Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp
Abstract
:1. Introduction
- Assess the effectiveness of the HSF-CW in removing contaminants, particularly organic matter and nitrogen, from domestic wastewater;
- Investigate the potential of EOP, an abundant regional waste product, as a sustainable carbon source for enhancing nitrogen removal in the HSF-CW;
- Determine if the treated effluent meets the permissible limits established by Colombian regulations for safe reuse in agricultural irrigation.
2. Materials and Methods
2.1. Study Site and Design of CWs
2.2. Type of Substrate, Vegetation and System Configuration
2.3. Physical–Chemical Analysis of Samples
2.4. Evaluation of Plant Development
2.5. Statical Analysis
3. Results
3.1. Domestic Wastewater Characterization
3.2. Performance Evaluation of HSF-CW
3.2.1. pH Values in the CW
3.2.2. BOD and TSS Concentrations in the CW
3.2.3. Removal of Nitrogen, TP, and F&O, and the Influence of Carbon Source
3.3. Plant Development
3.4. Treated Wastewater for Irrigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stefanakis, A.I. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Estrada, R.; López, M.G.; Vázquez, R.; Sánchez, D.V.; Ruvalcada, J.C. Conocimiento y percepción respecto al impacto de vivir cerca de canales de aguas residuales. J. Negat. No Posit. Results 2016, 1, 142–148. [Google Scholar] [CrossRef]
- Shahmohamadloo, R.S.; Febria, C.M.; Fraser, E.D.; Sibley, P.K. The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integr. Environ. Assess. Manag. 2022, 18, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Leonel, L.P.; Tonetti, A.L. Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Sandoval Herazo, L.C.; Alvarado-Lassman, A.; López-Méndez, M.C.; Martínez-Sibaja, A.L.; Aguilar-Lasserre, A.A.; Zamora-Castro, S.; Marín-Muñiz, J.L. Effects of Ornamental Plant Density and Mineral/Plastic Media on the Removal of Domestic Wastewater Pollutants by Home Wetlands Technology. Molecules 2020, 25, 5273. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Sandoval Herazo, L.C.; López Méndez, M.C.; Sandoval Herazo, M.; Meléndez-Armenta, R.Á.; González Moreno, H.R.; Zamora, S. Treatment Wetlands in Mexico for Control of Wastewater Contaminants: A Review of Experiences during the Last Twenty-Two Years. Processes 2023, 11, 359. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, X.; He, S.; Zhao, M. Nitrification, denitrification and anammox process coupled to iron redox in wetlands for domestic wastewater treatment. J. Clean. Prod. 2021, 300, 126953. [Google Scholar] [CrossRef]
- Sun, S.P.; Nàcher, C.P.I.; Merkey, B.; Zhou, Q.; Xia, S.Q.; Yang, D.H.; Jian-Hui, S.; Smets, B.F. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review. Environ. Eng. Sci. 2010, 27, 111–126. [Google Scholar] [CrossRef]
- Pelaz, L.; Gómez, A.; Letona, A.; Garralón, G.; Fdz-Polanco, M. Nitrogen removal in domestic wastewater. Effect of nitrate recycling and COD/N ratio. Chemosphere 2018, 212, 8–14. [Google Scholar] [CrossRef]
- Yu, G.; Peng, H.; Fu, Y.; Yan, X.; Du, C.; Chen, H. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria. Bioresour. Technol. 2019, 280, 337–344. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef]
- Quiroz-Mojica, L.J.; Peñuela-Mesa, G.A.; Diaz-Muegue, L.C.; Martinez-Smit, C.; Bastidas-Barranco, M.J. Exergo-economic study of the process for obtaining biochar derived from oil palm kernel shell on an experimental and pilot scale. Dyna 2022, 89, 133–140. [Google Scholar] [CrossRef]
- Uchegbulam, I.; Momoh, E.O.; Agan, S.A. Potentials of palm kernel shell derivatives: A critical review on waste recovery for environmental sustainability. Clean. Mater. 2022, 6, 100154. [Google Scholar] [CrossRef]
- Liew, R.K.; Nam, W.L.; Chong, M.Y.; Phang, X.Y.; Su, M.H.; Yek, P.N.Y.; Ma, N.L.; Cheng, C.K.; Chong, C.T.; Lam, S.S. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Saf. Environ. Prot. 2018, 115, 57–69. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, W.; Yan, G.; Wang, H.; Wang, H.; Chang, Y.; Yu, S.; Chu, Z.; Ling, Y.; Li, C. Plant carbon sources for denitrification enhancement and its mechanism in constructed wetlands: A review. Sustainability 2022, 14, 12545. [Google Scholar] [CrossRef]
- Martínez, N.B.; Tejeda, A.; Del Toro, A.; Sánchez, M.P.; Zurita, F. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Sci. Total Environ. 2018, 645, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.L.; Yang, T.; Zhang, J.; Li, X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresour. Technol. 2019, 293, 122086. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Torres, J.; Cuello-Pérez, D.M.; Romero-Ferrer, J.L.; Pérez-Cantero, S.P. Characterization of the Creole rice production system in La Mojana, Colombia. Cienc. Agric. 2021, 18, 67–82. [Google Scholar] [CrossRef]
- Peña-Varón, M.R.; Van Ginneken, M.; Madera, C.A. Subsurface Flow Wetlands: A Natural Alternative for the Treatment of Domestic Wastewater in Tropical Areas. Eng. Compet. 2011, 5, 27–35. [Google Scholar] [CrossRef]
- Sandoval Herazo, L.C.; Alvardo-Lassman, A.; Marín-Muñiz, J.L.; Rodríguez-Miranda, J.P.; Fernández-Lambert, G. A critical review of mineral substrates used as filter media in subsurface constructed wetlands: Costs as a selection criterion. Environ. Technol. Rev. 2023, 12, 251–271. [Google Scholar] [CrossRef]
- Alfonso, R.A.S.; Peralta, H.A.D.; Urriago, L.M.A.; Aldana, N.U.; Forero, A.Y.V.R. Modelo para la gasificación del cuesco de palma aceitera-Model for the Gasification of the Oil Palm Kernel Shell. Ingenium 2017, 18, 81–100. [Google Scholar] [CrossRef]
- Sundalian, M.; Larissa, D.; Suprijana, O. Contents and utilization of palm oil fruit waste. Biointerface Res. Appl. Chem. 2021, 11, 10148–10160. [Google Scholar] [CrossRef]
- Yahayu, M.; Abas, F.Z.; Zulkifli, S.E.; Ani, F.N. Utilization of oil palm fiber and palm kernel shell in various applications. In Sustainable Technologies for the Management of Agricultural Wastes; Springer: Singapore, 2018; pp. 45–56. [Google Scholar] [CrossRef]
- Nakase, C.; Zurita, F.; Nani, G.; Reyes, G.; Fernández-Lambert, G.; Cabrera-Hernández, A.; Sandoval, L. Nitrogen removal from domestic wastewater and the development of tropical ornamental plants in partially saturated mesocosm-scale constructed wetlands. Int. J. Environ. Res. Public Health 2019, 16, 4800. [Google Scholar] [CrossRef]
- Boutin, C.; Eme, C. Domestic wastewater characterization by emission source. In Proceedings of the 13th Specialized Congress IWA on Small Water and Wastewater Systems, Athens, Greece, 14–16 September 2016. 8p. [Google Scholar]
- Yuan, C.; Zhao, F.; Zhao, X.; Zhao, Y. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland. Chem. Eng. J. 2020, 392, 124840. [Google Scholar] [CrossRef]
- Bawiec, A.; Pawęska, K.; Jarząb, A. Changes in the microbial composition of municipal wastewater treated in biological processes. J. Ecol. Eng. 2016, 17, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Jong, V.S.W.; Tang, F.E. The use of palm kernel shell (PKS) as substrate material in vertical-flow engineered wetlands for septage treatment in Malaysia. Water Sci Technol. 2015, 72, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Yang, Y.; Yang, L.; Gao, Y. High-efficient nitrogen removal and its microbiological mechanism of a novel carbon self-sufficient constructed wetland. Sci. Total Environ. 2021, 775, 145901. [Google Scholar] [CrossRef]
- Zamora, S.; Marín-Muñíz, J.L.; Nakase-Rodríguez, C.; Fernández-Lambert, G.; Sandoval, L. Wastewater treatment by constructed wetland eco-technology: Influence of mineral and plastic materials as filter media and tropical ornamental plants. Water 2019, 11, 2344. [Google Scholar] [CrossRef]
- Tang, S.; Liao, Y.; Xu, Y.; Dang, Z.; Zhu, X.; Ji, G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresour. Technol. 2020, 314, 123759. [Google Scholar] [CrossRef]
- Sandoval Herazo, L.C.; Marín-Muñiz, J.L.; Alvarado-Lassman, A.; Zurita, F.; Marín-Peña, O.; Sandoval-Herazo, M. Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water 2023, 15, 2280. [Google Scholar] [CrossRef]
- Vergara-Flórez, V.; Mieles-Galindo, J.; Nani, G.; Sandoval-Herazo, M.; Sandoval Herazo, L.C. Treatment Wetland with Thalia geniculata for Wastewater Purification in the Department of Sucre, Colombia. Processes 2023, 11, 2754. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Wei, C.; Wu, W.; Zhao, X.; Lu, T. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration. Bioresour. Technol. 2018, 248, 98–103. [Google Scholar] [CrossRef]
- Zhong, F.; Huang, S.; Wu, J.; Cheng, S.; Deng, Z. The use of microalgal biomass as a carbon source for nitrate removal in horizontal subsurface flow constructed wetlands. Ecol. Eng. 2019, 127, 263–267. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Zhang, J.; Ngo, H.H.; Guo, W.; Liang, S.; Fan, J.; Lu, S.; Wu, H. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review. Bioresour. Technol. 2016, 214, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Del Toro, A.; Tejeda, A.; Zurita, F. Addition of corn cob in the free drainage zone of partially saturated vertical wetlands planted with I. sibirica for total nitrogen removal—A pilot-scale study. Water 2019, 11, 2151. [Google Scholar] [CrossRef]
- Wang, W.; Song, X.; Li, F.; Ji, X.; Hou, M. Intensified nitrogen removal in constructed wetlands by novel spray aeration system and different influent COD/N ratios. Bioresour. Technol. 2020, 306, 123008. [Google Scholar] [CrossRef]
- Chen, D.; Gu, X.; Zhu, W.; He, S.; Huang, J.; Zhou, W. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. Bioresour. Technol. 2019, 285, 121313. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, M.; Wen, C.; Liu, D. Nitrogen release and its influence on anammox bacteria during the decay of Potamogeton crispus with different values of initial debris biomass. Sci. Total Environ. 2019, 650, 604–615. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Shi, Y.; Pan, F. Effect of Aeration and External Carbon Source on Nitrogen Remov1al and Distribution Patterns of Related-Microorganisms in Horizontal Subsurface Flow Constructed Wetlands. Water 2024, 16, 632. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, Y.; Liu, J.; Xiao, Y.; Cao, R.; Wu, F. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. Bioresour. Technol. 2015, 175, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, N.; Deng, C.; Liang, Y.; Wang, Q.; Liu, M.; Chen, Y. Interactive effect of carbon source with influent COD/N on nitrogen removal and microbial community structure in subsurface flow constructed wetlands. J. Environ. Manag. 2019, 250, 109491. [Google Scholar] [CrossRef]
- Cameron, S.G.; Schipper, L.A. Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecol. Eng. 2012, 41, 1–7. [Google Scholar] [CrossRef]
- Luo, Z.; Li, S.; Zhu, X.; Ji, G. Carbon source effects on nitrogen transformation processes and the quantitative molecular mechanism in long-term flooded constructed wetlands. Ecol. Eng. 2018, 123, 19–29. [Google Scholar] [CrossRef]
- Wang, W.; Ding, Y.; Ullman, J.L.; Ambrose, R.F.; Wang, Y.; Song, X.; Zhao, Z. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios. Environ. Sci. Pollut. Res. 2016, 23, 9012–9018. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G.A. Comprehensive review on nutrients and organics removal from different wastewaters employing subsurface flow constructed wetlands. Crit. Rev. Environ. Sci. Technol. 2017, 47, 203–288. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed wetlands in Latin America and the Caribbean: A review of experiences during the last decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Chang, Y.; Chu, Z.; Zhao, Y.; Liu, R. Enhanced nutrients removal using reeds straw as carbon source in a laboratory scale constructed wetland. Int. J. Environ. Res. Public Health 2018, 15, 1081. [Google Scholar] [CrossRef]
- Hendrawan, D.I.; Widanarko, S.; Moersidik, S.S.; Triweko, R.W. The performance of subsurface constructed wetland for domestic wastewater treatment. Int. J. Eng. Res. Technol. 2013, 2, 3374–3382. [Google Scholar]
- Cabrera, P.A.M.; Ojeda, C.A. Eficiencia de un humedal de flujo subsuperficial horizontal para tratar los efluentes de un colegio rural en Colombia. Braz. J. Anim. Environ. Res. 2021, 4, 3488–3499. [Google Scholar] [CrossRef]
- Blanco-Valdés, Y. Importancia de la calidad de la luz entre las plantas arvenses-cultivo. Cult. Trop. 2019, 40, e09. [Google Scholar]
- López, J.E.; Marín-Muñiz, J.L.; Zamora-Castro, S.A.; Celis, M. Evaluación del crecimiento de plantas sembradas en humedal artificial: Efecto del posicionamiento de sembrado. J. Basic Sci. 2021, 8, 104–111. [Google Scholar]
- Thullner, M.; Stefanakis, A.I.; Dehestani, S. Constructed Wetlands treating water contaminated with organic hydrocarbons. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 43–63. [Google Scholar] [CrossRef]
- Yu, G.; Wang, G.; Chi, T.; Du, C.; Wang, J.; Li, P.; Zhang, Y.; Wang, S.; Yang, K.; Long, Y.; et al. Enhanced removal of heavy metals and metalloids by constructed wetlands: A review of approaches and mechanisms. Sci. Total Environ. 2022, 821, 153516. [Google Scholar] [CrossRef] [PubMed]
- Malyan, S.K.; Yadav, S.; Sonkar, V.; Goyal, V.C.; Singh, O.; Singh, R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environ. Res. 2021, 93, 1882–1909. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Results |
---|---|---|
pH | pH unit | 7.17 |
COD | mg/L | 245 ± 14.7 |
BOD | mg/L | 134 ± 7.28 |
TSS | mg/L | 54.4 ± 2.82 |
SedS | mg/L | 1.5 ± 0.59 |
F&O | mg/L | 14.13 ± 4.72 |
NO2-N | mg/L | 0.026 ± 0.03 |
NO3-N | mg/L | 5.18 ± 0.37 |
NH4-N | mg/L | 74.35 ± 4.29 |
NT | mg/L | 161.59 ± 26.34 |
TP | mg/L | 4.02 ± 0.34 |
Number of Shots per Plant | Shoot Height | Number of Sheets | Length of Stems | Stem Thickness | Number of Flowers | |
---|---|---|---|---|---|---|
Sector 1 | 1.8 | 0.8 | 2.8 | 0.4 | 0.1 | 0.1 |
Sector 2 | 5.4 | 1.4 | 3.7 | 0.8 | 0.1 | 1.2 |
Sector 3 | 3.3 | 1.1 | 3.2 | 0.6 | 0.3 | 0.6 |
p-value | 0.002 | 0.014 | 0.096 | 0.048 | 0.47 | 0.056 |
Parameter | Unit | Results | Quantified Limit | Allowed Value | Accordance |
---|---|---|---|---|---|
Total phenols | mg/L | <0.002 | 0.002 | 1.5 | FULFILLS |
Total hydrocarbons | mg/L | 0.9 | 0.20 | 1.0 | FULFILLS |
Free cyanide | mg CN-/L | <0.02 | 0.020 | 0.2 | FULFILLS |
Chlorides | mg Cl-/L | 53.2 | 19.9 | 300 | FULFILLS |
Fluorides | mg F-/L | <0.161 | 0.161 | 1.0 | FULFILLS |
Sulfates | mgSO4/L | 9.58 | 8.9 | 500 | FULFILLS |
Mercury | mg Hg-/L | 0.0016 | 0.0005 | 0.002 | FULFILLS |
Sodium | mg Na-/L | 161 | 0.25 | 200 | FULFILLS |
Zinc | mg Zn/L | <0.050 | 0.05 | 3 | FULFILLS |
Total residual chlorine | mg Cl2-/L | <0.047 | 0.047 | <1.0 | FULFILLS |
Nitrate (NO3-N) | mg/L | 2.5 | 0.400 | 5.0 | FULFILLS |
Aluminum | mg Al-/L | <0.046 | 0.046 | 5.0 | FULFILLS |
Arsenic | mg Ar-/L | 0.008 | 0.005 | 0.1 | FULFILLS |
Beryllium | mg Be-/L | <0.05 | 0.05 | 0.1 | FULFILLS |
Cadmium | mg Cd-/L | <0.001 | 0.001 | 0.01 | FULFILLS |
Nickel | mg Ni-/L | <0.005 | 0.005 | 0.2 | FULFILLS |
Cobalt | mg Co-/L | <0.05 | 0.05 | 0.05 | FULFILLS |
Copper | mg Cu-/L | <0.02 | 0.02 | 1.0 | FULFILLS |
Chrome | mg Cr-/L | <0.04 | 0.04 | 0.1 | FULFILLS |
Iron | mg Fe-/L | 22.2 | 0.131 | 5.0 | FAILS |
Lithium | mg Li-/L | <0.10 | 0.1 | 2.5 | FULFILLS |
Manganese | mg Mn-/L | 0.120 | 0.05 | 0.2 | FULFILLS |
Molybdenum | mg Mo-/L | <0.05 | 0.05 | 0.07 | FULFILLS |
Lead | mg Pb-/L | <0.00680 | 0.0068 | 5.0 | FULFILLS |
Selenium | mg Se-/L | 0.1 | 0.0100 | 0.02 | FAILS |
Vanadium | mg V-/L | <0.02 | 0.02 | 0.1 | FULFILLS |
Boron | mg Br-/L | <0.25 | 0.25 | 0.4 | FULFILLS |
Thermotolerant Coliforms (Fecal) | NMP/100 mL | 120 | 1.8 | 100,000 | FULFILLS |
Salmonella | NMP/100 mL | <1.8 | 1.8 | 100 | FULFILLS |
Fecal Enterococcus sp./Streptococcus | NMP/100 mL | <1.8 | 1.8 | 100 | FULFILLS |
Helminth Eggs | Eggs and larvae/L | 0 | 0 | 1 | FULFILLS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta Vega, A.J.; Vergara Flórez, V.; Marín-Peña, O.; García-Aburto, S.G.; Sandoval Herazo, L.C. Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp. Water 2024, 16, 2290. https://doi.org/10.3390/w16162290
Peralta Vega AJ, Vergara Flórez V, Marín-Peña O, García-Aburto SG, Sandoval Herazo LC. Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp. Water. 2024; 16(16):2290. https://doi.org/10.3390/w16162290
Chicago/Turabian StylePeralta Vega, Alexi Jose, Vicente Vergara Flórez, Oscar Marín-Peña, Sandra G. García-Aburto, and Luis Carlos Sandoval Herazo. 2024. "Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp" Water 16, no. 16: 2290. https://doi.org/10.3390/w16162290
APA StylePeralta Vega, A. J., Vergara Flórez, V., Marín-Peña, O., García-Aburto, S. G., & Sandoval Herazo, L. C. (2024). Treatment of Domestic Wastewater in Colombia Using Constructed Wetlands with Canna Hybrids and Oil Palm Fruit Endocarp. Water, 16(16), 2290. https://doi.org/10.3390/w16162290