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Abstract: Artificial intelligence has undergone rapid development in the last thirty years and has
been widely used in the fields of materials, new energy, medicine, and engineering. Similarly, a
growing area of research is the use of deep learning (DL) methods in connection with hydrological
time series to better comprehend and expose the changing rules in these time series. Consequently, we
provide a review of the latest advancements in employing DL techniques for hydrological forecasting.
First, we examine the application of convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) in hydrological forecasting, along with a comparison between them. Second, a
comparison is made between the basic and enhanced long short-term memory (LSTM) methods for
hydrological forecasting, analyzing their improvements, prediction accuracies, and computational
costs. Third, the performance of GRUs, along with other models including generative adversarial
networks (GANSs), residual networks (ResNets), and graph neural networks (GNNS), is estimated for
hydrological forecasting. Finally, this paper discusses the benefits and challenges associated with
hydrological forecasting using DL techniques, including CNN, RNN, LSTM, GAN, ResNet, and GNN
models. Additionally, it outlines the key issues that need to be addressed in the future.

Keywords: hydrological forecasting; deep learning; data-driven; prediction; critical review

1. Introduction

In 2021, the journal Nature showcased a recent study on global flood hazard analysis
online in the form of a cover article. The findings indicate a consistent annual increase in the
proportion of the global population that is vulnerable to flooding [1]. Floods stand as one
of the most prevalent natural disasters globally. With an escalation in both the frequency
and intensity of heavy rainfall, coupled with a recurring pattern, catastrophic flood events
are being witnessed across various regions worldwide, significantly impacting human
productivity and livelihoods [2,3]. Generally speaking, river and coastal system flooding
represents the most prevalent and devastating climate-related disaster, inflicting billions
of dollars in damages annually. These impacts disproportionately affect impoverished
and vulnerable communities, as floods severely disrupt their livelihoods and they possess
a limited capacity to rebound from such disasters [4-6]. For instance, Henan, China
experienced an abnormally strong downpour in July 2021 that peaked at 646 mm ina 24 h
period, which is equal to the region’s average yearly precipitation. This resulted in direct
economic damage amounting to USD 17.8 billion [7]. In September 2023, the Mediterranean
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hurricane Storm Daniel caused a landfall on the eastern Mediterranean coast of Libya and
caused flooding that collapsed the Abu Mansour and Bilad reservoir dams upstream of
the city of Derna. This catastrophe devastated approximately 25% of the city due to the
massive currents of water and mud, resulting in the loss of over 4000 lives and leaving
around 10,000 individuals unaccounted for [8]. Human beings have proven through years
of struggling with floods that combining engineering and non-engineering measures is
an effective measure for solving the problem of floods [9-11]. In addition, among the
usual non-engineering measures, continuous efforts are made to enhance the precision of
hydrological forecasting, a strategy that has proven to be effective.

Hydrological forecasting is the use of hydrological change patterns to analyze and
calculate the hydrological elements of the studied area to reveal and predict future changes
in these hydrological elements for an applied discipline. For instance, hydrological forecast-
ing may utilize past or present hydrometeorological data, encompassing a basin, region,
or specific hydrological station, to make qualitative or quantitative predictions regarding
future hydrological conditions. Such forecasts hold critical significance for flood control,
drought management, water resource allocation, and national defense strategies. To en-
hance the accuracy and reliability of hydrological forecasting, researchers have proposed
numerous methods from various angles, integrating insights from related disciplines [12].
These methods can be broadly classified into two categories: traditional methods and new
methods. The former mainly include cause analyses and hydrological statistical meth-
ods, and the latter mainly include artificial neural networks, grey system analyses, fuzzy
mathematical models, and other methods.

Artificial intelligence (AI) has experienced rapid development over the past three
decades, finding widespread application across various disciplines and yielding significant
results. Especially in the context of the development of big data, Al has set off a new wave
of the digital revolution. Deep learning (DL) is a new research direction in the field of
machine learning (ML), which has been introduced into ML to bring it closer to its original
goal, Al. Building models with higher processing capacities and prediction accuracy, which
minimizes the need for human intervention and experience, and serving as an exploratory
data-mining tool to facilitate discovery that expands current knowledge and capabilities
are two of DL’s primary purposes [13]. In 2016, AlphaGo’s victory over Lee Sedol, a
nine-dan professional chess player, with a decisive 4:1 margin exemplified Al's prowess,
subsequently propelling it into the limelight of research as a prominent keyword [14].
In 2022, AlphaFold2 utilized protein structure prediction models through “end-to-end”
neural networks for predicting protein structures in three dimensions. These trained neu-
ral networks have the capability to predict protein properties from gene sequences, and
AlphaFold2 has already predicted 98.5% of the structures of human proteins, a significant
advancement compared to the previous coverage of only 17% of amino acid residues in
human protein sequences after decades of scientific effort [15]. In addition, DL, renowned
for its adeptness in discerning intricate data patterns and autonomously extracting fea-
tures, has found extensive application in materials science [16,17], new energy [18-20],
medicine [21-23], and engineering [24-26]. The success of these applications has spurred
the further expansion of the DL approach into diverse domains. For solving the time-series
prediction problem, the DL analysis method has also been applied in the fields of electric
power [27,28], meteorology [29-31], and finance [32,33] through continuous improvement,
achieving good results in long- and short-term prediction.

Recently, DL has emerged as a transformative and multifaceted tool, revolutionizing
industrial applications and enhancing capabilities for scientific discovery and model de-
velopment. The use of DL techniques in flood management has been on the rise, aimed at
addressing the challenges posed by precise yet time-consuming numerical modeling [34,35].
Enhancing and refining hydrological time-series prediction technology through the integra-
tion of the DL approach to comprehend and elucidate the evolving patterns of hydrological
time series has emerged as a focal area of research. Therefore, we provide a comprehensive
overview of the latest advancements in applying DL methods to hydrological forecast-
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ing. This study diverges from previous reviews primarily in its assessment of prediction
challenges outlined in the literature, the elaboration on algorithmic enhancements, a side-
by-side comparison of prediction accuracies and computational costs, and an analysis of
their practical utility in engineering applications. The rest of the review paper is organized
as follows: Section 2 reviews the application of convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) in hydrological forecasting and compares their
performance in terms of improvements, prediction accuracy, and computational costs. In
Section 3, we demonstrate the application of long short-term memory (LSTM) in hydrologi-
cal forecasting, especially basic LSTM and improved LSTM, and analyze the application
effects and development trends of these models. In Section 4 we estimate the performance
of GRUs and other models, such as generative adversarial networks (GANSs), residual
networks (ResNets), and graph neural networks (GNNSs), for hydrological forecasting. In
Section 5, we discuss the trend of DL algorithms, such as CNNs, RNNs, LSTM, GRUs, and
others, in hydrological prediction, with a particular focus on discerning differences among
these algorithms. Section 6 gives a summary of the full text and looks forward to the key
problems that need to be solved in future research.

2. CNNs/RNNs for Hydrological Forecasting
2.1. Principle of CNNs/RNNs

In DL, CNN s are a class of artificial neural networks (ANNSs), which belong to feedfor-
ward neural networks [36]. Moreover, CNNs stand out as prominent algorithms within
the domain of DL [37], recognized for their shift-invariant or spatially invariant nature. A
CNN usually consists of the following layers: the convolutional layer (Convolution Opera-
tion), the pooling layer (Subsampling Operation), and the fully connected layer (SoftMax
Operation), as shown in Figure 1a. The CNN model was proposed by Yann Lecun of New
York University in 1998 (LeNet-5), and fundamentally operates as a multi-layer perceptual
machine. The success of CNNs can be attributed to their utilization of local connectivity
and weight sharing. This approach not only decreases the number of weights, simplify-
ing network optimization, but also reduces the model’s complexity and the likelihood
of overfitting.

Convolution Subsampling Convolution Subsampling  Softmax

(a)

A

A

A

Input Hidden Output
layer layer layer

(b)

Figure 1. Structural diagrams of a CNN and an RNN: (a) CNN; (b) RNN.

RNNSs are a class of recurrent neural networks designed to process sequence data. In
an RNN, information cycles through the network in a sequential manner, with each node
(referred to as a recurrent unit) connected in a chain. This architecture is grounded in the
notion that “human cognition relies on past experiences and memories”. The basic layers
of an RNN include input, hidden, and output layers, as shown in Figure 1b. Due to their
recursive structure, RNNs are adept at addressing sequence modeling challenges and find
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utility across diverse domains, including text generation, machine translation, and image
captioning [38,39].

2.2. CNN:s for Prediction

Sepahvand et al. [40] compared the performance of a learning-based CNN algorithm
with support vector regression (SVR) and group method of data handling (GMDH)-based
algorithms for hydrological infiltration modeling. The study area consisted of cumulative
infiltration data from 16 stations in the provinces of Illam and Lorestan in western Iran,
which were collected using a double-ring penetrometer. Their experimental findings
demonstrated the superior performance of the CNN model (R? = 0.97, Nash efficiency
coefficient (NSE) = 0.97) compared to SVR (R? = 0.87, NSE = 0.806) and GMDH (R? = 0.92,
NSE = 0.915). This research aimed to provide valuable insights for urban flood management
and warning systems. Han et al. [41] proposed an experimental automatic urban road
inundation monitoring method based on the YOLOv2 framework (in Figure 2). Their
experimental results showed that the validation of the model had a high average accuracy
of 90.1% for flood detection, while its average training accuracy was 96.1%. Although
their model is more accurate, it requires a large training dataset. Additionally, it lacks
the capability to forecast future hydrological phenomena, such as alterations in flood
duration and coverage. For flood prediction, most of the algorithms used are based on
CNNs. Nonetheless, alternative architectures, such as hybrid CNN-LSTM algorithms,
have demonstrated potential in elevating the precision of flood prediction outcomes [42].
Windheuser et al. [43] proposed a fully automated end-to-end image detection system
using the fusion of multiple deep neural networks, including the CNN and LSTM models,
to predict flood levels from two USGS gauging stations, Columbus River and Sweetwater
River, Georgia, USA. Their experimental results demonstrated that the proposed model
predicted NSEs of historical water gauge height data of 85% for 6 h, 96% for 12 h, 96% for
24 h, and 95% for 48 h at Columbus station, and that the short-term NSEs were greater than
83% at Sweetwater Creek Station. These findings underscore the potential of employing a
hybrid end-to-end DL model, leveraging extensive image data, for practical engineering
applications in short- and medium-term flood forecasting at regional scales. Sharma
and Kumari [44] combined a CNN with the random forest (RF) and SVR techniques
to construct CNN-RF and CNN-SVR hybrid models for flood forecasting, which were
compared with RF, SVR, and ANN methods. Their experimental results demonstrated
that the performance of the CNN-RF model exceeded that of the other models at both the
Kantamal and Kesinga hydrological stations. At the Kantamal hydrological station, the R
values of the CNN-RF and CNN-5VR models were 0.95 and 0.92, respectively. The CNN
approach can be considered a valuable technique for feature extraction in flood forecasting,
with the potential to enhance the overall predictive accuracy. Li et al. [45] proposed a
rainfall-runoff model based on CNN-LSTM, which directly calculates watershed runoff
from two-dimensional radar images of rainfall. The study area chosen was the Elbe River
basin in Saxony, Germany. It was found that during low- and high-water-level periods,
the NSE fluctuated between 0.63 and 0.86, and between 0.46 and 0.97, respectively. This
indicates that CNN-LSTM contributes to estimating water resource availability and flood
alerts for watershed management. Aderyani et al. [46] compared the performance of three
machine learning and DL-based rainfall forecasting methods, namely SVR, LSTM, and
a CNN (in Figure 3), using a dataset from the Niavaran station in Tehran, Iran. Their
experimental results showed that the CNN model was slightly weaker than the other two
models in over-forecasting 5 min and 15 min rainfall, and the R? values of the CNN model
for these two durations of rainfall were 0.672 and 0.491, respectively. This implies that
the prediction performance of the CNN model is still worse than that of the optimized
traditional machine learning model. However, it is feasible to use the CNN model for
short-term hydrological forecasting, and achieving better performance may require further
optimization of the model. The scarcity of high-resolution urban digital elevation model
(DEM) datasets, particularly in some developing countries, poses challenges for flood risk
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management. Jiang et al. [47] proposed a multi-scale mapping framework based on a CNN
(MSM-CNN), which may contribute to addressing the data scarcity issues in urban flood
modeling and hydraulic engineering applications. Their results confirmed that MSM-CNN
effectively restored high-resolution urban DEMs from 2, 4, and 8 m to 0.5 m. This means
that the MSM-CNN model could provide a cost-effective innovative approach for obtaining
high-resolution DEMs in data-scarce regions.
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Figure 3. Architecture of a one-dimensional CNN for rainfall prediction in hydrological forecast-
ing [48].

2.3. RNNs for Prediction

For the complex problem of predicting time-varying water resources, Coulibaly
et al. [49] proposed a dynamic RNN method that automatically selects the optimally
trained network to predict different non-stationary hydrological time series. Performance
comparisons based on hydrological time-series data from three selected sites, namely the
Saint Lawrence River (SLR) in Cornwall, the Great Salt Lake (GSL), and the Nile River, are
shown in Figure 4. It was found that the dynamically driven RNN model with Bayesian
regularization (RNN-BR) outperformed the traditional multivariate adaptive regression
spline (MARS) model, which is ideal for modeling the complex dynamics of hydrological
systems. Nonlinear prediction of non-stationary time series is a difficult task [50], and
this study shows a pioneering use of the RNN approach for the hydrological prediction of
non-stationary states and achieved more obvious positive results. Giildal and Tongal [51]
constructed RNN models with different input structures and compared them with adaptive
network-based fuzzy inference systems and autoregressive moving-average models for
lake water level prediction. Conducted in the western region of the Turkish Taurus Moun-
tains, the study revealed that the R? values of the RNN models ranged from 0.95 to 0.99,
surpassing the R? values of 0.78 to 0.93 for the adaptive network-based fuzzy inference
system models and autoregressive models. This indicates the suitability of RNN models
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for predicting lake water level changes, offering higher accuracy and reliability. Cai and
Yu [52] proposed a hybrid recurrent neural network (HRNN) that combines RNN and
autoregressive integrated moving-average model methods for forecasting flood trends
and peak times during flood seasons. The model was tested using four flood events from
2019 as a validation dataset, revealing an NSE of 0.937 for the HRNN model, surpassing
both the Bi-LSTM model (NSE of 0.833) and the Xin’anjiang model (NSE of 0.831). These
results indicate the efficiency of the HRNN model in predicting flood inflows compared
to traditional hydrological models and other machine learning networks. Kim et al. [53]
investigated the optimal DL models for inflow prediction at Andong Dam and Imhae Dam,
located in the upper Nakdong River in South Korea. Using nearly 20 years of hydrological
data, their experimental results showed that the RNN for Andong Dam and the LSTM
for Imhae Dam served as the optimal models for each dam during the drought period
with the smallest percent differences between observations, at 4% and 2%, respectively.
Under typhoon conditions, the Gate Recurrent Unit at Andong Dam and the RNN at Imhae
Dam were selected as the best models, with the GRU and RNN results differing from
the observed maximum inflow by 2% and 6%, respectively (typhoon “Memi” scenario).
This investigation underscores the importance of comparing the accuracy of DL models in
inflow prediction for making informed decisions in the efficient operation and management
of dams. Wang et al. [54] constructed LSTM and RNN models, analyzing the structural
disparities and impacts on processing flood data between the two models and comparing
their performance in flood forecasting. Their results indicated that within a 1 h forecast-
ing period at Loudi Station, the NSE of the RNN model with an identical structure and
hyperparameters was 0.9789, surpassing that of the LSTM model at 0.9621. The simpler
internal structure of the RNN model renders it more suitable for flood forecasting tasks.
Karbasi et al. [55] proposed a hybrid technique using time-varying filter-based empirical
modal decomposition (TVF-EMD) and DL to predict weekly reference evapotranspira-
tion and compared four machine learning methods, namely the bidirectional recurrent
neural network (BiRNN), multi-layer perceptual neural network (MLP), RF, and extreme
gradient-boosting (XGBoost) methods, in terms of their prediction performance. Their re-
sults demonstrated that the TVE-BiRNN model achieved the highest accuracy in simulating
weekly reference evapotranspiration at the Redcliffe and Gold Coast stations (Redcliffe:
R =0.93, MAPE = 9.20%, RMSE = 3.88 mm/week; Gold Coast: R = 0.87, MAPE = 11.54%,
RMSE = 4.12 mm/week). This indicates that by enhancing the structure of an RNN, its
predictive accuracy for hydrological forecasting surpasses that of traditional machine learn-
ing methods such as MLP, RFs, and XGBoost. For dam inflow prediction, Ayele et al. [56]
compared the performance of RNN, BiRNN, and GRU prediction models and made a
prediction that the Kesem Dam could be overtopped by a flood with a return period of
approximately 10,000 years to determine if the existing structure provides an adequate
level of safety. This illustrates that enhancing the structure of the RNN can enhance the pre-
diction accuracy of the model for medium- and long-term datasets, facilitating its practical
application in engineering projects.

Moreover, certain studies have successfully integrated spatial distribution with RNNs,
leading to enhanced accuracy in hydrological forecasting, especially for geospatial fore-
casting. Wang et al. [57] proposed a new model named RNN-RandExtreme, coupling an
RNN with random generation methods, to improve the accuracy of predicting downscaling
extreme precipitation. Their experimental findings indicated that leveraging extensive
datasets from various regions of China resulted in a notable improvement in the prediction
accuracy of RNN-RandExtreme for extreme precipitation, with enhancements of 28.32%
and 16.56%, respectively, compared to both an ANN and a standalone RNN model. The
accuracy of hydrological forecasts is directly affected by the statistical downscaling of
time-series features; this is due to the fact that meteorological data have distinct time-
series features, and the use of finer-grained data facilitates the improvement of forecast
accuracy. Kao et al. [58] introduced a novel machine learning-based model integrating
a stacked autoencoder (SAE) with an RNN, referred to as SAE-RNN. They utilized an
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extensive dataset detailing hour-by-hour flood inundation depths for the model’s training,
validation, and testing stages. The findings indicated that the RMSE values were notably
low (<0.09 m) and the R? values were significantly high (>0.95) across all three phases
for 1-3 h predictions. The model’s successful prediction capabilities are attributed to its
efficient sequential extraction of nonlinear dependence structures from flood dynamics.
This efficiency in reducing hydrological uncertainty is achieved through the use of the
SAE, coupled with the transformation of rainfall sequences into future flood features via
the RNN. Huang [59] devised a novel method to predict the flooding of coastal areas
effectively by integrating detailed analyses of various hydrological and geomorphological
factors into an RNN model, as depicted in Figure 5. The experimental results indicated
that the flood prediction maps of the proposed RNN model were comparable to the flood
maps generated using the traditional numerical hydrological model, but the computational
speed of the RNN model could be at least 322 times faster than the numerical inundation
model. In addition, the training procedure for the RNN could significantly reduce the mean
relative error (MRE) value from an average of 0.338 to 0.055 compared to the traditional
numerical training procedure. In Huang’s study, an innovative RNN model is used to es-
tablish coupling relationships between geomorphological factors, such as the local upslope
areas contributing to floods, flow path lengths along the coastline, and flood depths at any
location in the watershed, so as to efficiently and accurately characterize the spatial and
temporal behaviors of floods at the surface.
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Figure 4. Observed and predicted hydrological time series at three selected locations: (a) SLR’s
monthly flow; (range: 5500-10,500) (b) GSL’s bi-weekly volume; (c) Nile River’s monthly flow [49].
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Figure 5. RNN model for predicting inundation depths [59]: (a) RNN model; (b) list of influential
factors.

2.4. Summary

Figure 6 presents a comparative analysis of the performance of CNN/RNN models. It
is evident that the majority of models exhibit R* and NSE values exceeding 0.95, showcasing
outstanding hydrological forecasting capabilities. It can be observed that models enhanced
by metaheuristic algorithms or operated under hybrid modes may have some potential for
improving model performance.

i - R2 NSE
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095 W e o 07 0.95 2378
0.8
- 0.6
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al. 2022 al. 2022
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Figure 6. Performance comparisons between different CNN/RNN models [40,43—46,51,52,54,58];
(a) R%; (b) NSE.

Drawing from the preceding literature review, Table 1 presents a comparison of various
CNN/RNN models for hydrological forecasting. The CNN is good for image analyses, such
as using the YOLOV2 framework for urban flood warning [41]. Its performance in time-
series prediction is suboptimal. The regression models built using CNNs lack excellence in
accuracy and often tackle relatively simple problems. In general, the model built using a
one-dimensional CNN does not fully exploit the advantages of the CNN’s convolution. At
this time, the integration of CNN and LSTM [43] techniques can bring out the advantages
of each and improve the accuracy of the whole end-to-end model, which is valuable for
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engineering applications. Unlike CNNSs, there is a notable abundance of research in the
literature focusing on RNN usage in hydrological prediction. Current research trends
indicate that enhancing the RNN structure is an effective strategy to improve prediction
accuracy, especially when addressing practical engineering challenges. Moreover, the
complexity of engineering problems addressed by RNNs surpasses that of CNNs. For
instance, RNNs can be combined with geographic information to improve the credibility

and accuracy of hydrological prediction in a region [59].

Table 1. Comparison of different CNN/RNN models for hydrological forecasting.

Improvement, Prediction

Method Minor Category Authors Problem E:;le]l)lfﬁmlty Accuracy, and Computational Remarks
Costs
Learning-based CNN Sepahvand et al. [40] Hydrological infil’Fration Applied innovation; improved Increased training time.
modeling; medium accuracy over SVR; acceptable
YOLOv2 Han et al. [41] Flood management and Applied innovation; accuracy To be tested in practical
framework anetat flood warning; medium  exceeded 90%; lengthy training engineering.
CNN e . L Six-hour forecast
CNN-LSTM Windheuser et al. [43] Flood stage prediction; Integrateéd- innovation; accuracy accuracy needs
hard > 80%; lengthy training .
improvement.
Basic CNN Aderyani et al. [46] Rainfall fo_recastmg, Apphed. innovation; R* not Predlc_tlon accuracy
medium exceeding 0.7; acceptable needs improvement.
. : y Water resource Local structural improvements; Algorithmic advances
Dynamic RNN Coulibaly etal. [49] prediction; medium better than MARS; acceptable beat traditional models.
Basic RNN Kim et al. [53] Dam mﬂow'predlctlon; Applied mnovat(}on; prediction High-precision models
medium differences < 6%; acceptable enhance dam safety.
Weekly reference Local structural i ts: Improves the CNN
BiRNN Karbasi et al. [55] evapotranspiration; (;f/aerz r;l;tirg ;ggzgze:;g?e S method and boosts
RNN medium ge R =04 P hydrological forecasts.
. . Dam inflow prediction; Local structural improvements; Accurate long-term
Basic RNN/BiRNN Ayele etal. [56] medium close to GRU; acceptable predictions.
~ Extreme precipitation Integrated innovation; Enhances hydrological
RNN-RandExtreme Wang etal. [57] downscaling; hard improved by 28.32%; acceptable forecasting.
RNN with . — . Includes the coupling of
geomorphological Huang [59] Flooding process; hard Integrated innovation; MRE: geomorphological
. ’ 0.338 to 0.055; acceptable
factors factors.

3. LSTM for Hydrological Forecasting

3.1. Principle of LSTM

LSTM, a specialized type of RNN, is adept at handling and forecasting significant
events occurring over longer time intervals in time-series data. Unlike traditional RNNs,
LSTM mitigates the issue of vanishing gradients, enabling it to effectively process both
long- and short-term sequences. The conventional RNN architecture can be conceptualized
as a “circuit” comprising multiple interconnected neurons. Each neuron receives input
data, generates an output, and forwards it sequentially to the next neuron [60]. This
structure can learn short-term dependencies on sequence data; RNNs struggle to perform
well in processing long sequences due to issues such as gradient vanishing and explosion.
LSTM can effectively solve long-sequence problems by introducing the concepts of memory
cells, input gates, output gates, and forget gates (as shown in Figure 7). Memory cells are
responsible for storing important information. The input gate determines whether to write
the current input information into the memory cell, the forget gate determines whether
to forget the information in the memory cell, and the output gate controls the utilization
of information from the memory cells in generating current outputs. The manipulation
of these gates enables LSTM to capture significant long-term dependencies in sequences
and mitigate gradient-related problems. As a result, LSTM has successfully addressed
the shortcomings of RNNs and become the most popular RNN currently [61,62], being
successfully applied in many fields such as speech recognition, image description, and
natural language processing.
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Figure 7. Structural diagram of the LSTM network.
3.2. Basic LSTM for Prediction

The LSTM network stands out as one of the most effective DL architectures for mod-
eling dynamic hydrological variables [63]. When utilizing hydrological data, employing
LSTM directly as a black-box model for hydrological forecasting has gained significant at-
tention. In order to address the high randomness and non-statical nature of rainfall-runoff
processes, Hu et al. [64] compared the predictive performance of ANN and LSTM models.
By simulating the rainfall-runoff process of flood events in the Fenhe River from 1971
to 2013, it was found that both networks outperformed conceptual and physical models.
Notably, the LSTM model exhibited superior performance compared to the ANN model
(as illustrated in Figure 8), achieving R? and NSE values exceeding 0.9, respectively. The
LSTM model demonstrated greater intelligence compared to the ANN model due to the
implementation of a novel data-driven flood forecasting approach employing specialized
forget gates. Although the first application of LSTM in hydrology seems to have been in
2017 [65], this research by Hu et al. is also one of the earlier studies to successfully utilize
LSTM in hydrological prediction, and continues to be a highly cited paper (as of February
2024). Le et al. [66] proposed an LSTM neural network model for flood forecasting, utilizing
daily discharge and rainfall as the input data. Flowrate predictions for one, two, and
three days at the Huaping station yielded NSEs of 99%, 95%, and 87%, respectively. Their
findings underscore the potential of applying LSTM models in hydrological contexts for the
development and management of real-time flood warning systems. However, it is noted
that the LSTM model only provided highly accurate forecasts at specific locations within the
study area. Future endeavors should focus on integrating these models with meteorological
models, such as rainfall forecasting models, to enhance long-term forecasting performance.
DL techniques currently stand as the most accurate methods for making rainfall-runoff
predictions. Hydrologists, however, are wary of the reliability and predictive accuracy of
data-driven models based on deep learning when it comes to extrapolating or predicting
extreme events. Frame et al. [67] explored this issue by utilizing an LSTM network along
with a variant of an LSTM model. In comparison with the Sacramento model and the US
National Water Model (NWM), the LSTM network and its mass-conserving counterpart
demonstrated consistent accuracy in predicting extreme events, even in cases where such
events were not represented in the training data. Based on meteorological data from the city
of Jingdezhen from 2008 to 2018, Kang et al. [68] employed LSTM (nine significant input
variables) to predict the precipitation in Jingdezhen, Jiangxi Province. Their experimental
results showed that LSTM was more suitable for precipitation forecasting than classi-
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cal statistical algorithms, such as the autoregressive moving-average model and MARS
model, and machine learning algorithms, such as the ANN, SVM, and genetic algorithm
approaches. The RMSE values for the training, validation, and test datasets of the best
LSTM were 42.28 mm, 42.03 mm, and 41.72 mm, respectively. To improve the prediction
accuracy of LSTM, this study preprocessed the data by removing input variables with weak
correlation beforehand. Soil moisture is a key element of land surface hydrological pro-
cesses, controlling surface energy and water balance. Its spatial distribution and seasonal
variability can significantly impact weather and climate modeling over weekly to seasonal
time scales. Fang and Shen [69] integrated the Soil Moisture Active and Passive (SMAP)
technique with LSTM for the near-real-time forecasting of soil moisture. Their experimental
results show that the median RMSE of model prediction performance decreased from 0.030
to 0.022 because of the SMAP integration. This underscores LSTM’s adaptability and its
ability to handle prediction tasks effectively, especially with the addition of hydrologically
critical data, resulting in superior performance.
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Figure 8. Rainfall-runoff prediction performance using ANN and LSTM models [64]: (a) ANN model;
(b) LSTM model.

Many researchers consider utilizing LSTM as a surrogate model to reduce the com-
putation time of distributed hydrological models. Gu et al. [70] developed a surrogate
LSTM-based model that couples a self-organizing mapping (SOM) and K-means clustering
algorithm with an LSTM as an alternative to the variable infiltration capacity (VIC) model.
Their findings indicated that the runoff simulated by the surrogate model closely matched
that of the VIC model in terms of NSEs at Yangcun station, as depicted in Figure 9. More-
over, employing the proxy model resulted in an over 97% reduction in the computation
time. Modeling water flow in ungauged locations remains a significant hurdle in the
field of hydrological forecasting. Arsenault et al. [71] undertook a comparative analysis
between traditional zoning methods and the latest LSTM model. Their findings revealed
that the LSTM model exceeded the performance of hydrological models in 93% to 97%
of the watersheds, varying with the hydrological model used. Moreover, in up to 78% of
the watersheds, the LSTM model achieved more accurate flow predictions in unmeasured
catchments than the hydrological models, even when the latter were calibrated with tar-
geted data. The LSTM model not only offers substantial improvements over conventional
methodologies in predicting flows in ungauged catchments but also has the potential to
significantly influence the future direction of zonalization research.
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Figure 9. Performance evaluation comparing the fit quality between four surrogate model simulations
and VIC simulation [70]: (a) NSE; (b) KGE; (c) BIAS; (d) RMSE (BIAS: relative bias; KGE: Kling—Gupta
efficiency; YC: Yangcun station; NX: Nuxia station).

Both physics-based hydrological models and purely data-driven LSTM models have
their own strengths and weaknesses: the former’s performance is strongly influenced by
the soundness of the model structure, with an inappropriate structure leading to very
low model accuracy; the latter cannot demonstrate good generalization beyond the range
of the training dataset. By effectively combining the two, complementary information
is achieved to improve the simulation performance of the hybrid model. Lu et al. [72]
conducted streamflow simulations in a data-scarce watershed using a hybrid Bayesian
and machine learning model integrated with physical information. Their experimental
results demonstrated that the LSTM model could reasonably predict daily runoff with
NSEs higher than 0.8, while the hybrid model demonstrated improved out-of-distribution
predictions with acceptable generalization accuracy. Koutsovili et al. [73] proposed an early
flood monitoring and forecasting system based on a hybrid machine learning approach
(LSTM), and their experimental results revealed that by combining the predictions obtained
from the physical hydrological modeling system with those obtained from the LSTM, the
accuracy of the flood predictions could be improved and an accurate flood forecast could
be generated. This study highlights the effectiveness of combining physical and LSTM
models to allow them to compensate for each other’s limitations, thereby enhancing the
interpretability and prediction accuracy of the fusion models.

3.3. Improved LSTM for Prediction

With the rapid advancement of the LSTM technique, improvements for the core com-
ponents of LSTM and their successful application to hydrological forecasting have been
emerging. Zou et al. [74] proposed residual LSTM (ResLSTM) for predicting flood probabil-
ity as a multi-step model to overcome LSTM’s gradient problems such as gradient vanishing
and explosion. In addition, they introduced an autoregressive recurrent network into the
proposed model. Their experimental results demonstrated that the time residual-based
model was more accurate and robust than the original LSTM, GRU, and Time Feedforward
Connections Simple Gate Recurrent Unit (TFC-SGRU) (depicted in Figure 10), and the
accuracy of the peak flow predictions was close to 100% in the 90% prediction probability
interval. This underscores the effectiveness of integrating residual and LSTM networks
in mitigating gradient issues and enhancing model prediction accuracy. Xu et al. [75] de-
veloped a deep learning neural network model that integrates an LSTM network with
particle swarm optimization (PSO) to predict the flooding process using rainfall and runoff
data from all stations in a basin. The results indicated that the NSEs for the M-EIES, ANN,
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PSO-ANN, LSTM, and PSO-LSTM models were 0.9211, 0.9423, 0.9461, 0.9761, and 0.9912,
respectively, at a 1 h lead time. All models exhibited strong performance due to the short
prediction interval. However, at a 12 h lead time, the NSE values decreased to 0.6922,
0.6534, 0.6596, 0.6842, and 0.7486, respectively, illustrating a reduction in simulation accu-
racy as the lead time extended. The PSO-LSTM model consistently maintained a higher
level of prediction accuracy. Moreover, the integration of the PSO-LSTM model signifi-
cantly enhanced the accuracy of short-term flood forecasting. Forghanparast et al. [76]
performed intermittent runoff prediction for the headwaters of the Colorado River in Texas
using DL algorithms and compared the prediction performance of four models, namely
the extreme learning machine (ELM), CNN, LSTM, and Self-Attention LSTM (SA-LSTM)
models. SA-LSTM was found to provide the best performance in capturing the extreme
aspects of intermittent runoff flow rates (no-flow events and extreme floods) as the alter-
native and was found to be the most sophisticated tool among the four models. Also, Dai
et al. [77] proposed a short-term water level prediction model (LSTM-seq2seq) based on
the sequence-to-sequence approach. Their results revealed that the prediction accuracy of
LSTM-seq2seq was higher than that of other models; for instance, the NSE values of the
LSTM-seq2seq model consistently exceeded those of the LSTM-BP model by 0.02, with all
values surpassing 0.72, and exhibited the fastest convergence process. The same findings
were confirmed when forecasting the flow at multiple monitoring stations in the Humber
River based on a hybrid LSTM model. Xiang et al. [78] introduced an LSTM-seq2seq model
to predict hourly rainfall-runoff, conducting a comparative study at the Tripoli station in
the upper Wapsipinicon River basin. Their study evaluated the performance of persistence,
Lasso, SVR, LSTM, and LSTM-seq2seq models, with NSEs of 0.68, 0.68, 0.77, 0.72, and 0.85,
respectively. Additionally, at the Independence and Anamosa stations, the 24 h persistence
models showed high NSEs of 0.76 and 0.88, respectively. However, the LSTM-seq2seq
model demonstrated superior performance with NSEs of 0.86 and 0.93 at these stations,
outperforming both the persistence models and other comparative models. This study
demonstrates that the LSTM-seq2seq model exhibits strong predictive capabilities and is
an effective tool for enhancing the accuracy of short-term flood forecasts.
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Figure 10. Comparison of flood peak prediction errors across three flood events for four different
models [74]: (a) RESLSTM; (b) TFC-SGRU; (c) LSTM; (d) GRU.
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Zhang et al. [79] evaluated the performance of LSTM, CNN-LSTM, convolutional
LSTM (ConvLSTM), and spatiotemporal attention LSTM (STA-LSTM) models in flood
forecasting and found that when the prediction time was greater than 6 h, the STA-LSTM
model outperformed CNN-LSTM, ConvLSTM, and the basic LSTM model. This under-
scores the efficacy of integrating the attention mechanism with LSTM, leading to improved
hydrological prediction accuracy and computational efficiency. Hu et al. [80] developed
a framework integrating LSTM and reduced-order models (ROMs), termed LSTM-ROM,
capable of representing the spatiotemporal distribution of floods. Evaluated using the
Okushiri tsunami as a test case, the results achieved using LSTM-ROM closely aligned with
those achieved using the full model (Fluidity) from a predictive analytics standpoint, with
the CPU costs being reduced by three orders of magnitude when employing LSTM-ROM
compared to the full model. Contemporary precipitation forecasting methods commonly
overlook spatial autocorrelation characteristics, resulting in limited spatial information
representation and extraction. Xu et al. [81] proposed a deformable convolution LSTM
model considering spatial autocorrelation (DConvLSTM-SAC) for short-term precipita-
tion forecasting. In their experiment, a continuous sequence of rainfall images spanning
3 h was utilized to forecast the subsequent 3 h period. The DConvLSTM-SAC model
showed an average increase of 4.96% in R? and a decrease of 15.21% (9.01%) in the average
RMSE (MAE). This DConvLSTM-SAC model provides an effective approach to address
spatial autocorrelation in precipitation forecasting and exhibits promising performance
in experiments. Cui et al. [82] proposed an encoder—decoder (ED) with an exogenous
input (EDE) structure and integrated it with LSTM for multi-step-ahead flood forecasting.
They compared and analyzed the performance of four models, namely the Xinanjiang
(XAJ) hydrological model, LSTM with a recursive strategy, LSTM with a recursive ED
(LSTM-RED), and LSTM-EDE, in multi-step-ahead flood forecasting. The results indicated
that the EDE structure was better suited for long-term flood forecasting, outperforming
the other models. However, attention should be given to the influence of the exogenous
input accuracy on the LSTM-EDE model, particularly the gradual degradation of prediction
performance with greater prediction horizons. Kao et al. [83] introduced a multi-step
forecasting model using a long-short-term memory encoder-decoder (LSTM-ED) and eval-
uated its performance in multi-stage flood forecasting against that of a feedforward neural
network-based encoder—-decoder (FFNN-ED) model. The RMSE values of the LSTM-ED
model at the T + 2, T + 4, and T + 6 forecast horizons were approximately 50% lower
than those of the FENN-ED model. Furthermore, the R* and NSE values for the LSTM-ED
model exceeded 0.95 at all three horizons. These results demonstrate that the LSTM-ED
model not only more effectively simulates the long-term dependencies between rainfall
and runoff sequences but also provides more reliable and accurate forecasts compared
to the FFNN-ED model. Han et al. [84] proposed a hybrid model based on a variational
modal decomposition-LSTM—-Breadth Learning System combination (VMD-LSTM-BLS)
for the prediction of sea surface temperature (SST) in the East China Sea. Compared to
those achieved with the benchmark SVM, RNN, and LSTM models, and the existing deep
models, the maximum and minimum RMSE values were reduced by, respectively, 42.75%
and 19.15%, which proves the advantages of the proposed VMD-LSTM-BLS hybrid model
in SST prediction with relative stability and high efficiency. In addition, Yang et al. [85] com-
bined temporal and spatial information and proposed a convolutional and fully connected
LSTM (CFCC-LSTM)-based model for predicting future SST. Gauch et al. [86] introduced
two multi-timescale LSTM (MTS-LSTM) models designed to simultaneously predict mul-
tiple temporal scales of rainfall-runoff within a single framework. The performance of
these models was evaluated by comparing the differences in median NSE values and peak
timing errors between the NWM and the MTS-LSTM models on both a daily and hourly
basis. The results indicated median NSE discrepancies ranging from 0.11 to 0.16 for daily
predictions and approximately 0.19 for hourly predictions. Specifically, the median peak
timing error for the SMTS-LSTM model was about 3.5 h, in contrast to this being more than
6 h for the NWM. These findings demonstrate that the MTS-LSTM model not only achieves
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a significantly higher NSE value compared to the NWM but also offers enhanced compu-
tational efficiency without sacrificing accuracy. Zhang et al. [87] employed a multi-layer
convolutional LSTM model for predicting 3D ocean temperature. These studies underscore
the significance of enhancing the internal structure of LSTM models, particularly through
effective fusion with the predicted objects, to optimize model fitness and improve their
prediction performance.

3.4. Summary

As depicted in Figure 11, the NSE values of these six models provide insights into
their performance in data fitting. Notably, the PSO-LSTM model exhibited outstanding
performance with an NSE value as high as 0.9912, indicating relatively minimal prediction
errors and the strongest fitting capability. The NSE values of the remaining models all
surpassed 0.8, indicating a high degree of fitting performance as well.
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Figure 11. Comparison of NSEs of different LSTM models [64,66,72,75,77,78].

Based on the above literature review, Table 2 lists a comparison of different LSTM
models for hydrological forecasting. There are also other studies that use these models, such
as the basic LSTM model [46,88,89] and the improved LSTM model [90,91], for research
on hydrological forecasting. Initially, primitive LSTM models demonstrated relatively
strong prediction capabilities with minimal adjustments for hydrological forecasting tasks.
Over time, the application of LSTM models has evolved from direct implementation (the
black-box approach) to surrogate and hybrid physics models, expanding their scope and
enhancing their prediction performance. While the direct application of LSTM is straight-
forward and requires minimal domain knowledge and modeling time, the interpretability
of its models remains a concern. Basic LSTM models particularly demand extensive train-
ing data, and their performance heavily relies on data quantity, especially high-quality
hydrological data. Integrating LSTM models with physical models enhances prediction
accuracy and robustness. However, fusing models requires not only domain expertise
but also skills in computer programming. To enhance the prediction performance, some
scholars have fused popular deep network structures from other fields with LSTM models,
such as residual modules in residual networks [74]. The inclusion of residual modules not
only enhances the fitting of residual networks to achieve higher accuracy but also addresses
the challenge of optimizing network training with deeper layers. Consequently, combining
LSTM with residual networks deepens the network’s architecture, mitigates the training
complexity, and enhances the prediction performance. Moreover, attention mechanisms
have been integrated into LSTM modeling to achieve further enhanced predictive capabil-
ities in hydrological forecasting [76,77,79]. By introducing attention mechanisms, LSTM



Water 2024, 16, 1407 16 of 31

models can be made to automatically learn and selectively focus on important information
in the input data, improving the performance and generalization of the improved model.
These studies underscore the potential for significant enhancements in LSTM model perfor-
mance through the effective adaptation of cutting-edge DL advancements in hydrological

forecasting, representing a promising avenue for future research.

Table 2. Comparison of different variants of LSTM for hydrological forecasting.

Improvement,
Method Minor Category Authors Problem E:;le]]mfﬁmlty l;;e;g:;r;icai?;;z, Remarks
Costs
Applied innovation; R? An example of early
LST™M Hu et al. [64] Rainfall-runoff; medium exceeding 0.9; LSTM use in
acceptable hydrological prediction.
Applied innovation; Enhances rural
Optimized LSTM Kang et al. [68] Precipitation; medium outsciif:ércr;saizdl\l/t[fnal precipitation predictions
acceptable ! with sparse data.
Basic LSTM Near-real-time Integrated innovation; h (I:{“r?)i)migcaklec}l]ata
LSTM with SMAP Fang and Shen [69] forecasting of soil outperforms LSTM sans A &
. > . enhances the LSTM
moisture; hard SMAP; acceptable model
Integrated innovation; o
SOM ié(j:ﬁeans * Gu et al. [70] VIC; very hard closeg to the VIC model; Saved z 97 ./0
acceptable computation time.
Streamflow simulation: Integrated innovation; i
Bayesian LSTM Luetal. [72] medium 4 desired performance; Enhances the fusion
lengthy training model’s interpretability
Early flood monitoring: Integrated innovation; and accuracy.
Vanilla LSTM Koutsovili et al. [73] Y hard & acceptable level; lengthy
training
Flood probability; I;r?qc aios\tl;:lrlrcl:lrtz'l Residual LSTM
ResLSTM Zou et al. [74] PTO ty; prover ’ integration mitigates
medium surpasses original LSTM adient issues
and GRU; acceptable g .
Local structural
Intermittent runoff improvements; achieved )
SA-LSTM Forghanparast et al. [76] rediction: medium the best performance Model uses attention
p ! among the four models mechanisms for
studied; acceptable accuracy.
Short-term water level Local structural
LSTM-seq2seq Dai et al. [77] diction: medi improvements;
Improved LSTM prediction; medium NSE = 0.83; acceptable

LSTM-EDE

VMD-LSTM-BLS

Multi-layer
convolutional LSTM

Cui et al. [82]

Han et al. [84]

Zhang et al. [87]

Multi-step-ahead flood
forecasting; hard

SST prediction; medium

SST prediction; medium

Local structural
improvements; more
suitable for long-term

flood forecasting;
acceptable

Local structural
improvements; RMSE

reduction: max 42.75%,
min 19.15%; acceptable

Local structural

improvements;

predicted data are
generally accurate;
acceptable

Model performance
degrades with longer
prediction periods.

Signal decomposition
integration enhances
LSTM SST accuracy.

Links temperature time
series with spatial
seawater data.

4. GRUs and Others for Hydrological Forecasting
4.1. Principle of GRUs and Others

The GRU, akin to LSTM, is a type of RNN designed to address challenges such as long-
term memory retention and gradient vanishing during backpropagation [92,93]. Compared
to LSTM, a GRU exhibits notable performance and is easier to train, significantly enhancing
the training efficiency. This advantage stems from the similarity of the GRU’s input and
output structure to that of standard RNNs, coupled with its LSTM-like internal processing.
Although a GRU lacks LSTM’s gate control and features fewer parameters, it can perform
comparably to LSTM. A generative adversarial network (GAN) is a DL model that consists
of two main components: a generator and a discriminator [94,95]. The task of the generator
is to receive random noise as its input and generate samples similar to real data. The task
of the discriminator is to distinguish between real data and fake data generated by the
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generator, and these networks learn through adversarial competition. Hydrological data,
such as rainfall data from outdoor observation stations, are often incomplete due to various
uncontrollable factors, hindering their direct use for prediction tasks. Therefore, GANs
have a strong data generation ability through the game balance between the generator
and discriminator, and can fully utilize existing data for training and learning, thereby
generating the required data. Additionally, residual networks (ResNets), graph neural
networks (GNNSs), and other architectures are gaining traction among researchers.

4.2. GRUSs for Prediction

Zou et al. [74] combined autoregressive recursive networks with a GRU to address the
nonlinearity problem of natural hydrological characteristics in watersheds and achieved
hydrological predictions for the Passaic and Ramapo River basins in the United States.
Their findings revealed that the peak flow accuracy fell within a 90% prediction probability
interval, with predictions approaching 100%, underscoring the model’s robust adaptability
to flood uncertainty. In a separate study, Xie et al. [96] adopted two networks, a GRU and an
LSTM model, to carry out a hydrological simulation of green roofs. Their results confirmed
that as the length of the time window (the memory length, i.e., the time step of input
data) increased, both models achieved a higher overall prediction accuracy, suggesting
the utility of GRUs and LSTM in modeling hydrological processes on green roofs. Tabas
and Samadi et al. [97] combined the Monte Carlo dropout (MC-dropout) uncertainty
technique in Bayesian inference with GRU, LSTM, and RNN methods to quantitatively
model rainfall-runoff in a mixed urban and rural coastal watershed in North Carolina,
USA. The simulation results showed that the GRU and LSTM methods had significant
advantages compared to previous classical models, as depicted in Figure 12. If floodwater
level data can be predicted, economic and human losses caused by floods can be alleviated.
A water level prediction model incorporating LSTM-GRU was proposed by Cho et al. [98].
Optimal results were achieved when the input data included both the LSTM-GRU model
and meteorological data from an automated weather observation system. The experimental
results demonstrated that the LSTM-GRU model attained a mean square error (MSE) of
3.92, an NSE of 0.942, and an MAE of 2.22, all of which were the highest among all scenarios.
By comprehensively considering meteorological and water level data, this model effectively
predicted flood risks with high accuracy and practicality. Future research could further
optimize this model to enhance its applicability and reliability. Zhang et al. [99] employed
a spatiotemporal attention—gated recurrent unit (STA-GRU) model for flood prediction
to enhance computational efficiency. When the dataset underwent preprocessing with
lag time, the R? value of the STA-GRU model increased from 0.6181 to 0.7232, the RMSE
decreased from 0.1220 to 0.1039, and the MAE reduced from 0.0625 to 0.0534. These results
indicate the enhanced predictive performance of the STA-GRU model. This improvement
is attributed to the superior capability of GRUs in handling temporal data. These findings
hold significant implications for enhancing the efficiency and accuracy of flood prediction.
Kilinc et al. [100] proposed combining the grey wolf optimization (GWO) algorithm with
a GRU for predicting daily flow data in the Seyhan basin. Their study yielded an R? of
0.9127, an RMSE of 82.9352 cubic meters per second (m3/s), an MAE of 85.9337 m3/s, and
a MAPE of 62.4796 m3 /s for the GWO-GRU hybrid model. The results obtained with the
GWO-GRU hybrid model significantly enhanced the accuracy of flow prediction, with
the insights and data derived from its flow forecasting being particularly valuable for
designing water infrastructure, flood alert systems, and more effective water management.
Chbhetri et al. [101] proposed a rainfall forecasting model based on bidirectional long
short-term memory (BLSTM-GRU). Daily weather parameter records from the Bhutan
region spanning from 1997 to 2017 were utilized as the research dataset. Their results
indicated an R? of 0.87 for BLSTM-GRU. Additionally, its MSE was 0.007, which was 41.1%
higher than that of LSTM. This LSTM-GRU model demonstrates a high level of accuracy
and predictive capability in rainfall forecasting, which may hold practical significance
for meteorological prediction and related domains. In addition, using the MC-dropout



Water 2024, 16, 1407

18 of 31

technique, the inherent input data Gaussian noise term was applied to the RNN layer,
implicitly reducing overfitting and significantly improving the predicted log likelihood.
Guo et al. [102] combined ensemble learning methods with residual correction to propose
a hybrid hydrological prediction model for mountainous areas. They incorporated the
predicted outputs of three models, namely an encoder-decoder GRU (ED-GRU), an encode-
decode LSTM (ED-LSTM) model, and a convolutional neural network LSTM combination
(CNN-LSTM), into the classification gradient-boosting regression (CGBR) model, solving
the highly nonlinear relationship between the model’s input and output. The results
showed that the proposed model had a good predictive ability in predicting reservoir peak
and total inflow data. Compared with the three DL models, the proposed model achieved
an average performance improvement of 66.2% and also performed well on storm events
with multiple peak water levels. In addition, the emergence of the bidirectional GRU has
further improved the predictive performance of its model [103-105] and has been applied
in some hydrological forecasting research [106].
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Figure 12. Comparative analysis of daily streamflow simulation performance using four modeling
methods [97]: (a) calibration; (b) validation; (c) calibration (Log-Scale); (d) validation (Log-Scale).

4.3. Other Methods for Prediction

Li et al. [107] fused a GAN with a fuzzy inference model for predicting multidimen-
sional incomplete hydrological big data. In the proposed fusion model, the GAN was
utilized to generate data to complete the incomplete hydrological data; the fuzzy inference
model was used for rainfall-runoff prediction. The experimental results indicated that
combining GAN and fuzzy inference modeling yielded satisfactory prediction results, par-
ticularly in the rainy season. Hofmann and Schiittrumpf [108] have developed a floodGAN
model for predicting pluvial floods caused by nonlinear, spatially heterogenous rainfall
events. The performance and accuracy of floodGAN were evaluated through multiple
tests using synthetic events and historical rainfall events. The average R? values of the test
datasets ranged from 0.80 to 0.85. This floodGAN model bridges the gap between detailed
flood modeling and real-time applications such as end-to-end warning systems. Lago
et al. [109] introduced a method termed the conditional generative adversarial network-
Flood (cGAN-Flood) method, utilizing a cGAN for flood prediction within catchment areas
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not included in the training process. Across the four rainfall events tested, the R? values
exceeded 0.7 for each event. These findings demonstrate the robust predictive performance
of the cGAN-Flood method concerning flood location and water depth. Given its compu-
tational efficiency and accuracy, cGAN-Flood emerges as a viable modeling solution for
large-scale basin flood forecasting. Laloy et al. [110] utilized a spatial GAN for ground-
water modeling, and their research demonstrated the effectiveness of synthetic inversion
involving two-dimensional steady-state flow and three-dimensional transient hydraulic
fault scanning. In addition, several other researchers have made useful summaries of
the application of GANs and their various improved algorithms in hydrological predic-
tion [111]. Some other DL networks have also received attention from relevant scholars.
Ren et al. [112] proposed a novel hybrid KNN-FWA-ELM method, integrating the k-nearest
neighbor (KNN) technique, the fireworks algorithm (FWA), and an extreme learning ma-
chine (ELM) for flood prediction in a loess region’s medium and small watersheds. Their
study focused on the Gedong basin in the western loess region of Shaanxi, analyzing surface
changes and flood characteristics. The results indicated that the R? of the KNN-FWA-ELM
model was 0.86, which was 0.04 higher than that of the ELM model. Additionally, the
KNN-FWA-ELM model exhibited superior simulation performance and higher accuracy
in flood prediction, with a qualification rate 17.39% higher than that of the ELM model.
While the hybrid model achieved favorable flood forecasting results in medium and small
watersheds of the loess region, it had drawbacks such as the need for manual determination
of the hidden node numbers. Zhang [113] employed a residual network (ResNet) to process
multitemporal remote-sensing imagery and predict changes in Greenland glacier fronts and
found that the predictions were favorable. Spatial autocorrelation analysis improves flood
warnings by refining spatial data patterns for more accurate predictions. Zhou et al. [114]
introduced an ML-based urban flood warning system. Spatial autocorrelation analysis,
using Moran’s I, confirmed a significant positive spatial correlation between rainfall (at
a 95% confidence level) and inundation points. Models employing gradient-boosting de-
cision tree, SVM, and backpropagation neural network algorithms were constructed for
predicting this rainfall-inundation relationship, with the gradient-boosting decision tree
approach showing the lowest RMSE (0.001 m) in predicting the inundation depth. This
integrated approach enhances the accuracy and reliability of urban flood warning systems
by combining spatial autocorrelation analysis with model construction. Bui et al. [115]
conducted a comparative study of various innovative hybrid models that integrate swarm
intelligence algorithms with deep learning neural networks for flood sensitivity mapping.
These models leverage recently developed swarm intelligence optimization algorithms
that emulate the behaviors of gray wolves, social spiders, and grasshoppers to fine-tune
deep learning neural networks for flood sensitivity mapping. The stability performance
of these models was assessed using the area under the receiver operating characteristic
curve (AUC) as a metric, where higher AUC values indicate greater model robustness.
The study found that SSO (AUC = 97.003%), the GOA (AUC = 96.798%), and GWO
(AUC = 96.751%) exhibited notable stability. The validation of the stability of the GWO
algorithm, SSO algorithm, and GOA, which are inspired by animal behavior, enhanced this
modeling approach and informed similar research efforts in other fields. Multi-scale feature
representation is vital for estimating floodwater surface displacement, providing compre-
hensive monitoring and predictive data, thus enhancing flood risk management. Chew
et al. [116] developed a multi-scale homogeneous deep neural network (MHDNN-UPC)
to predict water surface displacement, representing flood scenarios induced by peak flow
conditions. The MHDNN-UPC method incorporates features of different scales into flood
prediction modeling and enhances computational performance through unified parallel
computing. Compared to other traditional models, this model demonstrated an average
increase in prediction accuracy of 10%, along with improved computational performance
and the execution capability of the UPC component. MHDNN-UPC achieves enhanced
computational efficiency while improving the forecast accuracy. In addition, GNNs have
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also been applied to hydrological prediction [117,118]. For example, the GNN framework
proposed by Zhao et al. [117] can effectively predict a river’s flow during its initial stage.

4.4. Summary

As shown in Figure 13, the GWO-GRU model achieves the highest R? value of 0.9127,
indicating its strong capability in explaining the variability of the data and demonstrating
good predictive performance. The BLSTM-GRU model performs relatively well with
an R? value of 0.87. The remaining models also exhibit reasonably accurate predictive
capabilities, with the cGAN-Flood model showing a slightly lower performance due to the
larger volume of data it handles.
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Figure 13. Comparison of R? values between GRU models and other models [99-101,108,109,112].

Based on the above literature review, Table 3 lists a comparison of different variants of
GRUs or other models for hydrological forecasting. Based on the existing literature, the
application of GRUs in hydrological forecasting occurs much less than that of LSTM. The
performance of the GRU is comparable to that of LSTM on medium-scale to large-scale
data, while the GRU and LSTM methods have their own advantages and disadvantages
in processing ultra-large data [119-121]. The GRU has a shorter processing time and is
suitable for real-time requirements. Although LSTM exhibits slightly higher accuracy;, it is
notably time-consuming. This elucidates a significant reason why GRU applications garner
less attention than LSTM in hydrological forecasting. At present, the application of GRUs
in hydrological forecasting in the literature is mainly based on basic algorithms [74,94,95],
although there are also many improved versions of the GRU, such as the bidirectional
GRU [122,123] or versions with added attention mechanisms [124,125]. Other types of
DL algorithms, such as GANs, ResNets, and GNNs, have been utilized in hydrological
forecasting, yielding more satisfactory prediction outcomes [107,110,113,117,118]. For
example, the emergence of the GAN is significant for dealing with missing hydrological
data. However, the number of related research works on these topics remains limited,
particularly in terms of the thorough adaptation of algorithms to this research context.
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Table 3. Comparison of different variants of GRU models or other models for hydrological forecasting.

Improvement,
Problem and Prediction
Method Minor Category Authors o Accuracy, and Remarks
Difficulty Level .
Computational
Costs
Local structural .
Flood probability; improvements; Easily
Basic GRU Zou et al. [74] Pro v p ’ implemented;
medium acceptable;
lowers threshold.
acceptable
Applied
Hydrological innovation; higher Finds optimal
Basic GRU Xie et al. [96] simulation of green  overall prediction parameters for
GRU roofs; medium accuracy; high accuracy.
acceptable
Local structural Combinine models
GRU+ Tabas and Samadi Streamflow improvements; with noisegre duces
MC-dropout etal. [97] simulation; hard acceptable; .
uncertainty.
acceptable
Hourly inflow for Integrated Model
GRU + CGBR Guo et al. [102] reservoirs at innovation; performance
mountain acceptable; depends on the
catchments; hard acceptable dataset’s quality.
Integrated GAN s generate
. Rainfall-runoff innovation; data better than
GAN Lietal. [107] prediction; hard acceptable; random forest
acceptable models.
Applied .
Oth Groundwater innovation: Spatial GANs
thers GAN Laloy et al. [110] modeling; very acce table'/ require fewer
hard P / training images.
acceptable
Changes in immesation enenalsabil
ResNet Zhang [113] Greenland glaciers; / 5 4
hard acceptable; and robustness for
medium wider use.

5. Discussion
5.1. DL vs. Traditional ML and Physical Models

In the field of engineering, physical models are considered to be useful in understand-
ing the physical mechanisms inherent in objective phenomena [126-128]. In general, the
accuracy of physical model predictions depends on the physical properties of the model, the
initial conditions of the watershed, and the spatial and temporal resolution of the predictor
and predictor variables. This not only makes it necessary for the relevant researchers to
have expertise and experience in the model, but also requires a professional background in
industries such as mathematics and computers. Further, the associated computational pro-
cess is very resource- and time-consuming. It is also a challenge to realize highly accurate
hydrological forecasts in a timely manner with limited time and resources. In addition, it is
difficult to migrate the physical models built for specific scenarios to other areas, which
further raises the threshold for their popularization and application.

DL and traditional machine learning are two important branches in the field of ma-
chine learning, and they differ significantly in their hydrological forecasting applications.
Traditional machine learning usually requires manual feature engineering, i.e., extract-
ing meaningful features from raw hydrological data. DL, on the other hand, is able to
automatically learn features through multi-layer neural networks to obtain higher-level
representations from raw data. DL’s capacity for end-to-end applications reduces the
computational demands for hydrology researchers. This means that feature engineering no
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longer needs to be executed manually to achieve better hydrological forecasts. Traditional
machine learning operates effectively with smaller datasets [18,129]. DL requires relatively
large amounts of data, especially in deep neural networks [130]. Compared with traditional
machine learning, DL is able to automatically learn features from raw data, which can
result in richer information and higher-level feature representations, thus improving model
performance. Consequently, with the continuous accumulation of hydrological data, DL's
application in hydrological forecasting is broadening, encompassing runoff prediction,
flood forecasting, reservoir level prediction, groundwater level prediction, and more.

A comparison of DL, traditional ML, and physical models for hydrological forecasting
is listed in Table 4. For example, physical models typically require a significant amount
of computation to achieve sufficient progress and are not yet easy to transplant to new
scenarios. However, their advantage is their good interpretability, as they are modeled
based on actual hydrological conditions. Consequently, all three types of models coexist in
current hydrological forecasting research. However, the focus of research on hydrological
forecasting models is gradually shifting from physical models to traditional machine
learning and DL. This trend is particularly evident, especially given the recent rapid
advancements in artificial intelligence.

Table 4. Comparison of DL, traditional ML, and physical models for hydrological forecasting.

Difficulty of Computing R .1
Methods Application Time Replicability Interpretability
Physical models Hard Long Very hard Yes
Traditional ML Middle Short Hard Partially
DL Easy Acceptable level  Acceptable level No

5.2. Comparison of Various DL Algorithms

Generally speaking, CNN deep learning models are mainly used for understanding
images and other aspects [25,130,131], and their strength is not in predicting data series.
Therefore, the application of CNNSs is not very common in the existing hydrological fore-
casting literature. However, as satellite/aerial photography methods for obtaining optical
and remote sensing images become increasingly economical, CNN models can be used to
establish a certain correlation between these large-scale images and hydrological forecast-
ing, such as for predicting urban waterlogging [41]. In this way, the advantages of CNNs
will be fully utilized in hydrological forecasting.

RNN deep learning models have been applied in hydrological forecasting, such as
for analyzing water resources, dam inflow, flooding processes, extreme precipitation,
and others. Although RNNs can predict hydrological time-series data, they encounter
challenges with long sequence data. This is due to the problem of vanishing/exploding
gradients in RNNs during their training [132,133], rendering these models difficult to train
or unable to converge. Furthermore, due to the vanishing gradient, RNNs find it difficult to
capture long-term dependencies when processing long sequences, and can only effectively
utilize shorter contextual information. In addition, the calculation process of an RNN
is based on time-step expansion, and each time step needs to be calculated sequentially,
resulting in low computational efficiency, particularly with long sequences. Therefore, for
long-term hydrological forecasting, the RNN model needs further improvement to enhance
its prediction accuracy.

In hydrological forecasting, LSTM deep learning models are widely used, including
the basic LSTM model and various improved versions [64,68,84,87]. This is due to LSTM’s
ability to circumvent the critical drawback of a traditional RNN [134-136], making it more
user-friendly for processing hydrological sequence data, especially for long sequence data.
Based on existing research, the LSTM model and its various improved versions run well
under normal conditions, but may fail in extreme situations. In order to achieve better re-
sults, it is necessary to strengthen the collection of high-quality, long-sequence hydrological
training datasets. This entails furnishing extensive historical data with consistent statistical
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features, orchestrating the development of high-resolution observations, and conducting
thorough data analyses for both training and testing purposes.

A GRU can be seen as a simplified version of LSTM, as it combines cellular and hidden
states into one state and uses update and reset gates for control [137,138]. Therefore, GRUs
solve the problem of vanishing gradients by using gate mechanisms to control the flow of
information, thus enabling better learning of long-term dependencies. In contrast to LSTM,
a GRU possesses fewer parameters, resulting in faster training and reduced susceptibility
to overfitting. However, in tasks that require modeling complex sequential dependencies,
GRUs may not exhibit a performance comparable to that of LSTM, contributing to their
relatively limited presence in hydrological forecasting research compared to LSTM. In addi-
tion, GRUs may need to make some adjustments to the hyperparameters to achieve optimal
performance, which poses a challenge for researchers and requires a certain foundational
knowledge in computer applications. Alternative DL models, including ResNets, GANs,
and GNNs, are typically integrated with other frameworks and seldom serve as the primary
component for conducting hydrological forecasting tasks. For example, GANs can generate
missing hydrological data based on the trend of historical data changes. Thus, Table 5
presents a comparison of the CNN, RNN, LSTM, GRU, and other models for hydrological
forecasting.

Table 5. Comparison of CNN, RNN, LSTM, GRU and other models for hydrological forecasting.

Number of Difficulty of
Methods Appearances in the Applicati Accuracy Complexity
Literature pplication
CNN Less Easy Acceptable level Acceptable level
RNN Less Middle Relatively satisfactory Simple
LSTM More Middle Relatively perfect Middle
GRU Less Middle Relatively satisfactory Simple
ResNet Much less Easy -— Middle
GAN Much less Hard -— Huge
GNN Much less Hard -— Middle

Note(s): More: >30 articles; less: 20-30 articles; much less: <20 articles. Complexity indicators: framework,
parameter quantity, and training time.

5.3. Advantages and Disadvantages of Hybrid Models

Figure 14 illustrates the strengths and weaknesses of DL, physical, and hybrid models
for hydrological forecasting. In contrast to physical models, the mapping between the input
and output in DL models does not require consideration of actual physical processes, which
simplifies the difficulty of building these models and accelerates research progress for
more hydrological researchers. By successfully building an end-to-end model, automatic
fitting of the nonlinear relationship between the input and output becomes feasible. While
this model type boasts a low complexity, it also presents a challenging issue to address
(i.e., the lack of interpretability), given that DL models operate as black-box methods. For
example, in the context of flood predictions within crucial river basins, which encompasses
numerous factors such as personnel safety, property transfer, disease transmission, and
road network damage, enhancing the interpretability and credibility of hydrological fore-
casting can facilitate more informed decision making among managers. In order to improve
the interpretability of DL models, Konapala et al. [72,139] created various hybrid models
that combine different forms of hydrological information with LSTM networks in different
ways. For example, some of the data trained in LSTM networks come from additional
data/information from physics-based models. This approach can address the limitation of
purely data-driven LSTM models in generalizing beyond the training range due to insuffi-
cient historical observations, thereby enhancing the accuracy of hydrological forecasting.
Additionally, other researchers have also combined different DL models with physical
models to improve the accuracy and interpretability of these models [97,140]. However,
the current method of combining DL and physical models for hydrological forecasting still
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relies on passive learning. This indicates that DL models exist in a non-active learning
state for prediction since they cannot be trained without actual simulation. As of right
now, the AlphaFold2 approach correctly predicts 98.5% of human protein structures by
integrating biological and physical knowledge on protein structures into the design of DL
algorithms [15]. This makes the suggested model both interpretable and capable of active
learning. In a similar vein, this suggested model may independently search for and assess
the tertiary structure of RNA and achieve the highest prediction accuracy by combining
geometric topology with DL algorithms [141]. Naturally, with the rise in model autonomy
and interpretability, complexity has also increased, posing challenges in the development
of pertinent research. To enhance the autonomy, intelligence, and interpretability of mod-
els, the current trend in hydrological forecasting research involves integrating DL with
physical simulations, drawing upon successful experiences from fluid mechanics [142] and
biology [15,141].
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Figure 14. Advantages and disadvantages of DL, physical, and hybrid models for hydrological
forecasting.

5.4. Challenges in the Application of DL Models

Spatial autocorrelation is a major challenge in hydrology, addressed using widely
studied traditional statistical methods. For instance, Poisson regression with feature vector
space filtering is used to simulate flood risks at hydrological stations, and grid data are used
for spatiotemporal autocorrelation analyses of extreme precipitation events [143,144]. DL
methods, like enhanced LSTM models, have been attempted for short-term precipitation
forecasting. Deepening our understanding of spatial heterogeneity aids in effectively identi-
fying hydrological features and issues, thereby improving the accuracy and applicability of
hydrological models. For example, statistical analysis methods have been utilized to study
rainfall spatial heterogeneity in urban areas [145]. However, hydrological research on DL
models predominantly focuses on model design, algorithm optimization, and performance
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evaluation, with limited exploration of spatial heterogeneity. Multi-scale feature representa-
tion is essential in hydrological prediction for capturing system complexity and variability,
improving model adaptability and prediction accuracy. Early techniques focused on re-
gionalization but have since expanded to broader scales and climate systems [146]. DL
models excel at automatically learning features from data, handling multi-scale features
effectively. For instance, multi-scale homogeneous deep neural networks can predict water
surface displacement during peak flow. While current research on multi-scale features is
limited, DL’s increasing application in hydrology is expected to drive further advancements,
enhancing the accuracy of prediction models.

6. Outlooks

With the latest developments in computational technology, data-driven machine
learning models, especially deep learning models, have made tremendous progress in hy-
drological forecasting. For example, they show great potential in re-simulating streamflow
and capturing rainfall-runoff relationships for a given watershed, which have traditionally
been carried out using process-based physical models. Thus, with the help of DL models,
hydrological forecasting is made less difficult and the prediction performance is more stable
and less costly. This area has garnered increasing attention from researchers. Therefore,
based on the literature review in this study, the future directions of hydrological forecasting
based on DL models are as follows.

(1) CNN models continue to be relevant in hydrological forecasting and need to be
utilized for their unique advantages in handling massive image data. Moving forward,
CNNs and improved CNN models can be integrated with other deep models to
achieve hydrological data analyses that not only include time-series data (short-
/medium-/long-term) but also encompass time-series image data (optical/remote
sensing), which can further improve the prediction performance of these models. The
RNN model, as a basic time-series prediction method, is constrained by its structure,
and it needs to be further improved to achieve more applications in the field of
hydrological prediction.

(2) With the deepening of research, there will be a tendency in the future to design more
complex deep learning models to better capture the inherent coupling relationships in
hydrological forecasting sequence data. New variants and improved model structures
based on LSTM continue to emerge, such as improved LSTM variants, more attention
mechanisms, more parallel processing, and more effective weight sharing. This
enables the design of deeper and more effective LSTM structures, utilizing GPUs
and TPUs for more effective parallel processing, thereby improving the training and
inference speed of the model.

(3) Both GRUs and GNNs are expected to achieve greater breakthroughs in the future,
especially in the field of hydrological forecasting. For GRUs, attention mechanisms
and improved gating mechanisms can be introduced to better handle hydrological
sequences of variable length and their complex coupling relationships. For GNNSs,
the efficiency and performance of processing large-scale graph data can be improved
by introducing new graph convolution operators and developing efficient graph
sampling strategies.

(4) The combination of physical properties and deep learning helps to explain the working
principle of the model and improve its interpretability, which is crucial for critical
hydrological forecasting applications and helps to enhance trust and acceptance of
the model’s results. In the future, hybrid models should also have an active learning
ability and a self-iterative evolution ability, and continuously improve hydrological
forecasting performance.

(5) Spatial autocorrelation challenges DL models due to data and weight matrix issues.
Future solutions may include innovative model structures and feature methods.
Ensuring the model’s applicability across different regions encounters challenges such
as data bias, imbalance, and the integration of spatial information, reflecting spatial
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heterogeneity. Overcoming these obstacles may require model optimization, data
expansion, and interdisciplinary collaboration. Multi-scale feature representation
involves scale matching and computational costs. Future solutions may focus on
improving model performance and applicability to address this issue.
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