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Abstract: Abundant, easily accessible, and low-cost agro-industrial residues represent attractive
alternatives for removing emerging contaminants from water. In this work, the aqueous adsorption
of caffeine/triclosan onto rice husk (RH) was studied in batch and continuous processes. For this
purpose, adsorbents with three particle size ranges (120–150, 300–600, 800–2000 µm) were prepared
and evaluated. The composition, structure, surface morphology, functionality, and specific surface
area of the RH biosorbents were determined. This characterization revealed that RH primarily consists
of lignin, cellulose, and hemicellulose, making up to 80.1% of its composition. RH also exhibited
an irregular surface, with several functional groups (OH, C=O, CH, C=C, C-OH), and a relatively
small specific surface area (1.18 m2/g). Batch tests were carried out using different RH sizes, doses
(1–50 g/L), and contact times (5–300 min), using 20 mL of caffeine/triclosan solutions (30 mg/L).
Tests were conducted to fit the most adequate kinetics and isotherm models. The optimal doses (g/L)
for caffeine and triclosan removal were 4.5 and 1.5 with small RH, 8.5 and 2.5 with medium RH,
and 50.0 and 10.0 with large RH, respectively. The optimal contact times for all three particle sizes
were 180 and 60 min. Triclosan removal was greater than that of caffeine (2.5–25.5%) with all three
particle sizes, requiring less adsorbent (2.5–5.0 times) and shorter times (3 times). The experimental
data fit better the Sips isotherm and Elovich kinetics models. The small (120–150 µm) particles
achieved the highest caffeine/triclosan batch adsorption capacities (6.3/28.6 mg/g). Continuous
tests were performed on fixed-bed columns of 1 cm in diameter, packed with 4, 5, and 8 cm of RH,
operated with hydraulic loading rates between 2 and 4 m3/m2day. Small particles also reached the
highest adsorption capacity in the removal of caffeine (352.7 mg/L) and triclosan (3797.2 mg/L), and
the experimental data were well-fitted to the Bohart–Adams model. The research results not only
demonstrate the effective removal of contaminants but also illustrate the versatility and applicability
of rice husk in various conditions and systems.

Keywords: adsorption; emerging contaminants; low-cost adsorbent; particle size; breakthrough curve

1. Introduction

The removal of emerging contaminants (ECs) is a topic of growing significance in
environmental management and public health [1]. These contaminants, which include
substances such as antibiotics and disinfectants, have gained even greater importance in
recent years due to global events such as the COVID-19 pandemic. During the pandemic, a
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significant increase in the consumption of chemicals was observed, with over 2000 tons
of disinfectants used in Wuhan alone during March 2020 [2]. The residues of these sub-
stances are considered ECs [3]. ECs are pseudo-persistent organic substances found in
low concentrations in the environment (ng/L–mg/L) [1]. They exhibit low concentrations,
wide variety (100,000 chemical substances) [1] and different physical–chemical character-
istics (solubility, volatility, bioaccumulation capacity, etc.). They exhibit low removal in
conventional wastewater treatments: for instance, ibuprofen has 32.8% and diclofenac has
no removal when treated with activated sludge at the laboratory scale [4]. This opens the
possibility for ECs to reach water bodies and enter the food chain [1].

Caffeine (trimethylated xanthine, CAS 58-08-2) is an EC of great interest. It is part of
the daily diet (consumed ~70 mg/person) because it is found in highly consumed beverages
such as coffee, tea, and soft drinks, and is present in some medications [5]. Caffeine is
water-soluble (21.6 g/L, at 25 ◦C), hydrophilic (log octane/water partition coefficient, log
Kow = 0.5) and has a log acid dissociation constant pKa = 8.3. About 5% of ingested caffeine
is not metabolized and is excreted in the urine [5]. Thus, it has been frequently found in
different water bodies (surface water: 3–1500 ng/L, groundwater: 10–80 ng/L), wastewater
(20–300 µg/L), and effluents from wastewater treatment plants (0.1–20 µg/L) [1]. Moreover,
caffeine and its metabolites are not volatile substances, which makes them persistent
(3–6 weeks under natural mineralization) in water bodies, generating toxic effects in biota
and the surrounding aquatic environment [6]. Caffeine (0.6 mg/L) combined with other
ECs, such as paracetamol (1.0 mg/L), can increase the reproductive activity of tadpoles of
the pipiens species, altering the trophic chain since it increases the predator’s number [7].

Triclosan (5-cloro-2-(2,4-diclorofenoxi) fenol, CAS 3380-34-5) is another highly consumed
EC (1500 ton/year). It is a synthetic and lipid-soluble antimicrobial agent used in healthcare
(e.g., antiseptic, disinfectant), veterinary products, and personal care products (e.g., hand
soaps, shampoos, deodorants, cosmetics) in concentrations between 0.1 and 2.0% [8,9]. Tri-
closan has low water solubility (10 mg/L, at 25 ◦C) and high bioaccumulation/hydrophobicity
(log Kow = 4.30) and pKa = 8.1; thus, triclosan is compatible with many materials [10]. In
aquatic habitats, triclosan is accumulated in sediments/sludge being deposited in agri-
cultural areas. Triclosan has been found in surface waters (1.4–40,000 ng/L), municipal
wastewater (0.07–14,000 µg/L), wastewater treatment plant effluents (23–5370 ng/L), seawa-
ter (<0.001–150 ng/L), and sediments (lake/river/other surface waters, <100–53,000 µg/kg in
dry weight) [1,11]. The presence of triclosan in the environment could produce bioaccumula-
tion (algae and snails), inhibit algae growth, show endocrine-disrupting effects, encourage
the formation/accumulation of toxic by-products, and even increase the development of
microbial resistance [9].

In the removal of caffeine/triclosan, several treatments have been employed, including
electrooxidation, membrane filtration, advanced oxidation processes (e.g., Photo-Fenton),
UV radiation + ozone catalysis, ozone oxidation, and reverse osmosis, among others [12–14].
These treatment methods have proven to be efficient in removing both contaminants (re-
moval = up to 80%). However, the high infrastructure and operational costs are not
the only limiting factors for their use (USD 10–450/m3), which is mainly in developing
countries [12,15,16]. Additional disadvantages include variable reagent dosing, low miner-
alization (in the case of ozonation), high energy consumption (electrooxidation), and short
lifespan due to saturation (membrane filtration, zero-valent iron particles). In contrast,
adsorption using husks, seeds, fibers, and other agro-industrial residues offers significant
advantages [1]. Using bio-adsorbents derived from these materials could also be profitable,
since their benefits include high availability (1000 million tons annually worldwide) [17],
simple conditioning, and being 28% less expensive (operating and maintenance) than con-
ventional wastewater treatments (USD 5–200/m3) [16,18,19]. Moreover, their composition
(minerals, lipids, polyphenols, and lignocellulosic compounds) allows them to have a
variety of functional groups (hydroxyl, carbonyl, carboxyl, methylene, etc.) that could
act as binding agents with ECs [1]. Furthermore, after their use, agro-industrial residues
can find additional applications, such as composting, biogas generation, reinforcement
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in composite materials, and energy generation through combustion/torrefaction. This
highlights their versatility and applicability in EC removal from water [1,20].

The removal of caffeine and triclosan using raw or treated agro-industrial residues
(e.g., moringa seeds, grape stalk, activated carbon from coconut pulp) has achieved values
around 40–80% [21,22]. Likewise, rice husk (RH) residues have demonstrated their effec-
tiveness in the removal of various ECs. Notable results include the removal of bisphenol
A (69.2%) [23], phenol (37.5–59.9%) [19], and 2,4-dichlorophenol (98%) [24]. Additionally,
RH has demonstrated an adsorption capacity of 47.0 mg/g for aspirin [24], and 5.9 mg/g
for triclosan [25]. These findings highlight the versatility of RH residues in removing ECs.
Moreover, rice husk (RH) residues have an abundant global production (16 MT annually),
and their reuse aligns with sustainable practices in line with the circular bioeconomy [1].

In this work, the removal of caffeine and triclosan from synthetic solutions using raw
RH in batch tests and fixed-bed columns was studied. RH was characterized to determine
how its constituents/characteristics influence the adsorption process. Batch tests were
performed to determine the optimal conditions to remove both contaminants. The kinetics
was determined fitting the experimental data to pseudo-first-order, pseudo-second-order,
Elovich, and diffusion models. Meanwhile, Langmuir, Freundlich, and Sips models were
used to model the equilibrium experimental data. Moreover, in order to determine whether
RH could be used in full-scale applications (treating a greater amount of water), tests were
carried out in fixed-bed columns. The data obtained were fitted to the Bohart–Adams
model.

2. Materials and Methods
2.1. Rice Husk Material Conditioning

Rice husk was obtained from a rice processing plant in Ecuador (location: S 2◦11′46.2′′ W
79◦53.173′). Caffeine and triclosan standards with purities greater than 99.0 and 97.0%, respec-
tively, were purchased from Sigma-Aldrich (Saint Louis, MO, USA).

RH was washed with drinking water to remove impurities from the surface, such
as dust and rice residues. The last washing cycle was carried out with distilled water.
Subsequently, a Venticell stove was used to dry the material at 60 ◦C for 24 h. Dry RH
was crushed using a Thomas knife mill and sieved in three different particle size ranges
using ASTM sieves (Miami, FL, USA): 120–150 µm (small), 300–600 µm (medium), and
800–2000 µm (large).

2.2. Experimental Model
2.2.1. Batch Adsorption Tests

In the batch adsorption tests, synthetic solutions of 30 mg/L of caffeine and triclosan
were individually used. In previous studies, solutions containing caffeine within the con-
centration range of 5–5000 ppm have been subjected to treatment using several adsorbents,
including both conventional raw materials like grape stalks and non-conventional mate-
rials such as activated carbons, nanoparticles, and nanocomposites [5,26,27]. A parallel
scenario is observed with triclosan, where investigations have encompassed concentrations
spanning from 0.05 to 400 ppm, employing activated carbon derived from diverse sources,
graphene, and some nanomaterials [28]. Moreover, working with synthetic wastewater
or solutions containing a single contaminant allows the evaluation of the effect/behavior
of both the adsorbent and the contaminant. The results of these tests are interesting since
parameters/variables can be determined and used with real wastewater [29].

The solutions (V = 20 mL) were placed in beakers and mixed in a CIMAREC multi-
point magnetic stirrer at 150 rpm. Optimal RH doses were determined using 8 different
doses to remove caffeine (1.0–60.0 g/L) and triclosan (0.1–12.0 g/L), for 180 min. The
optimal contact time and adsorption kinetics were determined using the optimal RH dose
for each particle size. Different adsorption times were tested for caffeine (0–360 min) and
for triclosan (0–180 min). Adsorption isotherms were obtained using optimal conditions
(dose and contact time) with caffeine/triclosan solutions with 7 concentrations (5–60 mg/L).
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All batch adsorption tests were performed in triplicate for the three particle size ranges,
keeping pH = 6.5 (±0.2) and temperature constant (room temperature = 22.7 (±1.1) ◦C).
The efficiency in the caffeine/triclosan removal was the variable analyzed in batch adsorp-
tion tests.

2.2.2. Fixed-Bed Columns

Fixed-bed column tests were carried out for the three particle sizes in duplicate.
Columns measuring 10 cm high and 1 cm diameter were used, being packed with 4, 5,
and 8 cm of RH. RH was washed with distilled water until this water was colorless. The
columns were operated using the caffeine/triclosan solutions (30 mg/L) with hydraulic
loading rates between 2 and 4 m3/m2day, which are in the range of hydraulic loads used
in previous studies at lab-scale with commercial adsorbents such as granular activated
carbon [30].

The experimental scheme used in this research is presented in Figure 1.
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2.3. Analytical/Instrumental Methods
2.3.1. Material Characterization

The point of zero charge (pHpzc) of RH was determined using a set of Erlenmeyer
flasks containing 50 mL of distilled water each. The pH was adjusted between 2 and 11
using 0.01 M NaOH and HCl solutions. RH (mass = 0.5 g) was added, and samples were
shaken at 150 rpm for 48 h. The test was carried out for the three particle sizes in duplicate.

The RH physical–chemical characterization was performed according to ASTM stan-
dards, and considering thermogravimetric analysis (TGA), aiming to understand how the
adsorbent composition and structure influence its capacity. TGA was performed using
a SHIMADZU thermo-balance model 50, between 20 and 600 ◦C, with a heating rate of
10 ◦C/min and a nitrogen flow of 50 mL/min. Moisture [31], extractives in organic and
aqueous solvents [32,33], lignin [34], hemicellulose and cellulose [35], ash [36], and volatile
material [37] were determined.
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The functional groups present on the RH surface (before/after adsorption) were
identified using a Perkin Elmer FTIR-6800 spectrometer equipped with a diamond crystal
ATR. Nine scans were performed in the range from 400 to 4000 cm−1 with a resolution
of 4 cm−1. The analysis of the RH surface was performed by using an ASPEX PSEM
eXpress scanning electron microscope with a working distance of 20.4 mm and 15 kV of
acceleration. The pore size (Barret–Joyner–Halenda, BJH) and the specific surface area
(Brunauer–Emmett–Teller, BET) of the small RH were determined by nitrogen adsorption
in a micrometric NOVA touch 1LX equipment. More than 6 multi-points were considered
to determine the surface characteristics of the material, which was conditioned by drying it
at 105 ◦C under vacuum.

2.3.2. Caffeine/Triclosan Quantification before/after the Adsorption Tests

The quantification of the concentration of both contaminants before/after the adsorp-
tion processes was carried out in a Specord® 210 Plus UV-VIS spectrophotometer. Caffeine
and triclosan solutions were prepared using distilled water and an NaOH solution (5 v/v %)
as solvents, respectively. The NaOH solution was used to avoid potential measurement
problems associated with the relatively low solubility of triclosan. The wavelength of
greatest absorbance (caffeine = 287 nm, triclosan = 295 nm) was determined by scanning
between 200 and 800 nm using 10 mg/L solutions. Subsequently, the calibration curves of
caffeine (y = 0.0153x + 0.0185, R2 = 0.996) and triclosan (y = 0.0068x − 0.0126, R2 = 0.995)
were obtained using solutions with concentrations between 1 and 70 mg/L [3].

2.4. Data Analysis
2.4.1. Isotherm and Kinetic Models

The data obtained in the kinetics tests were fit to the non-linear pseudo-first-order
(Equation (1)), pseudo-second-order (Equation (2)), and Elovich (Equation (3)) models:

qt= qe

(
1 − ek1t

)
(1)

t
qt

=
1

k2qe
2 +

t
qe

(2)

qt =
1
β

ln(1 + αβt). (3)

Furthermore, the intraparticle diffusion model (Equation (4)) was used to obtain
information about the adsorption process.

qt = kp
√

t + C (4)

where qt (mg/g) is the amount of caffeine/triclosan adsorbed at time t; qe (mg/g) is the
amount of caffeine/triclosan adsorbed at equilibrium; k1 (min−1) is the pseudo-first-order
rate constant; k2 (g/(mg min)) is the pseudo-second-order rate constant; α (mg/g min) is
the initial rate constant; β (mg/g) is the desorption constant; kp (mg/g min1/2) is the rate
constant of the intra-particle diffusion model; and C (mg/g) is a constant associated with
the thickness of the boundary layer.

The data obtained in the isotherm tests were fitted to the non-linear models of Lang-
muir, Freundlich, and Sips isotherms, which are shown in Equations (5)–(7), respectively:

qe =
qmKLCe

1 + KLCe
(5)

qe= KFCe
1/n (6)
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qe =
qm (K LCe)

1/n

1 + (K LCe)
1/n (7)

where qe (mg/g) is the amount of caffeine/triclosan adsorbed per unit mass of RH at
equilibrium; qm (mg/g) is the maximum adsorption capacity of RH; Ce (mg/L) is the
liquid phase concentration of caffeine/triclosan in equilibrium; KF (mg/g) is the Freundlich
capacity constant; KL (L/mg) is the Langmuir constant; and n is the Freundlich intensity
parameter. The selected models are classic models that have shown a good fit to the kinetics
and equilibrium models (R2 ~ 1) described by agro-industrial residues in the removal of
several contaminants [38].

The adsorption tests were performed in triplicate, and a control was placed with
distilled water/NaOH solution (5.0 w/w%) for caffeine/triclosan. Moreover, the adsorption
tests were carried out in the dark to avoid photodegradation.

2.4.2. Breakthrough Curve

The effluent–time concentration curves were used to evaluate the adsorption of caf-
feine/triclosan in continuous adsorption processes. The amount of caffeine/triclosan
adsorbed at the breakthrough time (qb) and saturation time (qs) (mg/g) was calculated
using Equations (8) and (9):

qs =
Co Q

1000 m

∫ ts

0
1 − Cs

Co
(8)

qb =
Co Q

1000 m

∫ tb

0
1 − Cb

Co
(9)

where Co (mg/L) is the initial concentration of caffeine/triclosan; Cb and Cs (mg/L) are the
effluent concentration (caffeine/triclosan) at the breakthrough time and the saturation time,
respectively; Q (mL/min) is the volumetric flow; m (mg) is the RH mass; tb and ts (min)
are the breakthrough and saturation times when C/Co is 0.1 and 0.9, respectively. The data
obtained were fit to the non-linear Bohart–Adams model (Equation (10)), since this model
provides an easy and rapid evaluation of adsorption performance. Moreover, it has shown
good fit when ECs are adsorbed by agro-industrial residues, such as cane bagasse [39].

Ct

Co
=

1

1 + e(
KBAN0h

u −KBAC0t)
(10)

where KBA (L/(min-mg)) is the rate constant of the Bohart–Adams model; No (mg/L) is the
adsorption capacity of the adsorbent per unit volume of the bed; h (cm) is the bed height;
t (min) is the service time of the column; u (cm/min) is the linear flow velocity; and Ct
(mg/L) is the concentration at time t.

In addition, useful parameters for column design were calculated, such as the empty
bed contact time (EBCT), the percentage of fractional bed utilization (%FBU); the height of
the mass transfer zone (hMTZ) (cm) using Equations (11)–(13), respectively [39,40]:

EBTC =
Vc

Q
100 (11)

%FBU =
qb
qs

10 (12)

hMTZ =

(
1 −

qb
qs

)
h (13)

where Vc is the fixed-bed volume (L) and Q is the flow rate (L/d).

2.5. Statistical Analysis

The optimal RH dose in the different particle sizes was determined by means of the
significant differences between the doses used in the adsorption of caffeine/triclosan and
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the performance achieved (removal efficiency, %) in batch tests. Analyses of variance
(ANOVA) with a single factor analyzed by Tukey’s test, with a significance level of 0.05,
were applied. Data normality was determined using normality (Shapiro–Wilks) and homo-
geneity (Levene) tests. Minitab 18 version 1.0 was the software used in statistical analysis.
The same statistical analysis was performed to determine the optimal bed height in the
adsorption of caffeine/triclosan in fixed-bed columns.

Data from kinetics (pseudo-first-order, pseudo-second-order, and Elovich models),
isotherm (Langmuir, Freundlich, and Sips), and Bohart–Adams non-linear models, consid-
ered descriptive statistical means, standard deviation, error, and linear regressions using
Microsoft Excel Solver version 2016. For this purpose, in batch and continuous tests, the
coefficient of determination (R2), the chi-square (χ2), and the sum of squared errors (SSE)
were calculated (Equations (14)–(16)) to determine the models that best fit the caffeine and
triclosan adsorption data:

R2 = 1 − ∑
(
Ve,exp − Ve,cal

)2

∑
(
Ve,exp − Ve,mean

)2 (14)

χ2 = ∑
(
Ve,exp − Ve,cal

)2

Ve,cal
(15)

SSE = ∑
(
Ve,exp − Ve,cal

)2 (16)

where Ve,exp are the experimental value of parameters (q, Cf/Co for batch tests and fixed-
bed columns, respectively), Ve,cal are the calculated parameters using the Solver tool,
Ve,mean is the mean of Ve,exp values [38].

3. Results and Discussion
3.1. Point of Zero Charge

The pH of the solution affects the charge of the adsorbent and the ionization of
adsorbate molecules, influencing adsorption. The pHpzc of RH in the three-particle sizes
was around 7.6 (Figure 2). This means that at pH values lower than the pHpzc, RH will
adsorb contaminants with a negative charge (since RH is positively charged), and at higher
pH values, contaminants with a positive charge will be adsorbed by RH (since RH is
negatively charged). Caffeine, as a weak electrolyte, exhibits a greater affinity for the RH in
an acidic pH due to hydrogen bonding formation [41]. Moreover, caffeine and triclosan
have pKa values of 10.4 and 7.9–8.1, suggesting that they could be more efficiently removed
at pH values lower than the pHpzc [5,42]. Because both contaminants do not dissociate at
acidic pH (they have a neutral charge), which minimizes repulsive electrostatic forces and
improves adsorption capacity. Therefore, working at 6.5 (±0.2) would favor the removal of
caffeine/triclosan [43].
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3.2. Physical–Chemical Characterization and TGA Analysis

Figure 3a (inset) shows the physical–chemical characterization of RH. RH shows a
high content of lignin (20.2%), hemicellulose (24.7%), and cellulose (35.2%), polysaccharides
that have functional groups such as phenols, carboxyl, and methyl. These groups provide
positive and negative charges to RH, which could enable it to retain contaminant molecules
through chemical forces (e.g., hydrogen bonding), taking into consideration the chemical
structure of caffeine and triclosan molecules [44,45]. Meanwhile, TGA shows that there
is a weight loss in the clean RH after continuous heating (below 100 ◦C). The initial
weight loss (8.6%) is mainly due to the water vaporization/moisture removal [46]. The
weight loss (20.6%) between 280 and 340 ◦C is attributed to hemicellulose degradation.
Meanwhile, the weight loss between 340 and 400 ◦C (29.8%) and the carbonization of RH
(temperature > 450 ◦C = 7.8%) are attributed to the degradation of cellulose and lignin,
respectively [47].
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and after the caffeine/triclosan adsorption. RH small = 120–150 µm; RH medium = 300–600 µm;
RH large = 800–2000 µm.

3.3. Morphological Characterization of RH

SEM and BET results are presented in Figure 3b. RH exhibits an irregular surface with
cavities and grooves where caffeine/triclosan could be retained. On the other hand, the
surface area of small RH (1.18 m2/g) is similar to that found in other studies, where values
between 0.14 and 7.14 m2/g were reported. The range for the RH specific surface area
is relatively wide since it depends on the rice species and its particle size [48]. However,
the surface area determined is lower than the values presented by RH with thermal and
chemical modifications (25.06 m2/g) [49].

The average pore radius was 4.99 nm, which according to the IUPAC corresponds
to a mesoporous material [50]. This is verified with the nitrogen adsorption–desorption
isotherms of RH (Figure 3), which is a combination of the type II and V isotherms, that
characterizes macro and mesoporous adsorbents. The shape of the RH hysteresis loop is
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type H1, with a sharp inflection in the range of 0.7–1.0 P/Po. The hysteresis presents two
parallel and practically vertical bands that indicate the presence of cylindrical pores [6].
Therefore, the morphological characteristics related to the irregular surface and presence of
pores in RH could favor the adsorption process between it and caffeine/triclosan.

3.4. FTIR Spectroscopy Analysis

Figure 3c shows the FTIR spectra of RH before/after the adsorption process. The
region between 3300–2500 cm−1 denotes the presence of OH- and CH- bonds. The bands
around 1639–1723 cm−1 correspond to the C=O stretch, while the band around 1375 cm−1

corresponds to the CH bending. Both groups can be attributed to the aromatic groups of
hemicellulose and lignin [38]. Meanwhile, the bands around 1039–1370 cm−1 correspond
to the vibration of the C=O group in lactones.

After caffeine/triclosan adsorption under the same conditions for all RH sizes, the
spectra of three RH sizes showed changes. Modifications in the intensity of bands around
2924–3500 and 1100–1490 cm−1, which are related to lignin, cellulose, and hemicellulose,
were evident. The intensity of the band around 1598 cm−1, assigned to the carbonyl group,
changed after adsorption. The intensity after caffeine/triclosan adsorption suggest chemical
reactions/attraction forces between caffeine/triclosan molecules and the functional groups
of the RH surface [21].

3.5. Optimal Adsorption Parameters

Figure 4 shows the influence of the RH dose and contact time in the removal of caffeine
and triclosan for each particle size. For caffeine removal (Figure 4a), the optimal doses for
small particles (120–150 µm) and medium particles (300–600 µm) were 4.0 and 8.5 g/L,
achieving removals of 72.5 (±1.6) and 71.1 (±0.6) %, respectively. The lower dose of the
smaller particles is associated with their larger surface area and, consequently, a greater
number of active sites [1]. Initially, as the RH dose increases, the caffeine removal also
increases. However, after reaching the maximum adsorption with small and medium
particles, an increase in the RH dose reduced the caffeine removal (20–30%). At first, an
increase in the RH dose leads to greater caffeine removal due to the availability of more
adsorption sites. However, once the adsorbent becomes saturated, the escalation of the
RH dose no longer results in a proportional increase in caffeine removal. Additionally, as
the RH dose increases, there could be heightened competition among caffeine molecules
for the available adsorption sites, potentially diminishing the adsorption efficiency [26,51].
Furthermore, the potential influence of interactions among RH particles and variations in
adsorption kinetics based on particle size should also be taken into account [52]. A similar
behavior was observed with adsorbents such as almond shell ash, bentonite modified
with hexadecyltrimethylammonium, activated carbon from Azolla filiculoides and olive
pome+magnetite [26].

For the large particles (800–2000 µm), the optimal RH dose increased considerably,
reaching 50.0 g/L with a maximum adsorption percentage of 96.5 (±1.7) %. In this case,
the caffeine removal increases while increasing the RH dose, due to the higher availability
of surface area [52]. Figure 4c shows the optimal doses for triclosan removal. The optimal
doses for the small, medium, and large particle sizes were 1.5, 2.5, and 10.0 g/L, respectively;
these doses achieved removals of 97.2 (±1.0), 96.9 (±0.1), and 98.7 (±0.4) %, respectively.
The absence of interaction between rice husk (RH) particles in the case of triclosan, unlike
what occurs with caffeine, can be explained by the specific chemical and physical properties
of these substances and their relationship with RH particles. This could be due to differences
in the size and shape of the molecules, where caffeine, being larger and more complex,
could favor the formation of aggregates with RH particles, while triclosan, being smaller
and having a different structure, could not have a similar effect. Other properties such as
the charge and polarity of the two contaminants can also influence the behavior of RH [53].
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On the other hand, Figure 4b,d show the optimal contact time for the removal of
caffeine and triclosan, respectively. The optimal contact time for the caffeine removal using
the small, medium, and large particle sizes was 180 min. At that time, the highest removal
percentage was achieved, reaching between 71.4 (±0.8) and 96.2 (±1.7) %. For triclosan, the
optimal contact time for the three particle sizes was 60 min, achieving removals between
96.9 (±0.1) and 98.7 (±0.4) %. The removal of caffeine and triclosan was greater than 80%
and 70% in the first 60 and 10 min, respectively. However, over time, the increment in
adsorption is minimal, arguably due to the increasing challenge of filling available active
sites due to the repulsion between caffeine molecules and those already adsorbed.

Therefore, it was verified that the particle size influences the adsorption process. An
adsorbent with a smaller particle size requires a lower dose because the surface area and
the available sites to retain the caffeine/triclosan are higher [6]. Likewise, the characteristics
of the contaminants will facilitate or not their removal from the aqueous medium. In this
case, triclosan has a lower solubility in water (4.8 × 10−4 times) compared to caffeine,
which allows it to be adsorbed more quickly (3 times) with a lower RH dose (2.7–5.0 times).
Moreover, the high Kow of triclosan results in a greater affinity with organic matter so it
easily adheres to the RH surface [54]. Another factor that hinders the caffeine removal is its
dipole moment (3.64 D) since it could affect the separation processes from the solution. This
is due to the strength of the bonds that exist between the caffeine molecules and water [5].
Furthermore, caffeine has a natural pH of 6.55 (weak base), which causes it to dissolve only
partially in the working pH as RNH+, thereby reducing its adsorption capacity [41].

3.6. Adsorption Isotherms and Kinetics

The adsorption of caffeine and triclosan on RH was analyzed at different times to
study the rate of adsorption and the adsorption mechanism. The fitting to the different
models is presented in Figure 5. The caffeine adsorption on large and small RH, and
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triclosan adsorption on large RH particles, were better fitted to the pseudo-second-order
model (R2 = 0.971–0.987). Meanwhile, the adsorption using medium size particles better
fitted the Elovich model (R2 = 0.996–0.999) for both contaminants. The χ2 and SSE values
show lower values (closer to zero) for the models that best fit the data obtained (higher R2,
closer to 1).
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Figure 5. Kinetics models for adsorption of caffeine and triclosan (concentration = 30 mg/L) on
three particle sizes. Doses for caffeine/triclosan: small particles = 4.0/1.5 g/L; medium size particles:
8.5/2.5 g/L; and large particles: 50/10 g/L. Agitation rate = 150 rpm. Black points = experimental
data; red line = pseudo-first-order model (PFO); blue line = pseudo-second-order model (PSO); green
line = Elovich model (E).

The pseudo-second-order model assumes that the contaminant concentration is con-
stant over time and that the total number of active sites depends on the amount of con-
taminant adsorbed at equilibrium [55]. Caffeine and triclosan adsorption also followed a
pseudo-second-order model when cotton-derived carbon microtubes were used. The qe
values achieved were higher (caffeine = 19.8–212.9 times, triclosan = 39.8 times) than those
of this study, probably due to the thermal modification of cotton and its greater surface
area (380–540 m2/g) [56]. Although using modified residues such as oxidized biochar from
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pine needles and RH nanosilica, lower qe values were obtained (caffeine: 2.0–40.2 times,
triclosan: 17.5 times) compared to those of this study [57,58].

On the other hand, the Elovich model assumes that the adsorbent surface is energet-
ically heterogeneous, and that adsorption kinetics is not substantially affected by either
desorption or interactions between adsorbed species [55,59]. Furthermore, α associated
with adsorption rate and β associated with desorption rate indicate the interaction between
RH and caffeine/triclosan. High values of α (13.6–110.1 mg/(g min)) and low values of β
(0.62–0.68 mg/g) suggest the appearance of stable interactions [55]. In previous studies in
which caffeine (adsorbent: tea-waste biochar and Gliricidia sepium biochar) and triclosan
(adsorbent: PVC and activated carbon from stevia residues) were removed, the experimen-
tal data were also fitted to the Elovich model [55,59–61]. Some authors suggest that if the
experimental data fit the Elovich model, chemisorption occurs [59,60]. Therefore, the best
fit to pseudo-second-order/Elovich models adding to the presence of the functional groups
in RH (Figure 3c) and pHpzc value suggest that the mechanism involved in the removal of
caffeine and triclosan using RH was chemisorption. Nevertheless, other authors indicate
that the fitting to the pseudo-second-order models do not reveal the adsorption mecha-
nisms, since to determine the adsorption mechanisms (physics, chemistry), it is necessary
to use several analytical techniques (FTIR, SEM, BET, Raman, Z potential, etc.) together
with enthalpy and entropy changes (adsorption thermodynamics) and activation energies
and adsorption [62]. Indeed, several studies suggest that caffeine/triclosan adsorption
on materials like rice husk and carbonaceous materials involves a range of interactions,
including π–π, hydrogen bonding, and electrostatic attractions. The adsorption efficiency
is influenced by factors such as the pH of the medium and the charge of functional groups
on the adsorbent’s surface. Moreover, caffeine, with its high dipole moment, forms elec-
trostatic bonds with charged functional groups on the adsorbent, such as OH and COOH
groups. Furthermore, the presence of polar groups on the adsorbent’s surface allows for
dipole–dipole interactions with caffeine/triclosan [41,43]. These findings are consistent
with the conditions of our study, suggesting that the predominant mechanism for the re-
moval of caffeine and triclosan involves π–π stacking, hydrogen bonding, and electrostatic
attractions. The parameters for both models are shown in Table 1.

Table 1 also shows the parameters for the intraparticle diffusion model. According to
Tran et al. (2017), the intraparticle diffusion model can be useful to identify the reaction
pathways, the adsorption mechanisms and also predict the adsorption rate control step [63].
In the process of removing a contaminant present in an aqueous medium using an adsorbent
(solid–liquid sorption), contaminant transfer is generally characterized by film diffusion
or external diffusion, surface diffusion and pore diffusion, or combined surface and pore
diffusion. In summary, if the qt vs. t1/2 curve passes through the origin, then the adsorption
process is limited only by intraparticle diffusion. However, Figure 6 shows the presence of
two linear zones, whereby the adsorption process is controlled by a two-step mechanism.
In the first stage, caffeine/triclosan are transported from the liquid phase to the external
surface of the RH through the hydrodynamic boundary layer (film diffusion). In the second
stage, there is a slow diffusion (intraparticle diffusion) of the caffeine/triclosan molecules
from the outside of the RH to its pores. In the final stage, the caffeine/triclosan are rapidly
adsorbed in the pores [62].

On the other hand, the parameter values and the fittings to the Langmuir, Freundlich,
and Sips isotherm models are shown in Table 1 and Figure 7, respectively. The adsorption
of caffeine and triclosan fit well to the three isotherm models used. Nevertheless, the ad-
sorption in the small (caffeine, triclosan), medium (caffeine, triclosan), and large (triclosan)
RH particles show a better fitting to the Langmuir and Sips models (R2 > 0.91).
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Table 1. Parameters of kinetics and isotherm models for caffeine and triclosan adsorption.

Model Parameter
Caffeine Triclosan

Small
RH

Medium
RH

Large
RH

Small
RH

Medium
RH

Large
RH

K
in

et
ic

s

qe experimental
[mg/g] 5.242 1.787 0.648 18.311 12.466 2.865

Pseudo-first-
order

qe [mg/g] 6.329 1.824 0.695 18.057 12.314 3.038
k1 [min−1] 0.015 0.107 0.039 0.375 0.397 0.105

Pseudo-
second-
order

qe[mg/g] 8.271 1.938 0.770 18.951 12.826 3.591
k2 [g/(mg

min)] 0.002 0.106 0.075 0.043 0.075 0.034

Elovich
α [mg/(g

min)] 0.137 13.613 0.189 110.139 66.888 0.844

β [mg/g] 0.420 0.622 7.891 0.682 1.194 1.285

Intra
particle

diffusion

Kp1 [mg/(g
min1/2)]

0.721 0.060 0.046 0.840 0.581 0.773

C1 [mg/g] −1.643 1.295 0.223 13.743 9.502 −0.535
R2 0.989 0.934 0.895 0.967 0.988 0.999

SSE 0.033 0.032 0.019 0.062 0.010 8.436 × 10−4

Kp2 [mg/(g
min1/2)]

0.358 0.041 0.007 0.915 0.330 0.131

C2 [mg/g] 0.878 1.363 0.621 12.473 10.383 2.063
R2 0.601 0.996 0.996 0.835 0.996 0.984

SSE 0.880 6.500 × 10−5 1.760 × 10−6 0.426 0.001 6.944 × 10−4

Is
ot

he
rm

s

Langmuir

qe experimental
[mg/g] 6.425 3.182 0.578 28.635 19.164 4.378

qm [mg/g] 7.083 4.433 0.668 70.772 30.613 7.012
KL[L/mg] 0.309 0.178 0.382 0.042 0.147 0.097

R2 0.941 0.958 0.899 0.955 0.985 0.996
χ2 0.363 0.032 0.007 0.257 0.054 0.003

SSE 1.816 0.129 0.018 22.995 3.216 0.036

Freundlich

KF
[(mg/g)1−1/n] 2.264 0.991 0.249 3.419 4.723 0.819

1/n 0.343 0.438 0.316 0.768 0.580 0.601
R2 0.925 0.956 0.956 0.932 0.952 0.980
χ2 0.457 0.075 0.003 0.394 0.177 0.013

SSE 2.283 0.300 0.008 35.027 10.545 0.180

Sips

qm[mg/g] 8.147 3.450 0.810 31.400 22.579 5.747
KL [L/mg] 0.218 0.276 0.248 0.165 0.264 0.148

1/n 0.766 1.760 0.707 2.196 1.513 1.202
R2 0.931 0.991 0.927 0.998 0.995 0.998
χ2 0.423 0.016 0.013 0.011 0.018 0.001

SSE 1.694 0.048 0.005 0.943 1.062 0.019

Note: C1 and C2 = constant associated with the thickness of the boundary layer in linear zone 1 and 2, respectively.
Kp1 and Kp2 = rate constant of the intraparticle diffusion model in linear zone 1 and 2, respectively.
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Langmuir’s model supposes that caffeine/triclosan adsorption occurs in a monolayer
without interaction or steric hindrance between adsorbate molecules, because the active
sites have the same energy (same affinity for adsorbate molecules) [55]. Meanwhile, the
Sips model is a combination of Langmuir and Freundlich models, which indicates that
caffeine/triclosan can occupy more than one RH adsorption site (heterogeneous surface).
The qm values calculated with the Langmuir (caffeine) and Sips (triclosan) models are very
close to those obtained experimentally, which suggests that a monolayer and heterogeneous
adsorption occurs, respectively [64]. The results obtained coincide with studies in which it
is observed that the adsorption of caffeine on adsorbents such as tea leaves, orange, and
banana peels, activated carbon from grape stem, water hyacinth biochar, activated carbon
from coconut residues, etc., fit better the Langmuir model [38,65]. Likewise, triclosan
adsorption using nanosilica from RH and activated carbon from civilian gas masks fit better
to the Sips model [56,58].

On the other hand, the adsorption using the large RH particles fit better to the Fre-
undlich model (R2 = 0.96) in the caffeine removal. The same happened with adsorbents
such as biochar from tea-waste and Gliricidia sepium [59,60]. The Freundlich model sup-
poses multilayer adsorption because the energy is not equal on the surface. Likewise, the
χ2 (0.001–0.257) and SSE (0.008–1.693) values are lower (close to zero) in the models that
better fit the data obtained.

Furthermore, the KL and n values in the Langmuir and Freundlich models are lower
than 1.0, which indicates that the caffeine/triclosan adsorption in RH is favorable. In
the triclosan adsorption, the KL value is even lower than 0.1 (low surface energy), which
indicates a greater intensity in the bonds between triclosan and RH [38,66].
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These results show that the RH adsorption capacity is a function of the particle size
and the characteristics of the contaminant (solubility, Kow). The small RH particles have
a higher adsorption capacity for caffeine/triclosan (8.1/31.4 mg/g) than the medium
(3.4/22.6 mg/g) and the large RH particles (0.8/5.7 mg/g), respectively.

The adsorption capacity achieved by RH in caffeine removal is comparable to that
achieved with other raw low-cost adsorbents, such as groundnut shell (100 µm, 4.21 mg/g),
grape stalk (700 µm, 0.938 mg/g), Balanites aegyptiaca seeds (<100 µm, 4.28 mg/g), and
treated adsorbents: pine needles oxidized biochar (<300 µm, 5.35 mg/g) and rice husk char-
coal (8.0 mg/g) [22,41,67]. The caffeine adsorption by RH is even higher than adsorbents
such as grape stalk (~1 mg/g), which has greater surface area (6.23 m2/g) and pore volume
(0.003 cm3/g), comparable to RH (0.006 cm3/g).

Something similar happened in the removal of triclosan with activated carbon from
nanosilica from RH with a specific surface between 208 and 223 m2/g (2.74 mg/g) [58],
coconut pulp residues of 595 µm (2.02–31.57 mg/g) [21], and microplastic polystyrene with
a specific surface between 0.58 and 2.53 m2/g (0.29–0.43 mg/g) [9]. However, there are
other adsorbents (e.g., grape stalk modified with phosphoric acid, grape-stalk-activated
carbon, pineapple-plant-leaves-activated carbon, etc.) with higher adsorption capacity
than RH (>120 mg/g) to remove caffeine, triclosan, and other ECs [41]. The latter received
chemical or thermal treatments, but the costs or the environmental impact that could be
generated are not always indicated. Raninga et al. (2023) indicates that the cost of physical
and chemical activation with LiOH, KOH, and H2SO4 ranges from 1.72 to 2.89 UDS/kg of
adsorbent [68]. Similarly, H3PO4-modified berry leaves are priced at USD 10.68/kg, while
activated carbon costs USD 172.96/kg [69].

3.7. Fixed-Bed Columns

The main results obtained in fixed-bed columns are summarized in Table 2. The tests
in the fixed-bed columns were carried out to determine the influence of the bed height
and the hydraulic load on the three particle sizes of RH to remove caffeine/triclosan. The
efficiencies achieved in the removal of caffeine and triclosan using the three sizes of RH at
bed heights of 4, 5 and 8 cm did not show significant differences (p > 0.05). On the other
hand, the hydraulic load (4 m3/m2-day) produced clogging in the columns that used the
small RH at 30 min of operation (spillage of the caffeine/triclosan solution was observed
at the top of the column), so it was not possible to construct the breakthrough curve for
this hydraulic load and establish its influence on the three particle sizes. The experimental
breakthrough curves for the three RH particle sizes using a bed of 4 cm heigh and with a
hydraulic loading rate of 2 m3/m2-day are presented in Figure 8.

Table 2. Main results of adsorption experiments in fixed-bed columns.

EC
Particle

Size
(µm)

Mass
(g)

Vc
(L)

EBTC
(d)

FBU
(%)

hMTZ
(cm)

C/C0 = 0.1 C/C0 = 0.9

tb
(min)

Vb
(mL)

qb
(mg/g)

ts
(min)

qs
(mg/g)

C
af

fe
in

e 120–150 1.741

0.003 0.436

91.04 0.36 14 7.15 0.12 169 0.13

300–600 1.689 88.07 0.47 10 5.15 0.10 142 0.12
800–2000 1.545 76.83 0.93 6 3.00 0.08 133 0.10

Tr
ic

lo
sa

n 120–150 1.741 24.00 3.04 26 13.15 0.30 1259 1.26
300–600 1.489 16.62 3.34 12 6.15 0.17 684 1.01
800–2000 1.145 14.60 3.42 7 3.50 0.12 341 0.84
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The size of the adsorbent particles is a very important parameter in the operation of
fixed-bed columns since it defines the available surface area, the void fraction, and the avail-
able path for the movement of caffeine/triclosan solutions [70]. An increase in particle size
decreased the adsorption capacity at breakthrough time (qb decrease caffeine = 16.7–33.3%
and triclosan = 43.3–60%) and saturation time (qs decrease: caffeine = 7.7–23.1% and
triclosan = 19.8–33.3%). The smaller RH particles allow a shorter diffusion path for the
caffeine/triclosan molecules [70]. The effect of particle size on adsorption capacity in both
breakthrough time and saturation time is lower for caffeine, probably due to its physico-
chemical characteristics (e.g., high water solubility) [5]. Something similar happens with the
values of the breakthrough/saturation time. Therefore, an increase in RH particle size re-
sults in faster bed depletion and lower volume (Vb) of treated water up to the breakthrough
time [39].

The smaller RH particles also had lower hMTZ than the medium (1.3/1.1) and large
(2.6/1.1) particles for both contaminants (caffeine/triclosan). A smaller particle size allows
a higher mass transfer rate and thus a smaller mass transfer zone [71]. This shows that the
small RH has better performance. A similar behavior was observed in cadmium adsorption
when using date palm trunk fiber with size ranges of 250–355 and 560–630 µm [72]. A
smaller mass transfer zone with a higher slope can also be identified on the Cf/Co vs. t
plot (Figure 7). Increasing hMTZ in the larger RH reduced fractional bed utilization (FBU)
by 2.97–14.21% for caffeine and 7.38–9.40% for triclosan. The larger particles leave larger
spaces between each other (the fraction of voids in the bed increases), so the contact time
between the caffeine/triclosan and the RH particles decreases, and this reduces the fraction
of bed which is being effectively used [70].

Table 3 shows the results of the fitting of the experimental data obtained in the ab-
sorption of fixed-bed columns to the Bohart–Adams model. The Bohart–Adams model
correlates C/Co with contact time in a continuous adsorption system. The model considers
only the first region of the breakdown curve where C/Co < 0.5 and assumes negligible mass
transfer–movement of caffeine/triclosan from the aqueous medium to the RH. Therefore,
the adsorption rate will depend on the residual capacity of the adsorbent and the concen-
tration of the contaminants [73]. Both caffeine and triclosan adsorption show a relatively
good fit to the model, presenting R2 values between 0.91 and 0.99 and very low values
of SSE (2.706 × 10−3–0.245) and χ2 (6.151 × 10−3–0.032). A good fit of the experimental
data to the Bohart–Adams model indicates that surface diffusion is the rate-limiting step in
the adsorption process. This is because the Bohart–Adams model is designed to capture



Water 2024, 16, 197 18 of 21

the early stages of adsorption, where the rate of transfer at the surface dominates, and the
external mass transfer is negligible [74].

Table 3. Bohart–Adams parameters for caffeine and triclosan adsorption.

EC Particle Size
(µm)

KAB
[L/(minxmg)]

N0
(mg/L) R2 χ2 SSE

Caffeine
120–150 1.340 × 10−3 352.706 0.993 2.685 × 10−3 2.706 × 10−3

300–600 2.114 × 10−3 216.708 0.981 6.151 × 10−3 0.042
800–2000 2.828 × 10−3 119.931 0.943 0.017 0.101

Triclosan
120–150 1.172 × 10−4 3797.217 0.929 0.028 0.245
300–600 1.379 × 10−4 2628.774 0.910 0.032 0.210

800–2000 2.962 × 10−4 1240.89 0.937 0.024 0.133

The values of adsorption capacity (No) for triclosan are higher, and of the Bohart–
Adams constant (KBA) are lower compared to those for caffeine. This is associated with the
lower solubility/higher hydrophobicity of triclosan. A similar behavior was observed in
the removal of sulfapyridine (less soluble in water) and sulfamethoxazole (more soluble in
water), in which sulfapyridine reached a higher removal (20.72 mg/L) [73]. Furthermore,
the smallest particles presented the greatest adsorption capacities, which is related to their
largest surface area [1].

4. Conclusions

The use of rice husk represents a promising alternative for the removal of emerging
contaminants such as caffeine and triclosan, as is evident from the batch/continuous tests
carried out in this work. The optimal particle size for caffeine and triclosan removal was
found to be the small (120–150 µm), with recommended doses of 4.0 g/L and 1.5 g/L,
along with contact times of 180 min and 60 min, respectively. The size of the RH and the
characteristics of caffeine/triclosan (solubility, Kow) notably influenced their adsorption in
batch and fixed-bed columns. The optimal dose of the small RH was lower than the other
two sizes (caffeine = 2.1–12.5 times, triclosan = 2.0–6.7 times), reaching efficiencies of 72.5
and 97.2% for caffeine and triclosan, respectively. The optimal contact time for caffeine
removal was 3.0 times greater than triclosan. The adsorption of both contaminants for most
particle sizes was better fitted to the Elovich and Sips/Langmuir models; and the removal
of both contaminants was dominated by film and intraparticle diffusion. In addition, the
operation of the fixed-bed columns fitted the Bohart–Adams model quite well, with the
small RH particles providing the most efficient removal of both contaminants (caffeine:
qb = 0.12 mg/g, qs = 0.13 mg/g and triclosan: qb = 0.30 mg/g, qs = 1.26 mg/g). The
relatively high adsorptive capacity of RH, and its affinity with the contaminants studied,
open the possibility of exploring its use in water treatment technologies that could benefit
from its availability, ease of processing, and relatively low cost.
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