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Abstract: In response to the rapid changes in the chlorophyll-a concentration and eutrophication
issues in lakes, with Dianchi Lake as an example, a remote sensing estimation model for chlorophyll-a,
total phosphorus, and total nitrogen in Dianchi Lake was constructed using the three band method
and ratio band method based on the visible-light shortwave infrared (AHSI) hyperspectral satellite
data from Gaofen 5 (GF-5) and the water quality data collected at Dianchi Lake. The model results
were compared with the multispectral data from the Gaofen 1 (GF-1) wide field-of-view (WFV) camera.
The accuracy evaluation results indicate that the overall mean absolute percentage error of the remote
sensing estimation models for chlorophyll a, total phosphorus, and total nitrogen are 7.658%, 4.511%,
and 4.577%, respectively, which can meet the needs of lake water quality monitoring and evaluation.
According to the remote sensing simulation results, chlorophyll a is mainly distributed in the northern
part of Dianchi Lake, with phosphorus and nitrogen pollution throughout Dianchi Lake and relatively
more abundant in the central and southern regions. The pollution is mainly concentrated in the
northern and southern regions of Dianchi Lake, which is consistent with the actual situation. Further
confirming the feasibility of using GF-5 satellite AHSI data for water quality parameter retrieval can
provide new technical means for relevant departments to quickly and efficiently monitor the inland
lake water environment.
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1. Introduction

Water is an important resource for human survival and development; it plays a fun-
damental and strategic role in the sustainable development of human society and the
ecological environment [1]. With the increase in population, the expansion and develop-
ment of cities have exacerbated the pollution of water bodies. Inland lake water pollution
is characterized by the eutrophication of water bodies, and the main pollution indicators
are chlorophyll a, total phosphorus, and total nitrogen [2]. The retrieval of water quality
parameters in lake water bodies is an important factor for monitoring and assessing lake
water pollution. Dianchi is one of the six major freshwater lakes in China, and pollution
there has always been of great concern; therefore, it is crucial to monitor the water quality
of the Dianchi Basin by inverting the water quality parameters to quickly obtain the water
quality status of Dianchi and achieve targeted prevention and control.

There are two main methods for water quality monitoring: traditional water quality
monitoring [3] and remote sensing monitoring [4]. Compared with traditional water quality
monitoring methods, remote sensing monitoring methods have the advantages of a large
range and high efficiency, and information can be obtained in real time. Multisource
remote sensing data, such as the MODIS [5], TM [6], ETM+ [7], Qui Bird [8], OLI [9],
SeaWiFS [10], and MERIS [11] products, have been used in the monitoring of lake water
quality. For example, Liu et al. [12] used Landsat data to model and invert the water
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quality parameters of Erlong Lake and explored the seasonal changes in different water
quality indicators, and Zhu et al. [13] inverted the water quality parameters of a complex
river network based on multispectral data. Most researchers have used multispectral
data to monitor water quality in lakes and achieved reasonable results. However, the
disadvantage of multispectral data is that tens to hundreds of nanometers in a single
band, with gaps between different bands [14], and the continuous reflectance of water
features cannot be reconstructed in detail. Compared to multispectral remote sensing
data, hyperspectral remote sensing data span across more spectral bands and provide a
greater amount of information [15]. In hyperspectral remote sensing, spectral data are
usually highly correlated with each other in terms of high-dimensional and fine spectral
bands. These spectral features support the identification of elements or the measurement
of concentrations. Therefore, hyperspectral remote sensing technology is more suitable for
complex inland water bodies with variable optical properties, where the substances in the
water determine the spectral properties of the water body [16]. In recent years, there have
been numerous studies using hyperspectral data to invert water quality and monitor inland
water bodies. Zang Chuankai et al. [17] used a UAV-mounted hyperspectral sensor to
monitor color change and identify suspected polluted inland water bodies on Chongming
Island. Liu Han et al. [18] used a UAV-mounted hyperspectral imager with route and
waypoint flight modes for hyperspectral data cube acquisition and to monitor water quality.
Additionally, a ground-based remote sensor involving a camera placed on the ground
and a hyperspectral sensor to shoot and collect image information for a water body is
used for long-term monitoring [19,20], but both UAV remote sensing and ground-based
remote sensing have a limited monitoring range, are affected by the weather, and yield
unstable monitoring results. In addition, satellite-carried hyperspectral remote sensing
devices are used; they provide high spatial resolution image data over wide ranges, and
this type of acquisition saves time and effort [21]. Satellite-carried hyperspectral devices
are characterized by stable operation, a regular repeat period, low image distortion and
atmospheric effects, and rapid and efficient data collection. Compared with remote sensing
platforms on unmanned aerial vehicles and on the ground, satellite-carried remote sensing
platforms have certain advantages.

Gaofen-5 (GF-5) is the first full-spectrum hyperspectral satellite that was indepen-
dently developed by China to observe the atmosphere and land, and its visible shortwave
infrared hyperspectral camera, the advanced hyperspectral imager (AHSI), which has a
high spectral resolution, many spectral bands, and high precision and can collect a large
amount of information, can fully capture the detailed spectral characteristics of target
features; thus, the resulting data are helpful for identifying minor changes in the water
quality parameters of inland water bodies and have excellent potential for use in remote
sensing studies of inland water bodies [22]. Some scholars in China have used GF-5 satellite
hyperspectral data to monitor the chlorophyll a concentration in inland water bodies and
lakes, constructing high-precision retrieval models and improving the modeling accuracy
compared to that of models based on other types of traditional data [23–25]. However,
the use of GF-5 hyperspectral data for monitoring the water quality of Dianchi, a plateau
lake, has not been reported. In this study, the inverse modeling of chlorophyll a, total
phosphorus, and total nitrogen was performed based on AHSI data from the GF-5 satellite,
and a band combination method was used to analyze the overall water quality conditions
of Dianchi. This approach provides technical support for the monitoring of the Dianchi
water environment.

2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area

Dianchi (Figure 1) is the largest freshwater lake in Yunnan Province and deemed
the ‘Pearl of the Plateau’. The lake surface elevation is 1887.4 m, the watershed area is
approximately 2920 km2, the lake surface area is approximately 330 km2, the average water
depth is 5 m, and the deepest depth is 11 m. The lake surface is 40 km long in the north–
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south direction (including Caohai) and 7 km wide on average in the east–west direction.
The watershed is located in a subtropical monsoon humid climate zone; the average annual
temperature is less than 15 ◦C, seasonal variations in precipitation are prominent, and the
average annual precipitation is 935 mm [26]. The lake is located downstream of the city of
Kunming and is the lowest concave area in the Kunming Basin. In terms of topography
and terrain, the overall sewage and industrial wastewater discharges from Kunming city
converge and enter Dianchi Lake. Moreover, the expansion of the city’s land area with the
development of the economy has exacerbated the pollution of the lake. According to the
GB3838-2002 [27] “Surface Water Environmental Quality Standards”, Dianchi Lake was
once classified as below Grade V in water quality. However, after more than 20 years of
remediation efforts, since 2018, the water quality of Dianchi Lake has consistently been
maintained at Grade IV.
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2.2. Remote Sensing Data and Preprocessing

The remote sensing data selected for this study are from the GF-5 AHSI (advanced
hyperspectral imager) image dataset from 10 December 2018, spanning Kunming. The
AHSI onboard the GF-5 satellite has a spectral range of 0.4 µm to 2.5 µm, an amplitude of
60 km, a spatial resolution of 30 m, a spectral resolution of 5 nm in the visible wavelength
band, and a spectral resolution of 10 nm in the shortwave infrared band. Compared to
other sensors, such as Landsat 8 [28], Sentinel 2 [29], and HJ-1 [30], the AHSI hyperspectral
sensor is able to provide more effective spectral information.

However, remote sensing images are subject to image distortion during atmospheric
radiative transfer due to the effects of the sun’s position, atmospheric conditions, and the
sensor’s performance limitations. Therefore, image preprocessing is necessary to remove
and correct these effects. The preprocessing of GF-5 AHSI data mainly includes radiometric
calibration, atmospheric correction, orthometric correction, and semiartificial Dianchi water
body extraction. The radiometric calibration subtool in the radiometric correction toolbar
of ENVI5.3 software was used to perform radiometric calibration of the GF-5 satellite image
data, and then, the FLAASH tool was used to perform atmospheric correction. Figure 2
shows the image comparison before and after atmospheric correction. Finally, based on the
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Dianchi regional range vector data, the Dianchi waters were extracted, and the number of
effective spectral bands was 298.
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To further test the accuracy of the proposed model, GF-1 satellite WFV multispectral
data for the same period on 10 December 2018 were used in this study, together with GF-5
satellite data, to invert the water quality parameters of Dianchi Lake.

2.3. Measured Water Quality Data

The measured water quality data were provided by the Yunnan Provincial Depart-
ment of Ecology and the Environment and synchronized with the transit time of the GF-5
satellite; these data included the values of three water quality parameters: chlorophyll a,
total phosphorus, and total nitrogen. There are nine water quality parameter monitoring
stations in the Dianchi Lake area (as shown in Figure 1), generally covering the full lake area.
The testing of water quality parameters followed three standards, HJ897-2017 [31] “Deter-
mination of Chlorophyll a with Spectrophotometry”, GB11893-89 [32] “Determination of
Total Phosphorus with Ammonium Molybdate Spectrophotometry”, and HJ636-2012 [33]
“Determination of Total Nitrogen with Alkaline Potassium Persulfate Elimination and
Ultraviolet Spectrophotometry”, to ensure the accuracy and reliability of parameter mea-
surements. Measurements were made at 1 h intervals for chlorophyll a and at 4 h intervals
for total phosphorus and total nitrogen. The measured concentrations of the water quality
parameters used in this study were averaged across the daily measurements, with a total of
56 measurements for each water quality parameter.

3. Research Method
3.1. Water Quality Retrieval Methods

The retrieval accuracy of water quality parameters using data from a single band is
relatively low and therefore not applicable to lake water quality monitoring [34,35]. Fur-
thermore, retrieval models constructed on the basis of chemometric analysis methods, such
as support vector machines, partial least squares, or artificial neural networks, although rel-
atively accurate, usually involve increasingly complex bands and longer retrieval times and
are therefore not suitable for rapid monitoring aimed at efficiency. Currently, water quality
retrieval models are generally constructed based on conventional algebraic models, which
can effectively express the spectral characteristics of water quality parameters through the
combination of multiband data. With effective algorithms (e.g., the phase difference factor
and phase division factor algorithms), the spectral features of water quality parameters can
be fully considered [36].

Based on the measured distributions of chlorophyll a, total phosphorus, and total
nitrogen concentrations, a one-dimensional linear model was chosen as the basic algebraic



Water 2024, 16, 225 5 of 16

model (Equation (1)) for the retrieval of different water quality parameters X (where X
denotes different band combinations).

Y = AX + B (1)

where A and B are the coefficients to be determined, X is the independent variable, which
is a combination of multiple band forms, and Y is the measured value of each water quality
parameter. Iterative and exhaustive methods are applied to determine X and the best
combination of bands.

3.1.1. Three-Band Model

For the retrieval of chlorophyll a, Gitelson et al. [37] proposed a three-band model
which eliminates some of the effects due to other optical parameters to a certain extent and
is accurate for the retrieval of chlorophyll a. The combination of the three bands is used as
the independent variable X (Equation (2)).

X =

(
1

R1
− 1

R2

)
∗ R3 (2)

Gurlin et al. [38] observed that a combined model with maximal sensitivity to the
chlorophyll a concentration and minimum sensitivity to the concentrations of other compo-
nents in the water body is ideal for inverting chlorophyll a concentrations from remotely
sensed data. Anatoly et al. [37] applied a three-band modeling method to assess the
chlorophyll a content in high-level plants and found that Rrs(λ)−1 at a wavelength of
approximately 700 nm can be used as a measure of chlorophyll a. The three-band model
has been utilized by numerous domestic and international researchers [39,40] to conduct
retrievals for different lakes with different water quality levels, with the model generally
displaying reasonable applicability.

The three-band formula is as follows:

Chla ∝
[

R−1
rs (λ1)− R−1

rs (λ2)
]
∗ Rrs(λ3) (3)

where Rrs(λn) indicates the value of water surface reflectance in the nth wavelength band.
The concentration of chlorophyll a is related to the λ1, λ2, and λ3 wavelength bands to some
extent: The spectral reflectance curve (Figure 2) displays a trough from 660~690 nm, which
is influenced by the maximum absorption of chlorophyll a in this wavelength interval;
additionally, λ1 corresponds to the maximum sensitive wavelength band of chlorophyll
a. Therefore, the value interval of λ1 is in the range of 660~690 nm. Gitelson et al. [37]
suggested that the λ2 range should satisfy the following conditions: (1) for the absorption
coefficient of chlorophyll a, αChla(λ2) ≪ αChla(λ1), (2) for the absorption coefficient of other
impurities contained in water, such as total suspended matter, αTSM(λ2) ≈ αTSM(λ1), and
for the absorption coefficient of yellow matter, αCDOM(λ2) ≈ αCDOM(λ1), so as to avoid
the influence of other impurities on the chlorophyll a retrieval results; so, the value range of
λ2 is set at 690 nm~730 nm. The main objective of introducing λ3 is to eliminate the effects
of the light field of the water body and the total backscattering coefficient. The band nearest
λ3 is the reflection band dominated by pure water, for which the absorption coefficients
of chlorophyll a, yellow matter, and total suspended matter concentration are close to 0;
therefore, the absorption coefficient α(λ3) ≈ αw(λ3), which can be regarded as a constant,
and the value of λ3 should be greater than 730 nm.

3.1.2. Ratio Model

Many academics have applied the ratio band method as a reasonably straightforward
retrieval model for their retrieval analyses of water quality metrics. For instance, Huang Yu
et al. [36] inversely determined the total phosphorus and total nitrogen values using the nor-
malized difference index method, the ratio band method, and the difference index method.
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They discovered that the ratio band approach was most accurate. In their investigation of
the retrieval of total nitrogen and phosphorus concentrations in Baiyangdian Lake using
hyperspectral data, Chen Jie [41] and colleagues also discovered that a retrieval model
based on the ratio band model yielded high accuracy. According to prior research [42,43],
the ratio approach can produce reliable findings when inverting total phosphorus and
total nitrogen data, even if only two bands are considered. This is because the ratio band
method eliminates the general deviation between the absolute values of reflectance caused
by errors in the measurement process and gives a good indication of the sensitivity of
total phosphorus and total nitrogen to each selected characteristic. Hence, in this study,
the combination of the ratio of the two bands is chosen as the independent variable X
(Equation (4)) used in the inverse modeling of total phosphorus and total nitrogen.

X =
R1

R2
(4)

3.2. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is the linear correlation between two variables X and
Y in response and falls in the range of [−1, 1]. The Pearson’s correlation coefficient between
two variables mainly depends on the quotient of the covariance and standard deviation
between the two variables (Equation (5)) and is usually denoted by R.

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(5)

In this paper, the combined reflectance values in different bands are correlated with the
measured values of water quality parameters, and a high Pearson’s correlation coefficient
indicates that the corresponding combination of the bands is suitable for the construction
of the model.

3.3. Precision Evaluation Criteria

The accuracy evaluation of the water quality parameter retrieval model mainly in-
cludes the coefficient of determination R2, the root mean square error RMSE, and the mean
absolute percentage error MAPE. The size of the coefficient of determination indicates the
closeness of the correlation, the root mean square error indicates the degree of dispersion
of the samples (Equation (6)), and the mean absolute percentage error identifies the relative
magnitude of the deviation of the estimated water quality parameter from the measured
value. (Equation (7)). Notably, EV denotes the estimated value of water quality parameters,
and MV denotes the measured value of water quality parameters. The larger R2 is, the
smaller the RMSE is, and the smaller the MAPE is, the higher the accuracy of the model.

RMSE =

√
∑n

i=1(EV − MV)2

n
(6)

MAPE =
1
n

n

∑
i=1

|EVi − MVi|
MVi

∗ 100% (7)

4. Model Construction and Retrieval
4.1. Spectral Characteristics of Dianchi Water

Figure 3 displays the spectral reflectance curves of water bodies at nine stations in
Dianchi Lake based on GF-5 satellite images. Notably, the reflectance of the Dianchi water
body displays the following spectral characteristics: In the range of 400~580 nm, the
reflectance shows an increasing trend, and a reflection peak is formed at approximately
580 nm. This peak is formed due to the weak absorption of chlorophyll and carotene as
well as the scattering effects of common algae, phytoplankton, and suspended matter in
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the water. Between 590 nm and 690 nm, the reflectance of Dianchi Lake displays a general
decreasing trend, and a reflection valley is located between 670 nm and 690 nm. This valley
is caused by the strong absorption of chlorophyll a in the water body. A rapidly rising steep
peak is present between 690 nm and 720 nm, and it is an important basis for determining
the presence or absence of chlorophyll in the water body due to the fluorescence effect of
phytoplankton pigments; specifically, the sum of the absorption coefficients of water and
chlorophyll a reaches a minimum in this wavelength interval. Currently, hyperspectral
sensors are unable to differentiate variables such as nitrogen and phosphorus that lack
distinct optical characteristics. Therefore, an approximate spectral band for the retrieval of
nitrogen and phosphorus is obtained by relying on their relationships with nutrients and
their effects on the turbidity and color of the water. The reflectance curve graphs for two
sites, namely, Broken Bridge and Caohai Center, are similar to those at other sites, but their
specific reflectance values are comparatively lower, indicating that the reflectance at these
two sites is low.
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4.2. Water Quality Parameters and Single-Band Reflectance Correlation Analysis

The measured concentrations of water quality parameters (chlorophyll a, total phos-
phorus, and total nitrogen) in Dianchi Lake were correlated with the corresponding single-
band spectral reflectance values, and the correlation coefficients obtained are shown in
Figure 4.
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As shown in Figure 4, chlorophyll a is positively correlated with spectral reflectance at
all wavelengths between 390 nm and 1000 nm, and the correlation coefficient is generally
highest between 690 nm and 970 nm. Total phosphorus is basically positively correlated
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with spectral reflectance at all wavelengths and is only negatively correlated near the
wavelength of 570 nm, with the highest correlation coefficient centered between 690 nm
and 970 nm. For total nitrogen, the concentration is positively correlated with spectral
reflectance between 480 nm and 880 nm, partially negatively correlated between 380 nm
and 480 nm, as well as between 880 nm and 1000 nm, and highly correlated between 510 nm
and 580 nm.

4.3. Chlorophyll a Model Construction

The range of values for the three bands can be found based on the spectral properties
of water bodies; an iterative method is used to screen the best combination of bands.
Specifically, SPSS20.0 software correlation analysis is used, and the Pearson’s correlation
coefficient is applied as the basis for screening. The final determination of the three bands
is as follows: λ1 = 668.44 nm, λ2 = 723.98 nm, and λ3 = 771.04 nm. These three bands are
used to construct the chlorophyll retrieval model as follows:

Chla = 28.017 ∗
[

R−1
rs (λ668.44nm)− R−1

rs (λ723.98nm)
]
∗ Rrs(λ771.04nm)− 5.352 (8)

The correlation coefficient between the data from this combination of bands and the
measured values of chlorophyll a is 0.923, and a linear model is constructed as follows:

y = 28.017x − 5.352 (9)

where y denotes the concentration of chlorophyll a and x denotes the combination of
the three bands:

[
R−1

rs (λ668.44nm)− R−1
rs (λ723.98nm)

]
∗ Rrs(λ771.04nm). The model yields a

coefficient of determination R2 = 0.852 and root mean square error RMSE = 0.460 mg/L.
To test the accuracy of the model constructed based on the GF-5 AHSI hyperspectral

satellite data, a chlorophyll a retrieval model is created using the same methodology as
that for the original model based on the GF-1 data, and the two models are compared
and analyzed. An exhaustive method is used to select three of the four bands of GF-1 to
construct the chlorophyll a retrieval model. Through correlation analysis using SPSS 20.0
software, the three band combinations with the highest Pearson’s correlation coefficients
are found to be λ1 = 800 nm, λ2 = 560 nm, and λ3 = 665 nm. Based on these three bands,
the following chlorophyll a retrieval model is constructed:

Chla = 17.415 ∗
[

R−1
rs (λ800nm)− R−1

rs (λ560nm)
]
∗ Rrs(λ665nm) + 7.938 (10)

The correlation coefficient between the data from this combination of bands and the
measured values of chlorophyll a is 0.793, and a linear model is constructed as follows:

y = 17.415x + 7.938 (11)

where y denotes the concentration of chlorophyll a and x denotes the combination of the
three bands:

[
R−1

rs (λ800nm)− R−1
rs (λ560nm)

]
∗ Rrs(λ665nm). The model yields a coefficient

of determination R2 = 0.629 and root mean square error RMSE = 2.165 mg/L.
Based on a comparative analysis of Figures 5 and 6, the scatter points in Figure 5

are more clustered and those in Figure 6 are relatively dispersed. Referring to the data in
Table 1, for the same model, the R2 and RMSE values of the chlorophyll a retrieval model
constructed based on the GF-1 satellite data are lower than those of the model constructed
using the GF-5 AHSI data.
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Table 1. Comparison of chlorophyll-a models of GF-5 and GF-1.

Sensors Models Correlation
Coefficient

Coefficient of
Determination R2 RMSE

GF-5 AHSI y = 28.017x − 5.353 0.923 0.852 0.460
GF-1 WFV y = 17.415x + 7.938 0.793 0.629 2.165

4.4. Total Phosphorus and Total Nitrogen Model Construction

We performed correlation analysis between the ratio of water reflectance within the
wavelength range of 390~1000 nm and the concentrations of total phosphorus and total
nitrogen. The correlation coefficients are shown in Figure 7.
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The model was constructed according to the two bands that have the highest corre-
lation coefficient between the concentration and ratio of bands for both total phosphorus
and total nitrogen; therefore, the retrieval models of total phosphorus and total nitrogen
for Dianchi Lake were constructed by selecting the combination of the B55 and B65 bands
and the combination of the B119 and B130 bands for the AHSI data from the GF-5 satellite,
respectively (as shown in Figure 8).
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The one-dimensional linear method was used to fit the total phosphorus and total
nitrogen concentrations to the ratio band model. The obtained linear models provide a
certain degree of universality, and the results of the fit are relatively intuitive. As shown in
Table 2, R2 = 0.567 and RMSE = 0.008 mg/L for the total phosphorus model, and R2 = 0.765
and RMSE = 0.143 mg/L for the total nitrogen model.

Table 2. Modeling wavelengths and correlation coefficients for total phosphorus and total nitrogen.

Water Quality
Parameter

Molecular
Wavelength

(nm)

Denominator
Wavelength

(nm)
Model Correlation

Coefficient

TP 621.5 664.1 y = −0.454x + 0.624 0.752
TN 895.1 942.2 y = 4.547x − 2.676 0.875

Similarly, the GF-1 satellite data were used to construct a retrieval model of total
phosphorus and total nitrogen based on the ratio band method, the ratio of reflectance in all
bands was enumerated using the exhaustive enumeration method, and the maximum value
of correlation coefficients between the reflectance ratios and the measured concentrations
of total phosphorus and total nitrogen was screened out. The correlation coefficient of total
phosphorus was 0.727 and that of total nitrogen was 0.686. Thus, the ratio of reflectance
was selected as an independent variable for the construction of the retrieval models. The
retrieval models were constructed as one-dimensional linear models. Figure 9 shows the
retrieval models of total phosphorus and total nitrogen constructed from the GF-1 data.
The distribution of scatter points is relatively discrete in both cases, the fitting effect is not
ideal, and the R2 values of the models are relatively low.
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The total nitrogen and total phosphorus models constructed from GF-1 satellite data
were as follows (Equations (12) and (13)), with R2 = 0.471 and RMSE = 0.465 for the total
nitrogen model and R2 = 0.531 and RMSE = 0.012 mg/L for the total phosphorus model.

The statistical results (Tables 3 and 4) indicate that the R2 and RMSE values of the
total nitrogen and total phosphorus models constructed from GF-1 satellite data are lower
than the corresponding values for the total nitrogen and total phosphorus models con-
structed from GF-5 satellite data, which indicates that the models constructed from GF-5
hyperspectral data are more effective.

y = 3.761x − 1.719 (12)

y = 0.116x − 0.032 (13)

Table 3. Comparison of the GF-5 and GF-1 total nitrogen models.

Sensor Model Correlation
Coefficient

Coefficient of
Determination R2 RMSE

GF-5 AHSI y = 4.547x − 2.676 0.875 0.765 0.143
GF-1 WFV y = 3.761x − 1.719 0.686 0.471 0.465

Table 4. Comparison of GF-5 and GF-1 total phosphorus models.

Sensor Model Correlation
Coefficient

Coefficient of
Determination R2 RMSE

GF-5 AHSI y = −0.454x + 0.624 0.752 0.567 0.008
GF-1 WFV y = 0.116x − 0.032 0.727 0.531 0.012

4.5. Accuracy Assessment

In this study, data were collected at 56 water sampling points, and these data were
divided in a ratio of 4:1; notably, 42 were used for model building and 14 were used
for model validation. After an accuracy assessment, we found that all accuracy indexes
(including R2, RMSE, and MAPE) for the chlorophyll a retrieval model constructed based
on GF-5 satellite data were better than those for the model constructed based on GF-1
satellite data (Table 5). For total phosphorus and total nitrogen, the models based on GF-5
satellite data also performed better than the models constructed based on GF-1 satellite
data in terms of the various accuracy indexes (Tables 6 and 7). In conclusion, for the same
modeling method, the overall accuracy of GF-5 satellite data is better than that of GF-1
satellite data, confirming the unique advantages of AHSI data.
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Table 5. Statistical comparison of the accuracy assessment results of the two chlorophyll a models.

Sensors Formulas Test Models Test R2 Test RMSE MAPE (%)

GF-5 AHSI
(

B−1
66 − B−1

79

)
∗ B90 y = 28.558x − 5.363 0.943 0.291 7.658

GF-1 WFV
(

B−1
3 − B−1

1

)
∗ B2 y = 14.007x + 7.0036 0.654 1.715 46.776

Table 6. Statistical comparison of the accuracy assessment results of the two total phosphorus models.

Sensors Formulas Test Models Test R2 Test RMSE MAPE (%)

GF-5 AHSI B55/B65 y = 0.646x − 0.473 0.841 0.005 4.511
GF-1 WFV B3/B1 y = 0.111x − 0.026 0.562 0.011 8.123

Table 7. Statistical comparison of the accuracy assessment results of the two total nitrogen models.

Sensors Formulas Test Models Test R2 Test RMSE MAPE (%)

GF-5 AHSI B119/B130 y = 0.65x + 0.182 0.884 0.203 4.577
GF-1 WFV B1/B4 y = 3.475x − 1.484 0.463 0.454 24.720

As listed in Tables 5–7, the R2 values of the test models for chlorophyll a, total phos-
phorus, and total nitrogen constructed from GF-5 satellite data are 0.943, 0.841, and 0.884,
respectively, and the RMSEs are 0.291 mg/L, 0.005 mg/L, and 0.203 mg/L, respectively.
Furthermore, the MAPE values are 7.658%, 4.511%, and 4.577%, respectively, and the three
types of accuracy assessment parameters all indicate better performance than do those of
the models based on GF-1 multispectral data. Based on the above analysis, the models
constructed by GF-5 data yield high precision and accurate results, and they meet the water
quality monitoring needs for Dianchi Lake.

4.6. Retrieval Analysis of Water Quality Parameters

Based on the models of chlorophyll a, total phosphorus, and total nitrogen constructed
based on GF-5 satellite data, a retrieval analysis of these three water quality parameters
in Dianchi waters was performed. From the retrieval results (Figure 10), the spatial dis-
tribution characteristics of chlorophyll a, total phosphorus, and total nitrogen in Dianchi
Lake can be clearly seen. As shown in Figure 10, chlorophyll a is mainly distributed in the
northern region of Dianchi, where the concentration of chlorophyll a is high. This may be
related to the sewage discharge in the region, which has caused relatively serious pollution.
Total phosphorus and total nitrogen are distributed throughout Dianchi Lake, and the
concentrations of these factors are highest in the central and southern parts of the lake,
which is in line with the actual situation.

There are many reasons for the pollution of Dianchi Lake. Firstly, this relates to Dianchi
Lake’s location downstream of the city, with its eastern and northern shores adjacent to the
Guandu Economic Development Zone, from which the discharge of a substantial amount
of urban domestic sewage enters into Dianchi Lake, coupled with the primarily agricultural
land use along its southern shore, where agricultural fertilizer runoff and wastewater
emitted by factories built around the lake contribute significantly to its pollution. Second,
Dianchi is in a phosphorus mining area, and the loss of surface phosphorus during the
rainy season, with surface runoff into Dianchi, increases the phosphorus content of the
lake. In addition, Kunming is located in a subtropical monsoon climate, with little variation
in temperature throughout the year, a large amount of rainfall, and sufficient sunshine;
therefore, the conditions are ideal for the growth of algae, leading to rapid reproduction
and consequently, a high chlorophyll a content. In summary, the pollution of Dianchi Lake
is related not only to anthropogenic factors but also to the local climate and geological
environment. By inverting the water quality parameters, we can comprehensively grasp
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the pollution situation in Dianchi Lake. This approach provides the necessary technical
support for governmental departments to implement preventive and control measures.
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5. Conclusions and Discussion
5.1. Conclusion

The hyperspectral image data for Dianchi Lake acquired by the AHSI visible shortwave
infrared hyperspectral camera onboard the GF-5 satellite and the data collected at 56 water
quality sites at Dianchi Lake were used to jointly construct models of chlorophyll a, total
phosphorus, and total nitrogen, and comparisons of the models established based on WFV
sensor data from GF-1 and AHSI sensor data from GF-5 were performed. Additionally,
comprehensive analyses of model parameters and accuracy assessments were conducted.
The following conclusions were obtained:

1. The chlorophyll a retrieval model was constructed using the AHSI GF-5 data, with
R2 = 0.852 and RMSE = 0.460 mg/L initially. An accuracy test of the model yielded
R2 = 0.943, RMSE = 0.291 mg/L, and MAPE = 7.658%. Overall, the accuracy of this
model was higher than that of the model constructed with the WFV GF-1 data, which
is consistent with the results of many scholars globally. Therefore, the proposed model
can be used for chlorophyll a retrieval in the Dianchi Lake region.

2. Under the GF-5 satellite data, the inverse models of total phosphorus and total
nitrogen were constructed by using the ratio band method; the R2 values were 0.567
and 0.765, respectively, and the RMSEs were 0.008 mg/L and 0.143 mg/L, respectively.
In a precision evaluation, the R2 values of the two test models reached more than 0.8,
and the MAPEs were 4.511% and 4.577%, respectively, indicating small errors. Thus,
the ratio band model can be used to estimate total phosphorus and total nitrogen
levels in Dianchi Lake.

3. From the point of view of the spatial distribution, chlorophyll a in Dianchi is mainly
distributed in the northern part of the lake, and phosphorus and nitrogen levels are
high throughout the water body, with the highest levels in the central and southern
parts of the lake. These results indicate that hyperspectral remote sensing data can
provide valuable information, spectral data, and band combinations for the retrieval
of water quality parameters. The results in this paper further confirm the feasibility of
using GF-5 satellite AHSI data for the retrieval of water quality parameters, which is
important for relevant departments seeking to perform rapid and efficient monitoring
of the water environmental quality of inland lakes.
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5.2. Discussion

1. This study shows that the AHSI sensor onboard GF-5 is able to provide robust spectral
data and a wide range of band combinations, thus enhancing the options for model
construction. However, these results may not be completely accurate because they
are based on the processing of data acquired from a single satellite image and do not
account for seasonal variations and the specific optical properties of the atmosphere,
which may impact the results.

2. For each water quality parameter, only one model was used in this study, and a
comparison of the retrieval ability of different models was not performed. Although
the three-band method and the ratio band method are commonly used, more models
should be added for comparison in subsequent studies.

3. In addition, the limiting factor of semiempirical models in the retrieval of water
quality parameters is mainly the synchronization between remote sensing satellite
data and measured data. Future research will focus on how to effectively determine
the intrinsic optical quantities of Dianchi Lake, such as the absorption coefficient,
scattering coefficient, and backscattering coefficient, and use these optical quantities
to construct a retrieval model to overcome the limitation of data synchronization.

4. The results of this study highlight the significant role that GF-5 hyperspectral remote
sensing satellite data play in monitoring the water quality of Dianchi Lake. This
study offers a viable and efficient approach for quickly and accurately determining
the lake’s water quality status. In the future, with the in-depth study of modern
communication technology, wireless internet technology, big data mining, artificial
intelligence, distributed measurement, and other technologies, based on the study of
the spectral response mechanism of different water quality parameters, it is possible to
obtain a better retrieval model, push the monitoring toward networked and intelligent
development, and realize online real-time monitoring in the real world. In addition, by
combining the advantages of satellite remote sensing, an all-weather, wide-coverage,
and early prediction water quality detection system has been established to realize
all-round monitoring of water quality.
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