systems in stochastic models
that include location-specific interactions and feedback loops. Our current study focused
on establishing a simple bottom-up framework with a forward-looking calibration step
that can serve as a flexible foundation for future research that incorporates additional com-
plexity, such as incorporating interactions among individuals. This enhances the model’s
ability to capture the complex interplay between individuals and their environment. In
the context of flood-induced migration, the role of social networks, community norms,
information sharing, and collective decision making in shaping migration decisions can
lead to cascading effects throughout the community. The role of considering interactions
extends beyond the social system and also encompasses the interactions between the social
and physical hazard systems. For example, one of the main reasons for land subsidence
in coastal Virginia and Maryland is groundwater withdrawal. Localities can affect the
extent of groundwater extraction, and accordingly, sea-level rise and migration, showing
a bidirectional relationship in this area. An additional level of complexity emerges from
the intricate interactions and feedback loops between the social system and infrastructure
and governance factors. An example is between migration, tax revenues and the protection
services provided by municipalities. The modeling approach presented here could serve as
a means for incorporating more biophysical, political, and organizational components to
yield more comprehensive results.

5. Conclusions

This study presents a stochastic ABM of flood-induced migration flows to simulate
the role of individual decisions in relocation outcomes at municipal scales important for
coastal adaptation. This approach aims to replicate the behavior of data-driven population
projections with stochastic decision-making processes to simulate the impacts of repetitive
flooding on a well-validated baseline projection. The proposed method integrates physical
flood exposure data with a bottom-up simulated social system and provides detailed
population projections in response to repeated flooding for 16 counties in coastal Virginia
and Maryland, including both urban and rural settings. The results confirm the ability of
ABM to match data-driven approaches even using simple heuristic decision rules. While
simple heuristic rules were adopted in this study, the general framework can serve as a
foundation for the incorporation of more complex representations of behavior, policy, and
physical risk to investigate complex drivers of migration in the context of climate risks. This
stochastic agent-based modeling approach can be applied at municipal scales to integrate
a wide range of information, observations, and theories into projections that can inform
municipal adaptation decision making in the future due to recurrent and extreme flooding.
This study suggests multiple directions for future research. These include the implication
of modeling choices for the emergent migration patterns, as well as migration response
under different theoretical assumptions in different model components. For example, an
assessment of the physical hazard system could evaluate the impact of different types of
flood scenarios, such as infrequent extremes versus nuisance events and different SLR
projections. An evaluation of the social system could include incorporating behavioral
psychology, decision theories, individuals’ interactions, and social networks. The impact
of human–environment interdependencies would benefit from considering alternative
adaptation measures, incorporating primary data, exploring different community-level
response categories, and the effect of learning from past experiences being exposed to
flooding. Finally, coupling the proposed framework with organizational and biophysical
systems could advance methods for systems integration within ABMs.
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