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Abstract: Model simulation plays a significant role in the water resources cycle, and the simulation
accuracy of models is the key to predicting regional water resources. In this research, the Qianhe
tributary at the Weihe River basin in Western China was selected as the study area. The tributary
was divided into 29 sub-basins and 308 hydrological response units according to the spatial raster
data and attribute data of the hydrology, meteorology, topography, land use, and soil types. On
this basis, a soil and water assessment tool (SWAT) model for runoff simulation and evaluation of
this region was established. A sensitivity test and parameter calibration were then executed on 15
parameters involved with surface runoff, soil flow, and shallow underground runoff. The simulation
results demonstrate a calibration and verification error of 3.06–10.08%, with very small uncertainties
throughout the simulation, whereas they exhibit relatively large errors in the simulation of the dry
period (winter) but, in contrast, quite small errors in the rainy period (summer). In addition, the
simulated runoff with a low value is overestimated. When the annual, monthly, and daily runoff
are 4–13.5 m3/s, 4–69.8 m3/s, and 40–189.3 m3/s, respectively, the relative error is smaller, and the
simulation results are more accurate. The sensitive parameters predominantly affecting the runoff
simulation of the basin include soil evaporation compensation, runoff curve coefficient, vegetation
transpiration compensation, and saturated hydraulic conductivity in this region. In the case of
hypothetical land use change scenarios, we observe a great reduction in simulated runoff in arable
land, woodland, and grassland, while we observe an increment in construction and residential land
and wasteland. The annual and monthly runoff are increased by above 54.5%. With the increase
in cultivated land and forestland, the annual and monthly runoff decrease by 24.6% and 6.8%,
respectively. In the case of hypothetical scenarios under 24 climate combinations, if the precipitation
remains unchanged, the increase and decrease in temperature by 1 ◦C leads to a decline and increment
of runoff by −0.72% and 5.91%, respectively. With regard to the simulation for the future under the
RCP2.6 and RCP8.5 climate scenarios, downscaling was employed to predict the runoff trend of the
future. In short, this study provides a method for runoff inversion and water resources prediction in
small mountainous watersheds lacking hydrological and meteorological observation stations.

Keywords: SWAT model; runoff simulation and evaluation; tributary; land use change scenarios;
climate scenarios

1. Introduction

The water resources system is undergoing tremendous changes, and the frequency of
extreme hydrological and climatic events also shows an ascending inclination. The varia-
tion in climate and underlying surface of basins has exerted impacts on canopy interception,
surface infiltration, evapotranspiration, and surface runoff, accelerating the process of atmo-
spheric circulation and terrestrial water circulation, which in turn leads to a reduction in the
total amount of water [1–5]. Therefore, the water cycles of watersheds under environmental
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changes have become a hot research topic. In order to deeply analyze and understand the
changes in regional water ecological environments, various statistical methods and models
have been used to study the hydrological cycles [6–8]. Hydrological model simulation
has become an important means of water resources analysis and prediction. This method
is able to explore complex hydrological physical mechanisms and processes and reveal
hydrological characteristics, which is conducive to optimize the means of water resource
allocation. Hydrological models can be divided into three types, i.e., conceptual model,
distributed model, and semi-split model. The distributed hydrological model is based on
physical properties and considers the spatial and temporal differences of the hydrological
cycle; thus, it can accurately simulate large-scale hydrological processes. It also has good
applicability in the assessment of impacts caused by land cover, soil erosion, non-point
source pollution, land surface process, and climate change [9–11]. For instance, the water
content of watershed favors the determination of the source area, and the water content
can be calculated with the geomorphic index using the topography-based hydrological
model (TOPMODEL) [12–16]. The topographic dynamic approximation and integration
(TOPKAPI) model can model the movement of soils, surfaces, and channel grids into the
water flow, and it uses motion waves to simulate the water cycle [17–21]. The variable infil-
tration capacity (VIC) model can simultaneously simulate land-period and water volume
energy balance [22–26]. The water tank model (PD Tank) is also a conceptual runoff model,
which uses various links of the hydrological process of watershed (flow generation, slope
backflow, river confluence, etc.) to simulate several interconnected water tanks [27–30].
The SWAT model takes into account the complexity of the soil, land use, and management
status in a watershed to conduct prediction and management analyses. Although these
models can be used for hydrological simulation and forecasting, they all have particular
advantages and disadvantages. HBV mainly focuses on the simulation effect of runoff
production processes, which is simple. In the case of complex interpersonal exchange and
feedback mechanisms, flexible thinking is required for a good simulation. The TOPMODEL
model is mainly used for terrain-based simulations, and it is incapable of reflecting the
spatial changes of hydrological information. Many scholars have analyzed the adaptability
of SWAT models in various conditions [31–34] and evaluated the impact of land use change
and climate on runoff using this model [35–39]. In spite of these achievements, there are
indeed limitations for different basins. The SWAT model encompasses many parameters,
and the sensitivity of each parameter is different, which affects the accuracy of the simu-
lation results. Currently, the research on model application has focused on the selection
and combination of simulation sensitivity parameters, simulation ability adaptability, and
the evaluation of specific basins. Under various climates, land surface processes, and
different scales of regional environment conditions, the sensitivity of hydrologic model
parameters varies to a certain extent, imposing different effects on runoff simulation results.
Therefore, a profound study of the sensitivity of parameters to more appropriately simulate
the specific areas has become the key point of model simulation.

This study simulated the impacts of land use change and climate on runoff at a small
watershed and explored the mechanism of further optimizing and improving the soil
water content and vegetation evaporation during the simulation process. Qianhe tributary
is a larger sub-basin among the seven tributaries at the middle reaches of the Weihe
River. Under the background of global warming, the meteorological and hydrological
factors in the Qianhe tributary have undergone significant changes, resulting in significant
impacts on the mainstream runoff of the Weihe River Basin. These are typical in the
north of the Weihe River Basin. Moreover, the runoff prediction of the basin plays an
important role in managing the water resources of the mainstream in the Weihe River
Basin. Taking the Qianhe tributary at the Weihe River Basin as the research object, this
study constructs an improved SWAT hydrological model and examines the parameter
sensitivity and calibration of the model for this watershed. This simulation is advantageous
in quantifying the variation amplitude of simulated runoff after the transformation of land
use types, such as cultivated land, woodland, grassland, and traffic land. Through the



Water 2024, 16, 221 3 of 19

model’s simulation, the underlying surface factors predominantly affecting the runoff in
this watershed are clarified, and, accordingly, the simulation effect of the improved SWAT
model for a small watershed runoff is verified.

This research provides a basis for the simulation, prediction, and evaluation of water
resources in small watersheds as well as insights into the management of ecological envi-
ronments and water resources. The established model can be used for the water resources
prediction of regions without hydrological and meteorological observation stations.

2. Regional Overview and Model Establishment
2.1. Regional Overview

Qianhe tributary is a watershed located north of the Weihe River Basin. It orig-
inates from the Shimiaoliang Mountain in the southern foot of Liupan Mountains in
Gansu Province, flows through Huating County in Gansu Province and Longxian County,
Qianyang, Fengxiang, and Didian Villages in Shaanxi Province, and merges into the
Weihe River.

Qianhe tributary is located at 105◦15′–107◦15′ E and 34◦20′–35◦15′ N. The watershed
is about 138 km wide and 50 km long, with an area of 3593 km2, as shown in Figure 1. It is
a semi-humid area and has an annual average temperature of 11.6 ◦C, an annual rainfall
of 620.54 mm, an average runoff of 2.805 million m3·s−1, and a runoff depth of 147.7 mm.
The topography is diverse. The upper reaches are rocky mountainous areas with high
vegetation coverage. The middle reaches are loess plateau areas with poor vegetation
coverage. The lower reaches are loess plateau areas as well. The basin is dominated by
plantation forests, economic forests, and grassland.
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2.2. SWAT Model Construction

The SWAT model is a comprehensive model that can be used for physical process
simulation and long-term simulation. It consists of three sub-models, i.e., hydrological
process, pollution load, and soil erosion. The sub-model of hydrological process mainly
focuses on runoff estimation and consists of two parts, namely, land calculation and river
calculation. The basic hydrological response units (HRUs) of the model can be jointly
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defined by the regional parameters and the threshold. The model calculation process is
as follows:

(1) The runoff components simulated in Swat’s runoff generation section include the
slope surface runoff, soil flow, shallow groundwater runoff, and deep groundwater runoff.
The runoff simulation can be calculated as:

swt = sw0 +
t

∑
i=1

(
rday − qsur f − ea − wseep − qgr

)
(1)

where swt is the final soil water content, sw0 is the initial soil water content, rday is the daily
precipitation, qsur f is the daily surface runoff, ea is the daily evapotranspiration, wseep is
the daily lateral infiltration flow and leakage amount of the soil profile, and qgr is the daily
underground runoff.

(2) The surface runoff is calculated using the improved SCS curve number method
as follows:

qsur f =
(rday − l0)

2

(rday − l0 + S)
(2)

where l0 is the filled and trapped water, and S is the intercepted water. The interception
amount can be calculated using the following equation:

S = 25.4(
1000
CN

− 10) (3)

where CN is the coefficient of SCS, and the size of CN is related to soil permeability, soil
cover, and previous soil water content levels. The higher the CN value, the smaller the
intercepted water amount in the watershed, and the greater the surface runoff.

(3) In the traditional method, the intercepted water amount of the soil is the change
in soil water content. In this paper, a modified interception method is introduced into the
SWAT model, which is based on the cumulative evapotranspiration of plants.

qsur f r = (q′sur f r − qsur f r−1)·
[

1 − exp(− µ

tsc
)

]
(4)

where qsur f r is the daily runoff into the river, r′sur f r is the daily runoff on the slope, r′sur f r−1
is the daily runoff intercepted on the slope in the sub-basin the day before, and µ is
the coefficient of surface runoff stagnation. The larger the coefficient, the smaller the
interception amount of water in the sub-basin. tsc is the time taken to form runoff at
the sub-basin.

(4) The water that seeps into the soil can be obtained by subtracting the surface runoff
from daily precipitation and further deducting the water that seeps out of the bottom layer
of the soil. When the upper soil reaches complete saturation and the lower soil has not been
saturated, the excess water will penetrate into the lower soil. The water transfer between
the upper and lower soil layers can be calculated by the soil storage capacity as follows:

ws,i = wqo,i(1 − exp(
−∆t
WTi

)) (5)

where ws,i is the water seeping into the lower soil layer, wqo,i is the water that penetrates
into the lower layer, and WTi is time for water motion.

The water that seeps out of the bottom soil layer enters the seepage zone and compen-
sates for the underground aquifer, whereas due to differences in hydraulic conductivity
and permeability between the upper and lower layers, once the permeability of the lower
soil layer is smaller than that of the upper soil layer, the soil will be fully saturated by the
trapped water, resulting in soil flow.

In the SWAT model of this study, runoff is assumed to only occur after the water
content reaches the soil capacity and the portion of the maximum runoff is greater than
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that within the soil capacity. Then, the dynamic storage model (kinematic storage model)
can be used to calculate the runoff in the soil by the following formula:

qint = 0.024(
2swex·k·sl

Φ·lhill
) (6)

where qint is the runoff in the slope soil, swgr is the possible runoff in the soil layer of the
slope, k represents the conductivity of saturated water in the soil layer, sl indicates the
evaluated sub-basin slope, Φ is the soil porosity, and lhill is the slope length.

Taking into account the hysteresis phenomenon of soil flow entering the river channel,
after calculating the induced flow in the soil, the soil flow entering the river channel can be
calculated using the following equation:

qintt = (q0 + q0−1)·[1 − exp(− 1
TTint

)] (7)

where qintt represents the soil flow entering the river channel on that day, q0 represents the
runoff in the soil on the slope on that day, and q0−1 represents the soil flow stored in the
soil layer the day before that day. TTint is the transfer time of soil flow.

(5) Groundwater runoff includes shallow groundwater runoff and deep groundwater
runoff. Shallow groundwater runoff refers to water in the shallow saturated zone under-
ground, which flows into the river runoff in the form of basic flow. Deep groundwater
runoff refers to water in the confined saturated zone underground, which can be utilized
for pumping irrigation. In underground runoff, only shallow groundwater has a capacity
to compensate for river runoff in the basin. Assuming that the water level in the shal-
low saturated zone is higher than the given critical value, flow generates, and then the
underground runoff can be calculated as:

qgr =

{
qgr−1· exp(−βgr·∆t) + wswr·[1 − exp(−βgr·∆t)], dqgr ≥ dqgrb

0, dqgr ≤ dqgrb
(8)

where qgr−1 is the shallow groundwater that entered the river the day before, βgr is the
withdrawal coefficient of groundwater, ∆t is the length of time, wswr is the amount of
shallow groundwater compensation, dqgr is the shallow groundwater content, and dqgrb is
the critical shallow groundwater content.

(6) Generally, only vegetation evaporation is considered in SWAT runoff simulation.
This study adds a term, soil evaporation. Specifically, both the vegetation evaporation
and the soil evaporation at different depths were considered in the model simulation. The
Penman Monteith method was used for vegetation evaporation calculation, which considers
energy balance, water vapor diffusion theory, aerodynamics, and surface impedance. The
equation is as follows:

EP =
η·(hnet − φ) + ρair·cp· e0

z−ez
Aa

Ψ·[η + λ·(1 + Av
Aa )]

(9)

Esoil,h = E0
msoil

h
h + exp(2.347 − 0.00713h)

(10)

In Equation (9), Ep indicates the evaporation ratio, η represents the slope of the curve
between saturated vapor and temperature, hnet represents the net radiation, φ represents
the soil heat flux, ρair represents air density, cp represents the specific heat at a fixed pressure,
e0

z represents the saturated water vapor at the Z height, ez represents the water vapor at the
Z height, Ψv represents latent heat of evaporation, λ is a hygrometer constant, Av is the
vegetation canopy impedance, and Aa is the dispersion impedance of the air layer.

In Equation (10), Esoil,z is the water required for evaporation at depth h, E0
soil, is the

maximum possible soil water evaporation, and h represents the depth of the underground
soil. It is worth noting that 50% of the water required for evaporation comes from the
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10 mm soil surface, and 95% of the water required for evaporation comes from a soil depth
of 0–100 mm.

The runoff calculation of the SWAT model was completed by the hydrological response
calculation unit. The confluence calculation command was used to simulate the confluence
of the reservoir, the superimposed command was used to compare the measured value
with the simulated value, and the transfer command was used to transfer the water of a
river section to other rivers.

2.3. Database and Hydrological Response Unit

The dataset used to establish a watershed hydrological simulation model includes DEM
data, land use data, as well as data from the soil, meteorological, and hydrological databases.

The DEM data came from the geospatial data cloud ASTER GDEM (2005), with a
resolution of 30 m. The slope, slope length, altitude, and watershed area of the sub-basin
were extracted from the DEM data to generate a river network of the watershed, as shown
in Figure 2.
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The land use data were obtained from the Western China Environmental and Eco-
logical Science Data Center, with a time range of 2000–2015 and a spatial resolution of
30 m. Land usage types in 2015 were reclassified to assigned values, as shown in Figure 2A.
Land use types were divided into 8 categories, i.e., Cultivated land (CL) (including paddy
fields and dry land), Woodland (WL) (including forestland, shrubland, clearing, and other
forestland), Grassland (GL) (including high coverage grassland, medium coverage grass-
land, low coverage grassland), Waters (WT) (including canals, lakes, reservoirs, pits, and
beaches), Residential area (RL) (urban land), Low-density residential area (RLL) (rural
settlements), Transportation land (TL), and Wasteland and bare land (WAL).

The soil parameters in the study area, as shown in Figure 2B, came from the Chi-
nese soil database. Soil parameters involved in the simulation include the following:
depth from bottom to top of each soil layer (300 mm/1000 mm), wet soil density, effective
water-bearing capacity of soil layer, soil organic carbon content, saturated water conductiv-
ity/saturated hydraulic conduction system, clay (diameter < 0.002 mm), loam soil (diameter
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0.002–0.05 mm), sandy soil (diameter 0.05–2.0 mm), gravel (diameter > 2.0 mm), surface
reflectance (0.01), soil erosivity factor, soil electrical conductivity, calcium carbonate content,
soil PH.

Weather dataset includes daily precipitation, daily minimum temperature, daily maxi-
mum temperature, daily wind velocity, daily solar radiation, and daily relative moisture.
These meteorological elements were obtained from a weather generator. Meteorologi-
cal information came from independent observations at fixed weather stations. In this
study, traditional Tyson polygon method, Kriging method, inverse distance method, and
elevation correction method were combined to obtain the spatial interpolation for hydro-
meteorological data.

For the sub-basin division, detailed watershed divisions and dense river networks are
conducive to the formation of finer hydrological response units (HRUs). Therefore, under
the premise of ensuring simulation accuracy, a suitable threshold should be set to improve
the operating efficiency of the model. The Qianhe tributary was divided into 29 sub-basins,
as shown in Figure 2C. In this study, the sub-basin was divided into 3 slope ranges, i.e., 0 to
1◦, 1 to 10◦, and above 10◦, eventually generating 308 HRUs.

2.4. Parameter Sensitivity Evaluation

The parameter sensitivity test is a key step to calibrate and verify the model. SUFI-
2 way was selected to conduct sensitivity test on the model parameters. In detail, we
calculated the parameters generated from Latin hypercube random sampling and obtained
the sensitivity ranking of the selected parameters.

In this study, we set 1 January 1970–31 December 1975 as the warm-up period,
1 January 1976–31 December 1990 as the calibration period, and 1 January 1991–31 Decem-
ber 2019 as the verification period. In the sensitivity analysis, 15 parameters were selected,
i.e., SOL-ECC, CN2, V-ECC, SOL-AHC, SOL-AW, MSF-RC, BF-C, BAN-BRC, GRO-RC,
REVAPMN-C, SUR-RC, SM-C, STMI-C, BOI-MEF, and T-DR, as shown in Table 1.

Table 1. Parameter sensitivity test result.

Parameter Definition S p Order

BF-C Base flow coefficient 7.4890 0.0035 1
SOL-AW Soil available water capacity 6.1902 0.0735 2
CN2 Runoff curve coefficient 9.3272 0.0002 3

SOL-ECC Soil evaporation compensation
coefficient 5.1393 0.1377 4

BAN-BRC Base flow coefficient of bank
regulated storage 0.6197 0.5349 5

MSF-RC Manning slope flow coefficient 4.3573 0.1952 6

GRO-RC Shallow groundwater runoff
coefficient 0.6973 0.5931 7

SOL-AHC Soil conductivity of saturated water 5.7720 0.0739 8

V-ECC Vegetation evapotranspiration
compensation coefficient 2.9348 0.3571 9

REVAPMN-C Re-evaporation coefficient of
shallow aquifer 0.5438 0.6393 10

SUR-RC Surface runoff lag coefficient 0.4981 0.7126 11
SM-C Maximum snowmelt coefficient 0.3362 0.7593 12

STMI-C Minimum temperature for
snowmelt 0.2461 0.8913 13

BOI-MEF Biological mixing efficiency factor 0.0737 0.9251 14
T-DR Temperature drop rate 0.0259 0.9481 15

The S value and p value were used to evaluate the parameter sensitivity. The S
value indicates the parameter sensitivity, and the p value indicates the significance. Three
iterations of 500 simulations were periodically performed on the model parameters until
we obtained the ideal parameter sensitivity analysis and calibration results. Finally, the
top 9 parameters in terms of sensitivity for the Qianhe tributary were determined, as
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listed in Table 2. The most sensitive parameters were BF-C, SOL-AW, CN2, SOL-ECC, and
BAN-BRC, successively.

Table 2. Parameter calibration result.

Parameter Ranges Optimal Value Sensitivity Order

BF-C 0–1 0.4733 1
SOL-AW 0–1 0.6495 2

CN2 20–50 39.3275 3
SOL-ECC 0–1 0.5543 4
BAN-BRC 0–1 0.36487 5
MSF-RC 0–0.5 0.039 6
GRO-RC 100–1000 649.402 7

SOL-AHC 10–500 41.43783 8
V-ECC 0–1 0.27392 9

Three different measures were used to evaluate the model parameters, including coeffi-
cient of Nash–Sutcliffe efficiency (NSE), decisive coefficient (R), and relative error (RE).

3. Results and Discussion
3.1. Runoff Simulation Evaluation

We took the phase of 1976–1990 as the calibration period and the phase of 1991–2019
as the verification period. The optimal parameters of calibration were brought into the
SWAT model to simulate the daily, monthly, and annual runoff. The daily data, as shown
in Figure 3, were applied to simulate the runoff under land use changes in 2015.
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Figure 3 shows that most of the simulated daily runoff values are smaller than the
measured values in the calibration period from 1976 to 1990, while most of the simulated
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values are larger than the measured values in the validation period from 1991 to 2019.
Moreover, when the runoff is at a high value, the error between the measured value and the
simulated value is smaller at the range of 2.58–9.52%, and at a low value of runoff, the error
is more than 15%. This indicates that the simulation error is related to the amount of runoff.
When the runoff was measured as below as 0.3–15 m3/s, the simulated value was higher
than the measured value with a large error of 15–36%. When the measured runoff was
between 40 and 100 m3/s, the error was 10–18%. When the measured runoff was above
100 m3/s, the simulated value was smaller than the measured value. The relative error was
less than 9.8%, which was within the test reliability range.

Figure 4 shows that the simulated values of runoff in December, January, February,
and Spring and Autumn are slightly higher than the measured values during the validation
period from 1991 to 2019, while the simulated values of runoff from July to September
are lower than the measured values. The difference between the simulated value and the
measured value in the calibration period is 0.34 m3/s and 0.13 m3/s, while the difference
in the validation period is 0.24 m3/s and −0.36 m3/s, respectively. The simulated monthly
runoff in the calibration period is larger than that in the validation period.
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Figure 4 shows that in the summer flood season, the precipitation is more sufficient,
and the simulated runoff reaches a higher value, while in winter, the precipitation is
less and the simulated runoff is at a low value. When the measured monthly runoff is
15–69.8 m3/s, the simulated monthly runoff is underestimated, and the relative error is
4.5%. When the measured monthly runoff is below 3 m3/s, the simulated values are higher,
and the error is between 20 and 35%. On the whole, the simulation effect in the period of a
large runoff is better than that in the low-runoff period, and the simulated value is higher
than the measured value. In summer, the maximum/minimum values of the simulated
runoff are consistent with the measured runoff, and the annual/monthly/daily measured
runoff has a positive correlation with the simulated runoff. At the calibration period, the
simulated value is slightly higher than the measured value, while at the verification period,
the simulated value is lower than the measured value. Overall, the simulation error in the
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dry period (winter) is relatively large but relatively small in the rainy period (summer). The
simulated monthly/daily runoff is consistent with the change in measured precipitation,
with an overestimation in the peak value of the simulated runoff. The peak and valley
values of annual runoff are well simulated (Figure 5), whereas the annual runoff reaches a
high value in 1983 and 1989 but a low value in 1987; among the three years, the errors of
annual runoff between measurement and simulations are relatively large. Taken together,
the annual runoff is overestimated, and the relative errors vary due to different runoff sizes.
When the measured annual runoff is between 0.4 and 4.0 m3/s, the relative error is 10–35%;
when the measured annual runoff is between 4.1 and 13.5 m3/s, the relative error is less
than 5.3%. Generally, the relative error in the high-value annual runoff simulations is small
but large in the low-value runoff simulations; only the annual runoff in 1981, 1991, 1992,
and 1998 are underestimated.
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From Figure 6, it can be seen that the correlations between simulated values and
measured values are significant. The evaluation coefficients of NSE, R, and RE are within
the allowable range, which are 0.82–0.86, 0.76–0.83, and 3.06–10.08%, respectively. The
evaluation coefficient indicates that the model is suitable for monthly runoff simulations.
An uncertainty test was also executed by automatic P in the SWAT model, and the sim-
ulated value was lower than the 95% prediction uncertainty threshold, indicating that
the uncertainty is low. Although the simulated value is lower or higher than the mea-
surement in several years, the overall simulation error is within the allowable range. On
the whole, when the annual, monthly, and daily runoff is 4–13.5 m3/s, 4–69.8 m3/s, and
40–189.3 m3/s, respectively, the relative error is smaller and the simulation effect is better.
Among the three time scales of the runoff simulations, the daily runoff simulation shows the
best performance, followed by the monthly simulation, and, finally, the annual simulation.
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3.2. Runoff Simulation under Land Use Changes

There are various commonly used methods for analyzing land use change scenar-
ios [40]. Given the limitations of data and technology, this study adopted the extreme
assumption method regarding land use change scenarios, which converts all one land
use types or more land use types into another land use type. This method can intuitively
demonstrate the impact of changes in specific land use types on runoff. The extreme
assumption method was used to set up the land use change scenarios to simulate runoff.
As there have been very few land use changes since 2015, the year 2015 was chosen as the
base year for future simulation and comparison. Taking into account the impact of land use
change on runoff under the influence of human activities, seven land use change scenarios
were assumed based on 2015 (Table 3), and the specifics are as follows: LU-S1, all cultivated
lands and wastelands are converted to forest land, and other land types remain unchanged;
LU-S2, following the idea of returning a farmland to grassland, all cultivated lands and
wastelands are converted to grassland; LU-S3, all woodlands and grasslands are converted
to arable land, and other land use types remain unchanged; LU-S4, due to the deterioration
of land structure, all cultivated lands, forest lands, and grasslands have been degraded
into wasteland, and other land use types remain unchanged. LU-S5, all cultivated lands
are converted to residential areas, and other land use types remain unchanged; LU-S6, all
cultivated lands are converted to transportation land, and other land use types remain
unchanged. LU-S7, all wastelands are converted to grassland, and other land use types
remain unchanged.

Table 3. Actual land use types of the Qianhe tributary and the specific areas under the seven land use
change assumption scenarios (hm2).

Land Use Type
Land Use Change Scenario

LU-T1 LU-T2 LU-T3 LU-T4 LU-T5 LU-T6 LU-T7

Cultivated land 0 0 3086 0 0 0 1216
Woodland 1956 743 0 0 743 743 743
Grassland 1130 2343 0 0 1130 1130 1130
Waters 62 62 62 62 62 62 62
Residential area 4 4 4 4 1217 4 4
Low-density
residential area 45 45 45 45 45 45 45

Transport land 17 17 17 17 17 1230 17
Wasteland, bare land 3 3 3 3089 3 3 0

Figure 7 shows the comparison of monthly and annual runoffs between simulations
and measurements under different land use change scenarios. It can be seen that the
runoff under LU-S4 and LU-S6 scenarios is the largest, significantly larger than that in the
base year. The simulated runoff in other scenarios is relatively small. Compared with the
average runoff under the 2015 land use scenario, the runoff under the land use change
scenarios of LU-S3 to LU-S6 increases significantly, increasing by 5.2–54.6% and 8.4–93.2%
corresponding to the annual and monthly runoffs, respectively. The runoff of LU-S4 and
LU-S6 increases the most, with the largest annual increase being 75.1% and 54.5%, and the
largest monthly increase being 93.2% and 64.1%, respectively. In contrast, the annual runoff
under other land use change scenarios decreases by less than 24.6%, and the monthly runoff
decreases by less than 6.8%. The runoff trend is the same from June to October during the
flood season, and the runoff change is large from July to September. Figure 8 shows the
maximum runoff change under land use change scenarios. The maximum runoff of LU-S4
and LU-S6 increases by 62% and 52%, respectively, and the runoff of LU-S7 decrease by up
to 37%. It can be seen that in the monthly runoff simulation, the increase in cultivated land,
forest land, and grassland has a small weakening effect on the runoff, while the wasteland
still has a significant influence. The difference in runoff between the abundance period and
drought period is increased, and the seasonal change is more obvious.
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Figure 8. Maximum runoff changes under different land use change scenarios. (a) Maximum runoff;
(b) During the flood season (June–October).

The land use types under the LU-S1 and LU-S2 scenarios are mainly woodland and
grassland. Since the surface vegetation has the functions of absorption, interception, and
transpiration of precipitation, runoff is reduced, but the degree of impact is relatively
small. Under the LU-S4 scenario, the more arable land results in the reduction of surface
runoff. However, there is no vegetation on the surface under the LU-S4 scenario, and the
interception effect on runoff is greatly reduced, thus increasing the total amount of surface
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runoff under this scenario and exacerbating soil erosion. Under the LU-S6 scenario, when
all cultivated lands are converted into transportation land, surface runoff increases greatly.
Due to the small area of the wasteland, the interception of precipitation is affected. This
indicates that the interception and transpiration of precipitation by vegetation coverage are
important factors affecting the surface runoff.

3.3. Runoff Response to Climate

In order to further analyze the relationship between climate factors and runoff, cor-
relation analysis and wavelet cross sweep were used to analyze the relationship between
runoff, precipitation, and temperature (Figure 9). It can be seen from Figure 9 that pre-
cipitation shows a positive correlation with runoff, and the resonance energies during the
2–4 year and 8-year cycles are relatively large. The relationship between temperature and
runoff is mainly reflected in the significant cross resonance energy for periods after 2000,
which are 2–3 years and 6–8 years. This indicates that precipitation and temperature have
important influence on runoff. Therefore, different precipitation and temperature climate
scenarios were set during annual and monthly runoff simulations. In comparison with the
measured runoff, the impact degree of temperature and precipitation on runoff simulation
was clarified using the SWAT model.
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Further, we made assumptions as follows: the temperature remains unchanged or
changes around ±2 ◦C, ±1 ◦C, and the precipitation remains unchanged or changes around
±10%, ±25%. Then, 24 permutations and combinations of climate scenarios were designed,
as listed in Table 4. The simulation results are shown in Figure 10. Among them, the C-S0
scenario is the measured temperature, precipitation, and runoff. In the C-S5 scenario where
the temperature decreases by 2 ◦C and precipitation increases by 25%, the average annual
runoff is the largest, increasing by 1.3 times than that in the C-S0. However, in the C-S20
scenario where the temperature increases by 2 ◦C and precipitation decreases by 25%,
the average annual simulated runoff decreases by 67.5%. When the temperature remains
unchanged and precipitation decreases or increases by 10%, the annual runoff decreases by
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35.93% or increases by 41.49%, while the monthly runoff decreases by 34.42% or increases
by 39.95%. However, when the precipitation remains unchanged and temperature increases
or decreases by 1 ◦C, the runoff decreases by −0.72% or increases by 5.91%, while the
monthly runoff decreases by 0.04% or increases by 5.7%. From the simulation results of
monthly runoff, it can be seen that under the C-S5 scenario, the surface monthly runoff
reaches its maximum value, increasing by 1.29 times, while under the CS-20 scenario, the
monthly runoff is the smallest, decreasing by 64.5%. This indicates that runoff is more
significantly affected by temperature rise and precipitation decline. The simulated scenario
is consistent with the variation trend of the measured runoff, but the magnitude of variation
of the simulated runoff differs for each scenario.

Table 4. Climate change assumption scenarios.

Temperature Change
Precipitation Change

−25% −10% 0 +10% +25%

−2 ◦C C-S1 C-S2 C-S3 C-S4 C-S5
−1 ◦C C-S6 C-S7 C-S8 C-S9 C-S10

0 C-S11 C-S12 C-S0 C-S13 C-S14
+1 ◦C C-S15 C-S16 C-S17 C-S18 C-S19
+2 ◦C C-S20 C-S21 C-S22 C-S23 C-S24
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Regarding the simulation of regional climate impact, many downscaling means have
been exploited to resolve the shortcomings of the GCM climate scenario by enhancing the
spatial resolution. In this study, statistical downscaling was performed by establishing
the relationship between the meteorological data of the forecast station and atmospheric
circulation factors based on station observation data and NCEP reanalysis data. Local
climate is based on large-scale climate, and within a given range, there should be a correla-
tion between large-scale and small-scale climate variables. By establishing an empirical
correlation between large-scale climate elements (prediction factors) and local climate
elements (predicted quantities), and then applying this empirical correlation to the output
of regional models, corresponding information for any location can be obtained.

There are more than 20 climate models. Referring to reference [40], the input model,
HadCM3 from CMIP6 (Resolution of 0.25◦ × 0.25◦), was considered more suitable and
outperformed other models for downscale simulation in this region. Therefore, the GA
model climate scenario product was used for future-runoff simulation. Under the climate
scenarios of RCP8.5 and RCP2.6, the daily output data of HadCM3 from CMIP6 during 2025
to 2100 were used as input data of the SWAT model to simulate changes in precipitation
and temperature in the watershed, and then future runoff simulation predictions were
conducted based on simulated meteorological elements. Figures 11–14 show the change
in daily runoff, monthly runoff, and annual runoff in the future. It can be seen that the
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precipitation change fluctuates due to the precipitation change caused by many factors,
leading to runoff fluctuations. On the whole, the simulated runoff under the low-emission
RCP2.6 scenario is greater than that under the high-emission RCP8.5 scenario, indicating
that the runoff would be reduced in a high-emission scenario. The runoff is projected
to be significantly reduced in 2040, 2060, and 2080, and the runoff reduction under the
high-emission RCP8.5 scenario is more significant than that under the low-emission RCP2.6
scenario. The maximum annual runoff greater than 180 m3·s−1 is reduced by an average
reduction of 20.3% and 22.7% under the RCP2.6 and RCP8.5 climate scenarios. According
to the simulation, the maximum runoff of 2030, 2060, 2080, and 2090 is relatively large, and
the possibility of causing a flood is also increased.
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3.4. Discussion

The above simulation results showed that the top nine sensitivity parameters after
calibration can well simulate the runoff of the Qianhe tributary. The simulation results
were basically consistent with the existing findings [41]. In addition, the simulated peak
runoff during the flood season was overestimated, the changes in simulated runoff were
consistent with the precipitation change, and the research results were basically consistent
with the simulation results in the literature [42]. Sensitivity analysis results showed that
BF-C, SOL-AW, and CN2 were the most important parameter in the runoff simulation
of the Qianhe tributary, which was different from previously reported results [43]. The
inconsistency might be due to the influence of soil and land use changes in different basins.
The evaluation of simulation parameters showed that the error in the verification period
was relatively large but was relatively small in the calibration period, indicating certain
uncertainties in the simulation process, whereas the errors in both the verification period
and the calibration period were within the acceptable range.
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In addition, the simulated value in the rainy season was greater but was low in the
dry season. Due to the different runoff data at the annual, monthly, and daily time-scales,
there were differences in simulation errors. The time series length of daily runoff contained
10,591 samples, with 348 samples per month and only 29 samples per year, which minimized
the error in daily runoff, followed by the monthly samples and, finally, the annual samples.
The longer the time series of runoff samples, the better the simulation effect. Previous
studies have found that DEM resolution has an impact on runoff simulation [44]. The
phenomenon of the measured value being smaller than the simulated value might be caused
by the influence of the watershed area unit. Research has shown that the calculated runoff
through the SCS curve could be affected by the DEM resolution [45], and the slope is the
most sensitive parameter. Moreover, the SWAT model has been proven to be able to achieve
a good simulation effect in large-scale watershed runoff simulation and management
decision-making [46]. And in this study, the SWAT hydrological model also demonstrated
a good simulation effect in the small watershed area, which divided the watershed into
smaller basic units to improve the simulation accuracy.

However, the model also has shortcomings. In large-scale simulations, if the sub-basin
area is large and the spatial difference of precipitation is significant as well, there will
be large errors in the simulation results. As we know, all grasslands and woodlands in
the watershed have the same slope. Previous research has indicated that grassland is
usually located in valleys, while woodland is located in a steeper area than grassland. If
the different land use types in a watershed exhibit different characteristics, the simulation
error will be larger [47]. In addition, the land use types of smaller areas in the simulation,
such as untreated roads, bare land, and construction land, are usually not considered but
attributed to other land types. However, these smaller areas may yield more sand than the
same area of grassland. In the future, temperature rise and precipitation reduction will
exacerbate runoff reduction. Therefore, the impact of temperature and precipitation on
runoff is a complex process, and the mutual physical mechanism needs further discussion.

4. Conclusions

The SWAT hydrological model established in this study showed a good effect on the
runoff simulation of the Qianhe tributary. Through a parameter sensitivity analysis, we
found that in the semi-arid area, the river runoff is mainly compensated for by precipitation.
The top nine parameters that are very sensitive to the runoff simulation were determined.
Typically, BF-C, SOL-AW, and CN2 had the highest sensitivity. The daily runoff simulation
showed the best performance, followed by the monthly runoff simulation, and then the
annual runoff simulation. The simulated runoff with a low value was overestimated.

The simulations under land use change scenarios showed that the cultivated land,
grassland, and forest land had a negative effect on runoff, while wasteland and transporta-
tion land had a positive effect on runoff. In particular, when woodland, cultivated land,
and grassland became wasteland, the runoff change was greater during the flood season.
The interception and transpiration of runoff by vegetation coverage were important factors
affecting the surface runoff. The runoff was more significantly affected by temperature rise
and precipitation decrease, and the variation magnitude of the simulated runoff differed
for each scenario.

In the simulation of the future, the simulated runoff under the assumed climate sce-
narios of RCP8.5 and RCP2.6 showed a decline in different degrees. Due to the influence of
various factors, precipitation decrease/increase in different decades would result in runoff
reduction or an increase in the possibility of flooding in different years. The maximum
runoff of 2030, 2060, 2080, and 2090 would be relatively large, and the possibility of causing
a flood would increase.

The SWAT model assumes that each HRU exhibits the same characteristics. Therefore,
when conducting SWAT simulation in different watersheds, more attention should be paid
to the determination of the sensitivity of model parameters, the nonlinear relationship
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between hydrological response (output), and hydrological characteristics (input), as well as
the scale effect of the model.
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