Designing, Modeling and Developing Scale Models for the Treatment of Water Contaminated with Cr (VI) through Bacterial Cellulose Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Bacterial Cellulose (BC)
2.2. The Research Parameters
2.3. Desorption–Adsorption
2.4. Column Design and Experiments
2.5. Development of Adsorption Models
- Biomass to use.
- Target volume.
- Target concentrations.
- Particle density.
- Maximum adsorption capacities.
- Constant Kf.
3. Results
3.1. Result of Removal of Cr (VI)
3.2. Redesign of Process Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayago, U.F.C.; Castro, Y.P.; Rivera, L.R.C.; Mariaca, A.G. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review). Environ. Monit. Assess. 2020, 192, 141. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, P.K.; Nagraj; Sharma, N.; Kumari, S.; Yadav, M.; Singh, S.; Mani, A.; Yadava, S.; Bharati, S.L. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol. Bioeng. 2023, 120, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Carreño Sayago, U.F. Diseño y evaluación de un biosistema de tratamiento a escala piloto de aguas de curtiembres a través de la Eichhornia crassipes. Rev. Colomb. De Biotecnol. 2016, 18, 74–81. [Google Scholar] [CrossRef]
- Almeida, J.C.; Cardoso, C.E.; Tavares, D.S.; Freitas, R.; Trindade, T.; Vale, C.; Pereira, E. Chromium removal from contaminated waters using nanomaterials–a review. TrAC Trends Anal. Chem. 2019, 118, 277–291. [Google Scholar] [CrossRef]
- Hu, H.; Tang, C.S.; Shen, Z.; Pan, X.; Gu, K.; Fan, X.; Lv, C.; Mu, W.; Shi, B. Enhancing lead immobilization by biochar: Creation of “surface barrier” via bio-treatment. Chemosphere 2023, 327, 138477. [Google Scholar] [CrossRef]
- Arumugam, M.; Gopinath, S.C.; Anbu, P.; Packirisamy, V.; Yaakub, A.R.W.; Wu, Y.S. Efficient Copper Adsorption from Wastewater Using Silica Nanoparticles Derived from Incinerated Coconut Shell Ash. BioNanoScience 2024, 1–11. [Google Scholar] [CrossRef]
- Blaga, A.C.; Zaharia, C.; Suteu, D. Polysaccharides as support for microbial biomass-based adsorbents with applications in removal of heavy metals and dyes. Polymers 2021, 13, 2893. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Ballesteros Ballesteros, V. Recent Advances in the Treatment of Industrial Wastewater from Different Celluloses in Continuous Systems. Polymers 2023, 15, 3996. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA. Water 2023, 15, 3484. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Ballesteros Ballesteros, V. Development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Sci. Rep. 2023, 13, 1970. [Google Scholar] [CrossRef] [PubMed]
- Laavanya, D.; Shirkole, S.; Balasubramanian, P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. J. Clean. Prod. 2021, 295, 126454. [Google Scholar] [CrossRef]
- AL-Kalifawi, E.J.; Hassan, I.A. Factors Influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza). Baghdad Sci. J. 2014, 11, 1420–1428. [Google Scholar] [CrossRef]
- Domskiene, J.; Sederaviciute, F.; Simonaityte, J. Kombucha bacterial cellulose for sustainable fashion. Int. J. Cloth. Sci. Technol. 2019, 31, 644–652. [Google Scholar] [CrossRef]
- Zhu, C.; Li, F.; Zhou, X.; Lin, L.; Zhang, T. Kombucha-synthesized bacterial cellulose: Preparation, characterization, and biocompatibility evaluation. J. Biomed. Mater. Res. Part A 2014, 102, 1548–1557. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Castro, Y.P. Development of a composite material between bacterial cellulose and E crassipes, for the treatment of water contaminated by chromium (VI). Int. J. Environ. Sci. Technol. 2022, 19, 6285–6298. [Google Scholar] [CrossRef]
- Chen, X.; Cui, J.; Xu, X.; Sun, B.; Zhang, L.; Dong, W.; Chen, C.; Sun, D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020, 229, 115512. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ye, M.; Zhang, X.; Zhang, H.; Wang, G.; Zhang, Y. Hierarchically porous poly (amidoxime)/bacterial cellulose composite aerogel for highly efficient scavenging of heavy metals. J. Colloid Interface Sci. 2021, 600, 752–763. [Google Scholar] [CrossRef]
- Oktaviani, O.; Yunus, A.L.; Nuryanthi, N.; Syahputra, A.R.; Puspitasari, T.; Indriyati, I.; Safitri, A.T.; Mellawati, J. Adsorption of Cu (II) and Pb (II) onto bacterial cellulose-co-polyacrylamide: A study of equilibrium adsorption isotherm. AIP Conf. Proc. 2023, 2568, 030005. [Google Scholar]
- Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite materials for Cu and Pb Ions in aqueous solutions. Materials 2020, 13, 3703. [Google Scholar] [CrossRef]
- Mir, I.S.; Riaz, A.; Roy, J.S.; Fréchette, J.; Morency, S.; Gomes, O.P.; Dumée, L.F.; Greener, J.; Messaddeq, Y. Removal of cadmium and chromium heavy metals from aqueous medium using composite bacterial cellulose membrane. Chem. Eng. J. 2024, 490, 151665. [Google Scholar] [CrossRef]
- Hosseini, H.; Mousavi, S.M. Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: Experimental and simulation study. J. Clean. Prod. 2021, 278, 123817. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design and development of a biotreatment of E. crassipes for the decontamination of water with Chromium (VI). Sci. Rep. 2021, 11, 9326. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.S.; Jain, C.K.; Yadav, A.K. Heavy metal removal by fixed-bed column—A review. ChemBioEng Rev. 2018, 5, 173–179. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Zhang, J.; Liang, S.; Chang, S.W.; Nguyen, D.D.; Liu, Y. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour. Technol. 2017, 229, 78–87. [Google Scholar] [CrossRef]
- Dissanayake, D.M.R.E.A.; Chathuranga, P.K.D.; Perera, P.I.; Vithanage, M.; Iqbal, M.C.M. Modeling of Pb (II) adsorption by a fixed-bed column. Bioremediation J. 2016, 20, 194–208. [Google Scholar] [CrossRef]
- Ahmad, M.; Lubis, N.M.; Usama, M.; Ahmad, J.; Al-Wabel, M.I.; Al-Swadi, H.A.; Rafique, M.I.; Al-Farraj, A.S. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. Environ. Pollut. 2023, 335, 122319. [Google Scholar] [CrossRef]
- Bringas, A.; Bringas, E.; Ibañez, R.; San-Román, M.F. Fixed-bed columns mathematical modeling for selective nickel and copper recovery from industrial spent acids by chelating resins. Sep. Purif. Technol. 2023, 313, 123457. [Google Scholar] [CrossRef]
- Ahmad, A.; Singh, A.P.; Khan, N.; Chowdhary, P.; Giri, B.S.; Varjani, S.; Chaturvedi, P. Bio-composite of Fe-sludge biochar immobilized with Bacillus Sp. in packed column for bio-adsorption of Methylene blue in a hybrid treatment system: Isotherm and kinetic evaluation. Environ. Technol. Innov. 2021, 23, 101734. [Google Scholar] [CrossRef]
- Allahkarami, E.; Soleimanpour Moghadam, N.; Jamrotbe, B.; Azadmehr, A. Competitive adsorption of Ni (II) and Cu (II) ions from aqueous solution by vermiculite-alginate composite: Batch and fixed-bed column studies. J. Dispers. Sci. Technol. 2023, 44, 1402–1412. [Google Scholar] [CrossRef]
- Dinesha, B.L.; Hiregoudar, S.; Nidoni, U.; Ramappa, K.T.; Dandekar, A.T.; Ganachari, S.V. Adsorption modelling and fixed-bed column study on milk processing industry wastewater treatment using chitosan zinc-oxide nano-adsorbent–coated sand filter bed. Environ. Sci. Pollut. Res. 2023, 30, 37547–37569. [Google Scholar] [CrossRef] [PubMed]
- Abin-Bazaine, A.A.; Olmos-Marquez, M.A.; Campos-Trujillo, A. A Fixed-Bed Column Sorption: Breakthrough Curves Modeling. In Sorption—New Perspectives and Applications [Working Title]; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar]
- Kavand, M.; Fakoor, E.; Mahzoon, S.; Soleimani, M. An improved film–pore–surface diffusion model in the fixed-bed column adsorption for heavy metal ions: Single and multi-component systems. Process Saf. Environ. Prot. 2018, 113, 330–342. [Google Scholar] [CrossRef]
- Qu, J.; Song, T.; Liang, J.; Bai, X.; Li, Y.; Wei, Y.; Huang, S.; Dong, L.; Jin, Y.U. Adsorption of lead (Ⅱ) from aqueous solution by modified Auricularia matrix waste: A fixed-bed column study. Ecotoxicol. Environ. Saf. 2019, 169, 722–729. [Google Scholar] [CrossRef]
- Song, T.; Liang, J.; Bai, X.; Li, Y.; Wei, Y.; Huang, S.; Dong, L.; Qu, J.; Jin, Y. Biosorption of cadmium ions from aqueous solution by modified Auricularia Auricular matrix waste. J. Mol. Liq. 2017, 241, 1023–1031. [Google Scholar] [CrossRef]
- Abbasi, M.; Safari, E.; Baghdadi, M.; Janmohammadi, M. Enhanced adsorption of heavy metals in groundwater using sand columns enriched with graphene oxide: Lab-scale experiments and process modeling. J. Water Process Eng. 2021, 40, 101961. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Salam, K.A.; Evuti, A.M. Continuous removal of Pb (II) and Cu (II) ions from synthetic aqueous solutions in a fixed-bed packed column with surfactant-modified activated carbon. Sep. Sci. Technol. 2024, 59, 561–579. [Google Scholar] [CrossRef]
- Park, S.S.; Park, Y.; Repo, E.; Shin, H.S.; Hwang, Y. Three-dimensionally printed scaffold coated with graphene oxide for enhanced heavy metal adsorption: Batch and fixed-bed column studies. J. Water Process Eng. 2024, 57, 104658. [Google Scholar] [CrossRef]
- Apiratikul, R. Application of analytical solution of advection-dispersion-reaction model to predict the breakthrough curve and mass transfer zone for the biosorption of heavy metal ion in a fixed bed column. Process Saf. Environ. Prot. 2020, 137, 58–65. [Google Scholar] [CrossRef]
- Khalfa, L.; Sdiri, A.; Bagane, M.; Cervera, M.L. A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions. J. Clean. Prod. 2021, 278, 123935. [Google Scholar] [CrossRef]
- Yusuf, M.; Song, K.; Li, L. Fixed bed column and artificial neural network model to predict heavy metals adsorption dynamic on surfactant decorated graphene. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124076. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K.; Gupta, R.; Dohare, R.K. Continuous fixed-bed adsorption of heavy metals using biodegradable adsorbent: Modeling and experimental study. J. Environ. Eng. 2020, 146, 04019110. [Google Scholar] [CrossRef]
- Ma, B.; Zhu, J.; Sun, B.; Chen, C.; Sun, D. Influence of pyrolysis temperature on characteristics and Cr (VI) adsorption performance of carbonaceous nanofibers derived from bacterial cellulose. Chemosphere 2022, 291, 132976. [Google Scholar] [CrossRef]
- Li, Z.Y.; Dong, J.J.; Azi, F.; Feng, X.; Ge, Z.W.; Yang, S.; Sun, Y.-X.; Guan, X.-Q.; Dong, M.S. Mechanism of Cr (VI) removal by polyphenols-rich bacterial cellulose gel produced from fermented wine pomace. Npj Clean Water 2024, 7, 21. [Google Scholar] [CrossRef]
- Lu, M.; Xu, Y.; Guan, X.; Wei, D. Preliminary research on Cr (VI) removal by bacterial cellulose. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 572–575. [Google Scholar] [CrossRef]
- Carreño Sayago, U.F.; Piñeros Castro, Y.; Conde Rivera, L.R. Design of a fixed-bed column with vegetal biomass and its recycling for Cr (VI) treatment. Recycling 2022, 7, 71. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Znad, H.; Awual, M.R.; Martini, S. The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules 2022, 27, 1275. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Sivakumar, V.; Manimaran, M.; Aravind, J. Batch and dynamics modeling of the biosorption of Cr (VI) from aqueous solutions by solid biomass waste from the biodiesel production. Environ. Prog. Sustain. Energy 2014, 33, 342–352. [Google Scholar] [CrossRef]
- Verma, D.K.; Hasan, S.H.; Ranjan, D.; Banik, R.M. Modified biomass of Phanerochaete chrysosporium immobilized on luffa sponge for biosorption of hexavalent chromium. Int. J. Environ. Sci. Technol. 2014, 11, 1927–1938. [Google Scholar] [CrossRef]
- Mohite, B.V.; Patil, S.V. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. J. Biomater. Sci. Polym. Ed. 2020, 25, 2053–2065. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Ballesteros, V.A.B. The Design of a Process for Adsorbing and Eluting Chromium (VI) Using Fixed-Bed Columns of E. crassipes with Sodium Tripolyphosphate (TPP). Water 2024, 16, 952. [Google Scholar] [CrossRef]
Diameters | M (g) | Volume Mass (Vb) | Density Mas (pb) | Ma Particle (mp) | Volume Particle (Vp) | Density Particle (pp) | |
---|---|---|---|---|---|---|---|
BC (1) | 50 | 80 | 0.62 | 0.01 | 0.005 | 0.59 | 0.68 |
BC (2) | 50 | 85 | 0.58 | 0.019 | 0.044 | 0.43 | 0.33 |
BC (3) | 50 | 90 | 0.55 | 0.028 | 0.039 | 0.71 | 0.23 |
Biomass | As cm2 | Kf (cm/min) | Volume Goal (L) | Time Break (min) |
---|---|---|---|---|
BC (1) | 61.5 | 0.99 | 5 | 550 |
BC (2) | 61.5 | 0.895 | 4.7 | 500 |
BC (3) | 61.5 | 0.889 | 4.65 | 435 |
Isotherm | Constant | R2 | |
---|---|---|---|
BC(1) | Langmuir | B = 0.03; qm; 65 | 0.99 |
Freundlich | K = 0.17 | 0.91 | |
Isoterm | Constant | R2 | |
BC (2) | Langmuir | B = 0.028; qm; 60 | 0.99 |
Freundlich | K = 0.11 | 0.92 | |
Isoterm | Constant | R2 | |
BC(3) | Langmuir | B = 0.027; qm; 58 | 0.98 |
Freundlich | K = 0.18 | 0.96 |
Biomass | Ks (1/s) | Isotherm Equation | Qm | pp |
---|---|---|---|---|
BC (1) | 0.018 | Langmuir | 65 | 2 |
BC (2) | 0.020 | Langmuir | 60 | 1.5 |
BC (3) | 0.022 | Langmuir | 55 | 1.4 |
Biomass | Elutions | Kf (cm/min) | Volume Goal (L) | Time Break (min) | Ks (1/s) | Isotherm Equation | Qm |
---|---|---|---|---|---|---|---|
BC (1) | 1 | 0.98 | 4.5 | 500 | 0.017 | Langmuir | 58 |
2 | 0.98 | 4.4 | 450 | 0.018 | Langmuir | 55 | |
3 | 0.96 | 4.4 | 440 | 0.019 | Langmuir | 52 | |
4 | 0.88 | 4.0 | 410 | 0.020 | Langmuir | 50 | |
BC (2) | 1 | 0.90 | 4.1 | 458 | 0.020 | Langmuir | 56 |
2 | 0.90 | 4.0 | 450 | 0.021 | Langmuir | 54 | |
3 | 0.89 | 3.5 | 410 | 0.022 | Langmuir | 50 | |
4 | 0.80 | 3.0 | 390 | 0.022 | Freundlich | 44 | |
BC (3) | 1 | 0.90 | 4.1 | 450 | 0.022 | Langmuir | 55 |
2 | 0.88 | 3.8 | 440 | 0.023 | Langmuir | 50 | |
3 | 0.88 | 3.5 | 380 | 0.023 | Langmuir | 45 | |
4 | 0.82 | 3.1 | 360 | 0.024 | Freundlich | 40 |
Diameters | M (g) | Volume Mass (Vb) | Density Mass (pb) | Caudal mL/min | Volume Treat (L) | |
---|---|---|---|---|---|---|
BC (1) | 50 | 80 | 0.62 | 20 | 5 | 4 |
Scaling | 450 | 500 | 0.58 | 200 | 550 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayago, U.F.C.; Ballesteros, V.B.; Aguilar, A.M.L. Designing, Modeling and Developing Scale Models for the Treatment of Water Contaminated with Cr (VI) through Bacterial Cellulose Biomass. Water 2024, 16, 2524. https://doi.org/10.3390/w16172524
Sayago UFC, Ballesteros VB, Aguilar AML. Designing, Modeling and Developing Scale Models for the Treatment of Water Contaminated with Cr (VI) through Bacterial Cellulose Biomass. Water. 2024; 16(17):2524. https://doi.org/10.3390/w16172524
Chicago/Turabian StyleSayago, Uriel Fernando Carreño, Vladimir Ballesteros Ballesteros, and Angelica Maria Lozano Aguilar. 2024. "Designing, Modeling and Developing Scale Models for the Treatment of Water Contaminated with Cr (VI) through Bacterial Cellulose Biomass" Water 16, no. 17: 2524. https://doi.org/10.3390/w16172524
APA StyleSayago, U. F. C., Ballesteros, V. B., & Aguilar, A. M. L. (2024). Designing, Modeling and Developing Scale Models for the Treatment of Water Contaminated with Cr (VI) through Bacterial Cellulose Biomass. Water, 16(17), 2524. https://doi.org/10.3390/w16172524