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Abstract: In the mining basin of the Gafsa region in southwestern Tunisia, environmental exposure to
randomly discharged phosphate-processing wastewaters (PPWW) presents a serious threat to health
and the surrounding ecosystems. Thus, the contaminated areas are in continuous deterioration over
time. There is a paucity of information on the deleterious effects of this kind of effluent. In the current
work, the PPWW characterization showed the presence of high contents of Pb (0.90 ± 0.02 mg/L), Cd
(0.35 ± 0.27 mg/L), Cr (0.43 ± 0.1 mg/L) and Fe (215.1 ± 2.41 mg/L), exceeding the permissible limits.
To assess the chronic toxicity of the effluent in mammalians, two doses of PPWW (50% and 100%)
were administered by gavage to Wistar rats for 28 consecutive days. The results revealed that the
two PPWW concentrations significantly increased the plasma biochemical markers (bilirubin, alanine
aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate
dehydrogenase (LDH)), compared to untreated animals. Moreover, PPWW treatment severely altered
the lipid profile by increasing the contents of triglycerides, total cholesterol (TC), and low-density
lipoprotein cholesterol (LDL-cholesterol) by 143%, 114%, and 91%, respectively, and significantly
reduced the high-density lipoprotein cholesterol (HDL-cholesterol) level by 46%, compared to the
control animals. In addition to the significant decrease in activities of superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx) in the liver of intoxicated rats, the malondialdehyde
(MDA) level was remarkably altered. All of these were associated with deep histopathological dam-
ages, materialized by dilatation of sinusoids, congestion of the centrilobular vein, and inflammatory
cell infiltration. These disturbances were accompanied by metal detection in the liver and blood.
Additionally, DNA fragmentation detected in hepatic tissues highlighted the genotoxic effects of
PPWW. All of the aforementioned effects occurred in a PPWW dose-dependent manner. These
findings evidenced, for the first time, the in vivo-deleterious impacts of this type of effluent on
mammalians inhabiting the mining basin area and therefore showed the real threats to which humans,
as consumers, could be exposed. Accordingly, there is a dire need to pay special attention to PPWW
before being discharged into environmental ecosystems without any prior treatments.

Keywords: phosphate-processing wastewaters; heavy metals; oxidative stress; DNA fragmentation;
hepatotoxicity; metal accumulation

1. Introduction

Currently, water pollution is becoming a global challenge that increasingly threatens
human and environmental health [1,2]. In fact, rapid industrialization, domestic effluents
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from human settlements, and modern agriculture practices (use of fertilizers, herbicides,
pesticides, etc.) are the major sources of degradation of inland and coastal waters. It has
been documented that around three to four hundred million tons of toxic sludge, heavy
metals, solvents, and other unpleased compounds are released into the environment every
year worldwide [3–5]. For example, the large amount of hospital wastewaters released
into the environment reaches groundwater and therefore threatens the health of water
consumers [6]. This category of wastewater induces cytotoxic effects [7], genotoxicity,
and mutagenicity [8–10]. Previous reports showed that textile wastewaters comprise high
levels of nonbiodegradable compounds, which disturb the aquatic environment [11,12]
and consequently human health [13]. Plastic contaminations were also studied for their
adverse effects on the human food production chain [14,15]. Considering the undeniable
link between the environment and food production, the persistent pollutants discharged
into wastewater can end up in food, both of vegetable and animal origins, increasing their
levels throughout the food chain [16,17]. It can be noted here that to better understand all
these dangerous effects of wastewater and at the same time achieve effective treatment
procedures, several reports recommended to look for possible alternatives to limit or
identify such spills and create a wastewater quality monitoring system [18].

In Tunisia, the Company of Phosphates of Gafsa (CPG) is ranked among the highest
phosphate producers worldwide [19,20]. The company’s marketable phosphate production
reached 8 million tons per year with water consumption of up to 10.5 × 106 m3 [20], and
the resulting phosphate processing wastewaters (PPWW) were discharged randomly into
the environment.

In the literature, few data are available about the harmful consequences of PPWW on
the receiving ecosystem. In fact, Mekki et al. [21] and Mekki and Syedi [22] assessed the
phytotoxicity of soil irrigated by phosphate ore processing wastewater and its microtoxicity.
According to the same authors, PPWW toxicity is correlated with its high contents of heavy
metals. Such potentially toxic elements present a real threat, not only on the surrounding
ecosystem but also on groundwater of the region, and thus reach humans by drinking
water. Herein, it is worth noting that according to the World Health Organization (WHO),
the permissible limits of some potentially toxic elements in drinking water have been
set at low levels. These levels should not exceed 0.005 mg/L for Cd, 0.05 mg/L for Pb,
0.001 mg/L for Hg, 0.1 mg/L for Ni, 0.01 mg/L for As, 0.01 mg/L for Co, and 0.05 mg/L
for Cr [23]. As part of attempts to bio-detoxify PPWW, Moula et al. [24–26] highlighted
indigenous bacteria’s effectiveness in performing bioremediation assays of toxic PPWW. In
a bioremediation context, it should be noted that bio-inspired remediation technologies of
heavy metal-contaminated sites increasingly replaced traditional methods, criticized for
their high cost and environmental concerns [27]. Hence, Xue et al. investigated the potential
of applying the microbially induced carbonate precipitation (MICP) approach to remediate
Pb-rich water bodies and Pb-contaminated loess soil [28]. In another study, the authors
ensured the immobilization of Pb to prevent its migration, in a harsh environment, from Pb-
contaminated water bodies and soils, by means of self-healing microbial-induced calcium
carbonate (MICC) materials [29]. So far, studies relating to this new bio-inspired technol-
ogy have been deepened by the application of the first microcapsule-based self-healing
microbial-induced calcium carbonate materials to avoid the migration of Pb ions [30].

Meanwhile, PPWWs are a potential risk for some mammalian species, such as goats
and camels, that inhabit this area. These animals live with other wild rodents; right near
the areas permanently invaded by PPWW and occasionally drink this wastewater and
graze the affected growing indigenous plants. This happening certainly resulted in the
passage of heavy metals to humans, as consumers, of these intoxicated animals. As far
as we know, the toxic effects of PPWW have never been studied in a mammalian model.
There is therefore an urgent need to investigate, for the first time, the in vivo harmful
effects of this kind of effluent by using Wistar rats as a model. In mammalians, the liver is
known to be a target organ for chemically induced toxicity and for its fundamental role in
clearing xenobiotics from the blood [31]. This vital tissue also harbors several markers of
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toxicity and has been the subject of extensive toxicological studies [32–34]. Hence, in the
present study, we targeted the liver tissue of Wistar rats to explore the impacts of chronic
exposure to PPWW (at 50 and 100% concentrations) for 28 consecutive days. To achieve
this goal, a set of liver damage markers, including bilirubin, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase
(LDH), triglycerides, (TG) total cholesterol (TC), low-density lipoprotein cholesterol (LDL-
C), and high-density lipoprotein cholesterol (HDL-C), were determined in the plasma.
Oxidative stress markers (malondialdehyde (MDA), catalase (CAT), superoxide dismutase
(SOD), glutathione peroxidase (GPx), and glutathione (GSH)), heavy metal (Cd and Pb)
determination in the blood and liver, and DNA damage and histopathological changes
were explored in treated and untreated rats.

2. Materials and Methods
2.1. Wastewater Sampling and Characterization

The PPWW samples were collected from the effluent stream of the fifth phosphate-
washing unit of Gafsa-Metlaoui (Tunisia). The geographical coordinates are latitude
34.193288 and longitude 8.201846. Three samples, at intervals of 15 days, were collected in
sterile amber glass bottles, pooled, and stored at −20 ◦C until use (Figure 1). In the labora-
tory, samples were filtrated through a 0.45 µm pore nylon membrane filter and a 0.2 µm
pore glass fiber filter to remove all suspended matter. After filtration, we only obtained
the dissolved fraction, which was used for analytical study and for animal treatments.
The effluent pH was measured by a STARTER 2100 pH meter. The electrical conductivity
(EC) and the turbidity were measured, respectively, by a Conductimeter type Cond 1970i
and a turbidimeter type VTV. After adequate dilution of samples using an acid mixture of
HNO3 and HCl, heavy metal ions (Fe, Cr, Cu, Zn, Cd, and Pb), phosphorus (P), chloride
(Cl), potassium (K), calcium (Ca), and sodium (Na) were quantified by an Analtik Jena
Nova 400 (Japan) model atomic absorption spectrophotometer (AAS) operating with an
air–acetylene flame.
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Figure 1. (a,b) Geographical location of the Gafsa-Metlaoui mining basin in the southwestern dry area
of Tunisia (blue point). (c) Google Earth Program-generated photo showing the effluent stream and
the sampling point (red arrow): latitude 34.193288; longitude 8.201846. (d) Image of the phosphate-
processing wastewater stream after being discharged from the fifth phosphate washing plant in
Metlaoui city.
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2.2. Evaluation of Hepatotoxicity
2.2.1. Animal Preparation

All animal experimental procedures were planned and approved by the Ethical Com-
mittee for the Care and Use of Laboratory Animals at the University of Gafsa (Reference
No: FSG-02-2022). Eighteen male Wistar rats weighing 180–200 g were purchased from
Pasteur Institute (Tunisia) and placed under controlled conditions (22 ± 1 ◦C, humidity of
50%, and alternation between 12 h light and 12 h dark). A standard pellet diet obtained
from the Animal Nutrition Society (SNA, Sfax, Tunisia) was used as nutriment for the
animals. The rats had free access to water. After a period of adaptation of two weeks, the
rats were arbitrarily allocated into three experimental groups (n = 6): group I (control)
rats received normal drinking water; Group II (PPWW-50%) and Group III (PPWW-100%)
were intragastrically administered 50% and 100% concentrations of PPWW, respectively,
for 28 consecutive days. After the treatment period, the rats were anesthetized by an
intraperitoneal ketamine hydrochloride injection (30 mg/kg bw) and then euthanized to
obtain blood and liver samples. After collecting the blood in EDTA tubes, the samples were
centrifuged at 3500 rpm at 4 ◦C for 15 min, and plasma obtained was stored at −20 ◦C for
further analysis. The rats were dissected, and the liver was excised, weighed, and washed
in ice-cold saline buffer. Then, a portion of the liver was kept at −70 ◦C for biochemical
analysis and DNA extraction. For the histopathology study, a part of fresh liver was fixed
in neutral buffered formalin (10%).

2.2.2. Assessment of Hepatotoxicity Markers

Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydro-
genase (LDH), and alkaline phosphatase (ALP) activities were determined spectrophoto-
metrically according to standard methods by using commercially available diagnostic kits
(Biomaghreb, Ariana, Tunisia), and the values were presented as units per liter. The liver
index was estimated using the following formula:

Liver index (%) = liver weight/body weight × 100

2.3. Assessment of Oxidative Stress in the Liver Tissue of Experimental Rats
2.3.1. Tissue Extract Preparation

A one-gram portion of the liver was added to 2 mL of ice-cold lysis buffer (pH = 7.4)
and homogenized using a Homogenizator Ultraaturex grinder. The resulting homogenate
was centrifuged at 4000× g for 15 min, and the supernatant was collected and stored at
−70 ◦C until use.

2.3.2. Evaluation of Lipid Peroxidation

The lipid peroxidation in the liver of the control and other treated groups was mea-
sured by quantifying thiobarbituric acid reactive substances (TBARS). It was expressed
in terms of malondialdehyde (MDA) content (the end product of lipid peroxidation).
The MDA level was measured spectrophotometrically according to Buege and Aust’s
method [35]. The results were expressed in nanomoles of MDA per gram of tissue.

2.3.3. Determination of Liver Enzymatic Antioxidant Activities

The activity of superoxide dismutase (SOD) was determined by measuring the enzyme
capacity to inhibit the reduction of nitro-blue tetrazolium (NBT) by the anion superoxide
product [36]. The absorbance was measured at 560 nm, and the activity was expressed
in units per milligram of protein. The evaluation of catalase activity (CAT) was carried
out according to the protocol reported by Aebi [37]. The catalase activity was expressed
in micromoles of H2O2 decomposed per minute per milligram of protein. Glutathione
peroxidase activity (GPx) was determined in the liver homogenate according to the method
reported by Flohé and Gunzler [38]. The absorbance was read at 340 nm, and the enzyme
activity was expressed in nanomoles of NADPH (Nicotinamide Adenine Dinucleotide



Water 2024, 16, 214 5 of 18

Phosphate) oxidized per minute per milligram of protein. All steps of the evaluation of
oxidative stress in rat liver tissue are summarized in Figure 2.
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Figure 2. Steps illustrating the experimental evaluation of oxidative stress in rat liver tissue [35–38].

2.4. Protein Quantification

The protein concentration in liver homogenates was determined using the Bradford
method [39], and bovine serum albumin (BSA) was used as the standard.

2.5. Histopathological Examinations

Liver samples fixed in phosphate-buffered formalin (10%) were randomly selected
for histological analysis. The samples were embedded in paraffin following a sequential
dehydration process. Subsequently, 5 µm sections were stained with hematoxylin and
eosin. Finally, histopathological analysis of the sections was performed to identify potential
changes in liver histology.

2.6. Assessment of DNA Fragmentation

For qualitative evaluation of DNA extracted from the livers of treated and untreated
rats, the protocol described by Feriani et al. was used [40]. The DNA fragmentation assay
was carried out by electrophoresing genomic DNA samples on agarose/EtBr gel following
the procedure reported by Chtourou et al. [41].

2.7. Cadmium and Lead Analysis in Blood and Liver

In the present study, we assessed the contents of cadmium (Cd) and lead (Pb) in the
blood and liver of treated and untreated rats. To do so, we used 1 mL of heparin blood
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and 1 g of liver tissue. The amount of Cd and Pb was determined by atomic absorption
spectrophotometry, following the method described by Andjelkovic et al. [42].

2.8. Statistical Analysis

The data are expressed as the mean ± standard deviation (SD). One-way ANOVA
(analysis of variance) with Tukey’s post hoc test was used to compare the mean obtained
for each treatment group (n = 6 rats) applying Graph-Prism 7.01 (GraphPad, San Diego,
CA, USA), with p < 0.05 indicating statistical significance.

3. Results and Discussion
3.1. Physicochemical Characterization of PPWW

To be marketable, rock phosphate treatment in washing units involves several steps,
including mechanical separation and flotation, to increase the P2O5 content [43]. Hence,
phosphate-washing plants dump huge amounts of highly toxic wastewaters, so-called
phosphate-processing wastewaters (PPWWs). The physicochemical parameters of the
PPWW samples are shown in Table 1. The results indicated that the effluent had a pH of
7.3, with a conductivity (EC) of 9.46 ± 0.03 mS cm−1, associated with a high concentration
of chlorides (1660 ± 081 mg/L). The effluent contained high BOD5 and TOC values of
500 ± 1.03 mg/L and 10.5 ± 0.32 mg/L, respectively. The elevated values of COD and
BOD5 reflected the high degree of water pollution, and the BOD5/COD ratio, called the
“biodegradability ratio” of 1.4 > 0.5, revealed that the effluent is potentially biodegradable
and therefore treatable by biological means [44]. The measurements showed the rich-
ness of PPWW with calcium (Ca = 835 ± 0.01 mg/L), iron (Fe = 215.1 ± 1.41 mg/L), lead
(Pb = 0.9 ± 0.002 mg/L), chromium (Cr = 0.434 ± 0.01 mg/L), and cadmium
(Cd = 0.353 ± 0.27 mg/L). These heavy metals are currently considered as being in the
top 10 hazardous materials [45]. Their contents were above the limits fixed by interna-
tional standards for wastewater discharges [46,47] and constitute a real risk, notably after
their accumulation in the soil of the receiving medium [22]. In addition to the elevated
total suspended solids, the results showed a high amount of phosphorus in the effluent
(P = 58.14 ± 1.36 mg/L), which led to waterway eutrophication [48].

Table 1. Physicochemical characterization of phosphate-processing wastewater (PPWW) samples
compared to Tunisian national and international standards. Values are the mean of triplicate mea-
surements ± standard deviation (SD). BOD5: biochemical oxygen demand; COD: chemical oxygen
demand; TS: total solids; TOC: total organic carbon; EC: electrical conductivity; COD/BOD5: ratio of
the biodegradability; NI, not identified.

Parameters PPWW (SD) OPORT (2018) APHA (2005)

pH 7.31 (0.04) 8.5 9.00

EC (mS/cm) 9.46 (0.03) 5.00 6.00

TOC (g/L) 10.5 (0.32) NI NI

TS (g/L) 54.03 (1.23) NI NI

COD (mg/L) 710.8 (9) 200.00 ≤70.00

BOD5 (mg/L) 500 (5) 50.00 ≤50.00

COD/BOD5 1.4 (0.13) 3.00 ≤0.71

P (mg/L) 58.14 (1.36) 10.00 ≤10.00

Chlorides (mg/L) 1660 (5) 700 NI
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Table 1. Cont.

Parameters PPWW (SD) OPORT (2018) APHA (2005)

Pb (mg/L) 0.9 (0.02) 0.1 ≤0.10

Ca (mg/L) 835 (10) 500 ≤200

Na (mg/L) 23 (0.15) 0.50 NI

K (mg/L) 53 (0.12) 50 ≤30

Cr (mg/L) 0.434 (0.01) 0.1 NI

Cu (mg/L) 0.342 (0.02) 0.50 ≤0.25

Zn (mg/L) 0.173 (0.07) 0.50 ≤1.00

Cd (mg/L) 0.353 (0.27) 0.10 ≤0.10

Fe (mg/L) 215.1 (2.41) 5.00 ≤5.00

3.2. Effect of PPWW on Body and Liver Weights and Blood Glucose Levels

To our knowledge, the in vivo effects of PPWW discharged into the environment
have not been previously investigated. The works in this field were restricted to their
characterizations in terms of richness in heavy metals, such as Cd, Pb, Cu, Zn, and Fe [22],
and other rare earth elements, including lanthanides with Y and Sc [49,50]. Additionally,
the potential phytotoxic and microtoxic effects of PPWW were studied by Mekki and
Sayadi [22] and Moula et al. [24,25]. Therefore, the in vivo effects of this kind of effluent
are worth further investigation.

Changes in body and liver weights and glucose levels in all experimental groups are
shown in Figure 3. During the entire experimental period, rats in all treated groups showed
no differences in body weights compared to the control. Similarly, the dose PPWW-50%
did not affect the liver weight index. However, a significant difference in this parameter
was encountered between the PPWW-100 group and the control group (p < 0.01) after
4 weeks of effluent exposure. According to Hall et al., the increase in liver weight, in
rodents due to exposure to chemicals, can be achieved through histological appearances,
some of which clearly showed cytotoxicity and cell death [51]. Additionally, Zhao et al.
reported that the wastewater caused the proliferation of liver cells, which led to an increase
in liver weight [52]. In another study, it has been documented that the exposure of rats to
a Cd and Pb mixture caused liver enlargement and a remarkably increased liver weight
index, compared to the untreated animals [53]. The data revealed that PPWW induced a
significant increase (p < 0.0001) in the blood glucose content (119.6 ± 2.302 mg/dL and
179.6 ± 2.074 mg/dL for PPWW-50% and PPWW-100%, respectively) when compared to the
control group (76.40 ± 2.881 mg/dL). This severe hyperglycemia detected in experimental
animals might be associated with the alteration of pancreatic cells. Hence, many reports
have suggested that the observed hyperglycemia due to toxic effects of pollutant resulted
in pancreatic β-cell dysfunction, leading to insufficient insulin secretion [54]. In the same
context, Sarmiento-Ortega et al. reported that Cd accumulation in the liver led to mitogenic
signals that develop insulin resistance and thus to glucose level elevation in Cd-treated
rats [55]. It was also remarkable that the effect of PPWW on blood glucose occurred in a
PPWW dose-dependent manner.
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Figure 3. Variation in body weight, liver weight index, and blood glucose level in the control and
experimental groups of rats. Values represent the mean ± SD (six animals were treated per group,
n = 6). PPWW-50% or PPWW-100% group versus control group. * p < 0.05; ** p < 0.01; **** p < 0.0001;
ns, not significant.

3.3. Effect on Hepatic Injury Marker Enzymes

The results of the biochemical marker analyses related to hepatic injury in all treated
rats are illustrated in Table 2. The PPWW-50%-treated animals showed noticeable increases
in the activities of bilirubin, AST, ALT, ALP, and LDH by 95%, 39%, 39%, 149%, and 24%,
respectively, compared to the untreated group. For the PPWW-100 dose, these activities
were significantly augmented by 153%, 52%, 52%, 189%, and 57%, respectively, compared
to the control group. These observations are in line with the work of Chen et al., who
attributed the significant elevation of bilirubin, AST, ALT, and LDH activities in mice to
the combined effects of Cd and Pb ions [53]. Vineeth Daniel et al. also concluded that the
exposure of mice to Pb resulted in a functionally impaired liver, with a dramatic increase in
ALT and AST activities [56].

Table 2. Bilirubin, transaminases (AST, ALT), alkaline phosphatase (ALP), and lactate dehydrogenase
(LDH) activities in plasma of control and treated rats with two doses of phosphate-processing
wastewaters (PPWW-50% and PPWW-100%). Values represent the mean ± SD (six animals were
treated per group, n = 6). PPWW-50% or PPWW-100% group versus control group. ** p < 0.01;
**** p < 0.0001.

Parameters
Treatments Bilirubin (U/L) AST (U/L) ALT (U/L) ALP (U/L) LDH (U/L)

Control 1.333 ± 0.2086 154.4 ± 3.551 102.3 ± 9.609 143.0 ± 5.867 161.1 ± 6.162

PPWW-50% 2.602 ± 0.8175 ** 215.0 ± 8.406 **** 142.4 ± 4.118 **** 356.2 ± 6.907 **** 199.9 ± 7.613 ****

PPWW-100% 3.382 ± 0.1479 **** 235.1 ± 5.657 **** 155.8 ± 5.836 **** 414.5 ± 14.92 **** 253.5 ± 9.181 ****

3.4. Effects on Oxidative Stress Markers

The results illustrated in Figure 4 show that chronic exposure of animals to PPWW
for four weeks induced oxidative stress in the liver. Lipid peroxidation levels in both the
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PPWW-100% group (7.361 ± 0.6598 nmol MDA/g of the liver) and PPWW-50% group
(5.951 ± 0.9655 nmol MDA/g of the liver) were significantly higher (p < 0.0001) than
those of the corresponding controls (2.689 ± 0.7567 nmol MDA/g of the liver). Moreover,
the observed effect on oxidative stress was concentration-dependent, with rats from the
PPWW-100% group showing lipid peroxidation levels significantly higher than those from
the PPWW-50% group (p < 0.05). The toxicological effects of heavy metal-rich PPWW
were primarily attributed to the presence of heavy metals and other harmful constituents,
known for their ability to generate free radicals inside biological systems [57], together
with the poor antioxidant defense in intoxicated rats. These observations are in tandem
with previous studies showing that oxidative stress is induced by exposure to heavy metals
in fish [58], water birds [59], and rats [60,61]. In fact, the incessant generation of reactive
oxygen species (ROS) following chronic PPWW administration weakens antioxidant pro-
tection and increased lipid peroxidation, as the first step that induces cellular membrane
injury [62]. The significant dose-dependent increase in MDA amounts (a biomarker of
lipid peroxidation) in the tissue of PPWW-treated animals, indicated the severity of heavy
metal toxicity and the high amount of ROS that could be generated. In addition, the ac-
tivity of several enzymes from the antioxidant defense system (SOD, CAT, and GPx) was
significantly inhibited by PPWW (50% and 100%) compared to the control group (Figure 4).
However, we did not find a significant difference in the activities of these enzymes between
the PPWW-100 and PPWW-50 groups after 28 days of PPWW treatment.
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Figure 4. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities
and MDA levels in the liver tissues of control and treated rats after 28 days of exposure to 2 doses of
phosphate-processing wastewaters (PPWW-50% and PPWW-100%). Values represent the mean ± SD
(six animals were treated per group, n = 6). PPWW-50% or PPWW-100% group versus control group.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant.

It is well documented that the antioxidant system, namely, SOD, CAT, and GPx, plays
a substantial role in the protection of hepatocytes against lipid peroxidation or inflamma-
tion, preventing the occurrence of hepatic damage. In the PPWW-exposed animals, the
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significant reduction in antioxidant enzyme activities (SOD, CAT, and GPx) was probably
related to the large amount of accumulated Pb and Cd. It has been established that these
two metals markedly disrupt the antioxidant system by binding to sulfhydryl groups inside
antioxidant enzymes and replacing zinc and copper, which are important cofactors for these
enzymes [63–65]. Similar observations were also encountered by Andjelkovic et al. who
reported that only a mixture of heavy metals (Cd and Pb) could generate AOPP (advanced
oxidation protein products) [42]. In addition to the effects above, the enormous PPWW
iron concentration could have a deleterious effect on the antioxidant enzymes. It has been
reported that iron overload in rats induces lipid peroxidation and antioxidant depletion
caused by a decrease in SOD, GPx, and CAT activities, which causes liver cell injury and
apoptosis in animals [66,67]. Other studies also highlighted the impacts of iron overload on
the generation of hydroxyl radicals, which are responsible for lipid peroxidation [68–70],
oxidative stress, and hepatic fibrogenesis [66,71], as well as an alteration of stress protein
expression in rat liver [72]. Bloomer and Brown [73] also reported other liver diseases
caused by excessive iron administration.

3.5. Effects on Lipid Profile

Figure 5 illustrates the TG, TC, LDL-C, and HDL-C concentrations in the plasma of
control and experimental rats. The administration of PPWW significantly increased the
TG (112.47% and 138.78% for PPWW-50% and PPWW-100%, respectively), TC (93.90%
and 117.13% for PPWW-50% and PPWW-100%, respectively), and LDL-C concentrations
(70.91% and 109.71% for PPWW-50% and PPWW-100%, respectively) compared to control
animals. In contrast, PPWW-50% and PPWW-100% doses induced a remarkable decrease
in HDL-C levels in plasma by 30.99% and 40.55%, respectively, compared to untreated
animals. Nevertheless, the reduction in HDL-C between animals treated with the two doses
was insignificant.
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Figure 5. Effect of phosphate-processing wastewaters applied at two doses (50%: PPWW-50%; 100%:
PPWW-100%) to rats for 28 days on plasma triglycerides (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-cholesterol) and high-density lipoprotein cholesterol (HDL-cholesterol).
Values represent the mean ± SD (six animals were treated per group, n = 6). PPWW-50% or PPWW-
100% group versus control group. * p < 0.05; *** p < 0.001; **** p < 0.0001; ns, not significant.
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These harmful effects of PPWW on lipid parameter contents are complex and mul-
tivariate. It is possible that this hyperlipidemic effect was the result of the activation of
pancreatic lipase activity, leading to an increase in lipid absorption [74]. Moreover, the
upregulation of HMG-CoA reductase gene expression, a key enzyme in cholesterol biosyn-
thesis, could also arise. In addition, it has been previously suggested that heavy metals
can cause hepatic dyslipidemia and enhance acetyl-CoA carboxylase activity, an important
enzyme that regulates de novo lipogenesis [56].

3.6. Histopathological Study

The fixed hepatic portions from animals using H-E (hematoxylin and eosin) were ex-
amined to assess the histopathological alterations. As shown in Figure 6, typical structures
were observed in the livers of control rats. Compared to control rats, histopathological anal-
ysis of the liver of rats in the intoxicated group showed that while the liver of control rats
exhibited a normal structure, rats from the treated group (PPWW-50% and PPWW-100%)
presented dilatation of sinusoids, congestion of the centrilobular vein, and inflammatory
cell infiltration.
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Figure 6. Photomicrographs of the liver in control and experimentally treated rats (PPWW-50%
and PPWW-100%). Hepatic tissue sections were stained with hematoxylin and eosin (G×400). IF:
inflammatory cell infiltration; Cg: congestion of the centrilobular vein. Arrows: proliferation of
Kupffer cells; DS: dilatation of sinusoids.

The liver is one of the most sensitive predictors of chemical toxicity and correlates well
with serum biochemistry parameters, DNA structure, and histopathology with modest
interanimal variations [75]. This organ is a target for many heavy metals. For instance, it
has been reported that following the oral treatment of rats with river water contaminated
by heavy metals, the liver exhibited more significant metal accumulation than the kidney
and brain, which occurred in a concentration-dependent manner [76].
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The significant dose-dependent increase in bilirubin levels and activities of AST, ALT,
LDH, and ALP in plasma is consistent with the histopathological findings. In fact, we
detected a lobular disordered structure, congestion of the centrilobular vein, appearance
of necrotic cells, and activation of Kupffer cells, in the liver of the treated rats. These
deleterious effects support the accumulation of heavy metals derived from PPWW in the
liver. Similar liver damages were also documented in rats during their exposure to heavy-
metal mixtures [77,78]. Compared to control animals, the observed damage structure of the
liver could be a result of the generation of free radicals caused by continuous accumulation
of heavy metals in the hepatic tissue. Many studies have signaled that hepatocyte cell death
induced by oxidative stress plays a significant role in the liver tissue damage [79,80].

3.7. Effect of PPWW on DNA of Liver Tissue

As can be seen in the gel electrophoresis (Figure 7), the DNA extracted from the liver
cells of the control group presented an approximately intact band. Significant qualitative
alterations in the genomic DNA profile were observed for the DNA extracted from 50%
(PPWW-50%) and 100% (PPWW-100%) effluent-treated animals. The treatment of rats with
PPWW-100% markedly affected the DNA quality by generating a “ladder”-like pattern,
revealing liver DNA fragmentation and apoptosis. There was a significant change in
DNA fragmentation among the treated groups with PPWW-50% and those treated with
PPWW-100%.
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Figure 7. Photo of agarose gel electrophoresis showing qualitative analyses of the DNA extracted from
liver tissues of control and experimental rats. Control: DNA isolated from liver samples of untreated
control rats. PPWW-50%: DNA isolated from the livers of animals treated with 50% concentrations
of phosphate-processing wastewater. PPWW-100%: DNA isolated from animals treated with 100%
concentrations of phosphate-processing wastewater.

It has been reported that experimental rats exposed to toxic compounds suffer from
severe genotoxicity, materialized by DNA fragmentation. This phenomenon may be related
to repair mechanism-induced DNA lesions and conformational alterations, leading to
carcinogenesis, cell-cycle modulation, or apoptosis of nuclear proteins and DNA [81]. In
this context, previous studies have documented the mechanism of heavy metal-induced
hepatotoxicity, particularly DNA damage, when they go beyond permissible limits [78,82].
In these recent works, the authors emphasized the essential role of the generated reactive
oxygen species (ROS), which cause numerous injuries and undesirable changes in hepatic
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tissues. Additionally, Beltifa et al. [9] demonstrated that DNA damages occurred in the
hepatic cells of rats exposed to hospital wastewater, previously characterized by their rich
ness in heavy metals [7].

In this work, the animals were exposed to a mixture of potentially toxic elements
collected in situ but not a mixture of standards under laboratory well-controlled exposure
assays. The damage and alterations in the cellular function of liver tissue observed in
our work could be partially associated with the presence of elevated amounts of iron in
PPWW samples, as has been reported by Al-Basher [66]. Previous research has reported
that oxidative damage to DNA resulting from high metal levels may be related to the
development of hepatocellular carcinoma (HCC). Furthermore, the increased DNA damage
seems to be associated with the overexpression of the p53 gene, inducing apoptotic cell
death [80]. In addition, the ability of heavy metals to generate oxidative stress by the
overproduction of ROS (reactive oxygen species), which induces DNA injury, has been
demonstrated previously [83,84].

3.8. Heavy Metal Concentration in Blood and Liver Tissue

The experimental group of rats treated with the two doses of PPWW had significantly
higher blood and liver concentrations of Cd (p < 0.001 in blood and p < 0.0001 in liver)
and Pb (p < 0.0001 in blood and liver) than the control group. In addition, exposure to
PPWW-100% significantly increased the Cd concentration by 33% and 35% in the blood and
liver, respectively, compared to the PPWW-50% group. However, the measured levels of Pb
in the blood and liver in the experimental group receiving the PPWW-100% concentration
exhibited no significant difference when compared to the group exposed to PPWW-50%
(Figure 8).
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Figure 8. Cadmium and lead concentrations in rat blood (µg/L) and liver (µg/kg of tissue) of the
control and experimental groups of rats. Values represent the mean ± SD (six animals were treated
per group, n = 6). PPWW-50% or PPWW-100% group versus control group. ** p < 0.01; *** p < 0.001;
**** p < 0.0001; ns, not significant.
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In our study, we only assessed the concentrations of Pb and Cd in the blood and
liver of treated and untreated animals as well-known elements for their toxicity [42,82].
Until today, these two elements have been the subject of many studies, in which scientists
are increasingly discovering their innumerable harmful effects as well as innovative bio-
inspired technologies for their remediation [30,53,55]. Obviously, our choice does not
exclude the involvement of other metals in the effluent.

The mechanistic aspects by which potentially toxic elements exert their harmful effects
are not fully understood. In addition, several factors act on the accumulation of metals
in the organs, including the characteristics of the metal, the dose, and the duration of the
exposure, as well as their capacity for binding to ligands [82]. In comparison to unexposed
animals, both treated groups displayed significantly higher Pb and Cd contents in the
blood along with the liver, where only a Cd accumulation occurred in a dose-dependent
manner. For the Pb level, we did not find a significant difference between the two applied
doses of the effluent. This finding could be explained by the difference in gastrointestinal
absorption of heavy metals and saturation of their binding sites. In addition, metals’
toxicity, bioavailability, and antagonistic competitive effects could be involved in their
levels inside the different compartments and tissues of exposed organisms [85–87]. Hence,
it can be concluded that the disturbances in liver structure and function resulted from the
cumulative effects of potentially toxic elements.

4. Conclusions

The obtained results provide evidence, for the first time, that hepatic tissue might
be altered following chronic exposure to PPWW. Given the richness of PPWW in heavy
metals, it was remarkable that the detrimental effects obtained in the current work could
result from synergistic, antagonistic, or additive impacts of heavy metals. Hence, a specific
focus on the effects of combined heavy metals on the liver is essential in risk assessments
during contact with heavy metal-containing effluents. In light of these results, it appears
necessary to complete the research by (1) investigating the interactions among the different
metals present in wastewater and the potential resulting cocktail effect and (2) estimating
deeply the potential bioaccumulation and biomagnification of PPWW residues induced
hepatotoxicity and apoptosis in rat livers. In the light of the present study, and as future
guidelines for these bioassays, we plan to extend our work by analyzing other organs
that may be affected following exposure to the effluent and reinforce our findings using
toxicokinetic studies. Investigating the impact of chronic exposure to PPWW on other
animal and plant species, particularly those related to human food, is one of our short-term
prospects. Finally, this work constitutes a strong message, regarding the alarming situation
caused by this wastewater, freely discharged into the environment. Hence, the use of
existing or innovative biological and physicochemical approaches to detoxify PPWW has
become a priority in the mining basin of the Gafsa region in Tunisia.
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