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Abstract: Algal blooms are caused by excessive levels of nitrogen, phosphorus, and other plant
nutrients in water. Algae and algal organic matter (AOM) pose a great threat to the quality of
drinking water. This manuscript offers a systematic review of algal removal by ferrate (Fe(VI))
oxidation, including the conditions for the removal of different algae by Fe(VI) and the factors
affecting the removal efficiency. On this basis, the oxidation and coagulation mechanisms of algae
removal by Fe(VI) are discussed. Then, the review introduces the process combining Fe(VI) pre-
oxidation with aluminum sulfate action. The addition of aluminum sulfate can further enhance the
coagulation effect and reduce the formation of disinfection byproducts (DBPs) in the subsequent
chlorination process by effectively removing AOM, which is recognized as a precursor of DBPs. In
addition, recent studies on the combined application of Fe(VI) and Fe(II) are also reviewed. In a
reasonable dose range, the synergistic effect of Fe(VI) and Fe(II) can significantly improve the removal
of algae and algal toxins. Finally, this review provides a comprehensive evaluation of the applicability
of Fe(VI) in removing algal material, offers guidance for the harmless treatment of algae with Fe(VI),
and identifies future research questions.

Keywords: ferrate; algal removal; AOM; algal toxins; Fe(VI) combined methods

1. Introduction

In recent years, the addition of nutrients to aquatic ecosystems by human activities
(e.g., agricultural runoff, wastewater discharges, and land use changes) has increased the
frequency and geographic distribution of harmful algal blooms (HABs), posing a potential
threat to aquatic ecosystems and human health [1,2]. Thus, surface water eutrophication,
an emerging ecological phenomenon, has become a major concern in many countries [3].
Although algae utilize carbon dioxide as their primary substrate for photosynthesis, ini-
tiating the flow of energy into living organisms and playing a crucial role in the global
carbon cycle, they produce a wide array of secondary metabolites, including toxins and
volatile compounds [4]. These secondary metabolites not only affect the quality of drinking
water and aquatic products, but also further endanger human health and the ecological
environment [5]. Meanwhile, algae also produce unpleasant tastes and odors and clog
filters, further damaging water treatment systems and reducing the quality of drinking
water [6]. However, algal cells are stable in water due to their unique physiological charac-
teristics, such as high hydrophilicity [7], low specific gravity, negative surface charge, and
high migration rate; so, the efficient removal of algae has been a primary challenge in water
treatment processes [3].
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The commonly used algal removal treatment in practical applications includes ozone,
potassium permanganate, and sodium hypochlorite [8]. Ozone could effectively diminish
algal blooms and associated toxins [9] but may form byproducts such as aldehydes and
phthalates, presenting a toxicological hazard to the endocrine system [10]. Other strong
oxidant agents (e.g., potassium permanganate, free chlorine, and copper sulfate) face similar
dilemmas [11]. Free chlorine derived from sodium hypochlorite is another disinfectant,
but its use increases the formation of disinfection byproducts (DBPs) [12]. Copper sulfate
also has a relatively good inhibition effect on algal damage, but the release of copper has
a negative effect on other aquatic microorganisms [13]. Although traditional aluminum-
based coagulants effectively remove algae from drinking water sources, an excessive
intake of aluminum salts is easily linked to an increased risk of Alzheimer’s disease [14].
Therefore, there is an urgent demand to create an innovative, reliable, environmentally
friendly, and low-cost technology for dealing with the drinking water safety crisis caused
by algal blooms.

Ferrate (i.e., Fe(VI)), a highly efficient and eco-friendly oxidant, is capable of mitigating
targeted contaminants by multiple mechanisms, such as chemical oxidation, disinfection, in
situ coagulation, precipitation, and adsorption. Thus, Fe(VI) is recognized as a promising
tool in future algal control. Fe(VI) has high standard redox potentials of 2.2 V NHE and
0.72 V NHE in acidic and alkaline solutions, respectively [15], endowing its capacity for
algal removal. Figure 1 shows the general scheme of multistage algal removal using Fe(VI)-
based technology. Of note, the weak alkalinity of water bodies during seasonal algal blooms
causes Fe(VI) to exhibit relatively low oxidation capabilities, effectively preventing the
excessive oxidation of algal cells and the potential release of undesired organic matter [8,16].
Moreover, the in situ formation of ferric hydroxide was proven to significantly accelerate
the removal of contaminants by the combination of oxidation and coagulation [17,18]. For
example, Zhou et al. demonstrated that the significant enhancement of algal removal by
Fe(VI) could be ascribed to oxidization-based algal inactivation and to self-coagulation
induced by Fe (III) formed in situ. Therefore, Fe(VI) oxidation is suspected to be an
effective treatment for eliminating algal pollution. However, there are still some shortfalls
in the application of Fe(VI) to remove algae, such as the low utilization of Fe(VI) and
the unsatisfactory coagulation by in situ formed Fe(III) [19]. Some scholars carried out
a targeted optimization, including the development of Fe(VI)-mediated pre-oxidation
combined with subsequent chlorination or the application of aluminum sulfate and Fe(II).
Although some researchers have studied Fe(VI) and Fe(VI) combination technologies to
a certain extent, a comprehensive understanding of these technologies, including their
efficacy in algal removal, the factors influencing their performance, and the underlying
degradation mechanisms, has not been achieved, as shown in the existing literature.
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Figure 1. Scheme of multistage algal removal using Fe(VI) treatment.

Therefore, this review aims to thoroughly evaluate the efficiency of algal cell removal
by Fe(VI) and investigate the impact of different solutions, water matrix constituents, and
operating conditions on algal removal. The specific mechanism of algal removal by Fe(VI)
is explored deeply. The removal efficiency of algal organic matter (AOM) and various algal
toxins by Fe(VI) is summarized. The advantages of methods combining Fe(VI) with other
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chemicals and their influence on the reduction of algal toxins are further compared. Finally,
this review offers a reference for the treatment of seasonal algae-rich water and points out
future development directions of algal removal technologies to reduce eutrophication.

2. Damage of Algal Cells by Fe(VI)
2.1. The Destruction of Different Algae

Planktonic algae and their metabolites in water sources significantly affect effluent
water quality. Fe(VI) demonstrated effective inactivation of C. aegagropila, M. aeruginosa,
and Chaetoceros affinis. Table 1 reports the removal conditions and efficiency of algae by
Fe(VI) oxidation. Under appropriate Fe(VI) concentration, pH, temperature, and hydraulic
conditions, the algal removal rates were above 40%, proving that different algae could
be inactivated by Fe(VI). For the same species of algae (e.g., M. aeruginosa), the removal
efficiency changed with the reaction parameters. Fe(VI) showed different removal effi-
ciencies for different algae under the corresponding reaction conditions, probably due to
differences in surface characteristics of the cells [20].The oxidation of Fe(VI) had signifi-
cant effects on the behavior and cell structure of algae, and the extensive destruction of
algal cells was obviously observed, as shown in Figure 2. At the same time, intracellular
components and algal toxins were released into the surrounding medium, which might
have been caused by Fe(VI) stimulation of algal cells or the cleavage of the algal sheath
caused by Fe(VI) oxidation. In addition, Fe(III) produced by Fe(VI) reduction reduced
the negative charge on the surface of algal cells through charge neutralization, promoting
the aggregation of algal cells. Furthermore, cyanobacterial blooms in China eutrophic
waters are primarily composed of Microcystis, Oscillatoria, and Anabaena species [21,22].
Current research predominantly focuses on the removal of Microcystis aeruginosa, with other
algal species receiving less attention. Future studies should broaden their scope to include
species such as Oscillatoria tenuisa and more comprehensively assess the effectiveness of
Fe(VI) in treating algal blooms.
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Figure 2. Digital photos of algae-laden water (A) and water pre-oxidized with 0.01 mM (C), 0.02 mM
(E), and 0.03 mM (G) Fe(VI) and coagulated with 0.5 mM FeCl3. Corresponding scanning electron
microscope (SEM) photos of algae in beakers (B,D,F,H). (Adapted from He et al. [21]).

2.2. Factors Affecting Fe(VI) Removal Efficiency

pH. The stability and reactivity of Fe(VI) are highly dependent on pH [23]. In weakly
acidic environments, Fe(VI) has a redox potential of up to 2.2 V [24,25]. Fe(VI) is decom-
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posed rapidly at an acidic pH, but has the greatest stability at pH~10.0, as reported in
studies that showed a half-life of 102 s at pH 6.0 and of 105 s at pH 10.0 [26]. At suitable pH
conditions, cell density and turbidity are dramatically reduced once Fe(VI) dose exceeds
their respective threshold levels (defined as the minimum effective iron dose (MEID)) [27].
Alshahri et al. showed that the removal percentages of P. limnetica and Chlorella spp. were
highest at pH 8.0 and 9.0 [28,29], respectively. The removal of algal cells may be limited
by the weak oxidation capacity of Fe(VI) at higher pH and by the undesired rapid self-
decomposition of Fe(VI) at lower pH. Furthermore, pH also affects the surface charge
distribution of algal cells. When the pH value is as high as 10.0, Fe(OH)3 and the cell
surface will have the same charge, and coagulation will be hindered by electric repulsion
forces, thus reducing the removal rate of algae.

Agitation. Agitation is one of the factors affecting Fe(VI)-mediated oxidation of algae
in practical applications. According to previous research, taking Cladophora aegagropila as
the research object, the removal efficiency of algal cells with a low Fe(VI) concentration
(0.78 mM) under static conditions was only 16% after 300 min [27], while the removal effi-
ciency in a stirred (dynamic) system was 30%. When Fe(VI) concentration was increased to
1.55 mM, about 60% of algal cells were damaged [30,31]. Agitation increased the probability
of collision between algal cells and Fe(VI) particles [32], increasing the oxidation rate and
enhancing the coagulation effect [33,34]. In the actual treatment process of algae-rich water,
a rotary mixer is set up to enhance the contact between algae and the algaecide [35]. This
approach has a good effect on flocculation and sedimentation to remove algae. However,
the stirring intensity should be increased with the increase of algal cell density, which often
leads to high energy consumption.

Temperature. Temperature also has a noticeable effect on algal removal by Fe(VI)
oxidation. Kubinakova [24] added 2 mL of a 8.93 M Fe(VI) solution to water containing
Cladophora aegagropila at 38 ◦C and found that the removal rate reached 89%. In contrast,
the removal rate of the control group at 25 ◦C was only 24%. In addition, for other algal
cells treated with a relatively low Fe(VI) concentration (in 0.5 mL and 1.0 mL) the removal
rate increased with the increase in temperature. Interestingly, when algae were immersed
in water at the temperature of 38 ◦C for 30 min, damage to the algal cells (almost 40%) was
evident even when the temperature was raised without Fe(VI) as an algaecide. The increase
in the algal removal rate at high temperatures might be attributed to increased particle
transport and collision rates through the reduction of viscosity [2]. In addition, temperature
affects the physiological responses and metabolic rates of algae and the utilized coefficient
of nutrients [36]. A high temperature will reduce the activity of enzymes in algal cells and
inhibit the growth of algae [10].

Table 1. The removal conditions and efficiency of algae removal by Fe(VI) oxidation.

Species of Algae Parameters Removal Efficiency Ref.

C. aegagropila Fe(VI) concentration = 3.57 mM,
pH 9.0, application time 120 min 98% Ref. [24]

M. aeruginosa Fe(VI) concentration = 0.27 mM,
pH 7.2, application time 16 d 64% Ref. [7]

M. aeruginosa Fe(VI) concentration = 0.54 mM,
pH 7.2, application time 16 d 70% Ref. [7]

M. aeruginosa Fe(VI) concentration = 0.13 mM,
pH 5.5, application time 90 min 95.3% Ref. [6]

M. aeruginosa Fe(VI) concentration = 0.02 mM,
pH 7.5, application time 90 min 40.4% Ref. [6]

Chlorella sp. Fe(VI) concentration = 0.29 mM,
pH 7.0, application time 30 min 46.2% Ref. [35]



Water 2024, 16, 1361 5 of 11

Table 1. Cont.

Species of Algae Parameters Removal Efficiency Ref.

P. limnetica Fe(VI) concentration = 0.29 mM,
pH 7.0, application time 30 min 58.1% Ref. [35]

Chaetoceros affinis Fe(VI) concentration = 0.05 mM,
pH 9.0 application time 80 min 94–100% Ref. [29]

2.3. Mechanism of Algal Damage

Fe(VI) in water exists in four protonated forms (e.g., H3FeO4
+, H2FeO4, HFeO4

−, and
FeO4

2−) with pK1 = 1.6, pK2 = 3.5, and pK3 = 7.3 [37]. Within the typical pH range of
water treatment, HFeO4

− and/or FeO4
2− are the predominant high-valence iron species [6].

Figure 3 shows the possible steps of ferrate oxidation of AOM. The mechanism of Fe(VI)
oxidation is generally divided into two stages. First, Fe(VI) affects the structure and
properties of organic matter in microalgal cells, causing algal cell inactivation and toxin
decomposition. Oxidative stress by Fe(VI) leads to the desorption of the organic protective
layer on the algal cell surface [38], reducing the surface’s positive and negative charges.
Fe(VI) destroys the algal cell wall and membrane components (such as amino acids) through
oxidation [39]. After damaging the cell wall and membrane, Fe(VI) further enters the cell
and destroys its internal contents [40]. Second, Fe(III) generated from the reduction of
Fe(VI) and intracellular biopolymers released from damaged algal cells trigger in situ
coagulation and cell aggregation [41].
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Electrostatic forces are one of the factors affecting Fe(VI) coagulation. Zhou et al.
observed the decomposition products of Fe(VI) on the surface of algae (e.g., colloidal
iron hydroxide [Fe(OH)3]) through scanning electron microscopy. These precipitates can
significantly change the surface properties of cells, promoting the aggregation of algal
cells. In situ generated Fe(III) reduces the negative charge on the surface of algal cells
through charge neutralization. After increasing the Fe(VI) dosage, the zeta potential tends
to zero, which is favorable for particle aggregation [18,42]. When the amount of Fe(VI)
exceeds the MEID value, the repulsive electrostatic force between suspended particles
is sufficiently reduced, leading to their rapid condensation, eventually stabilizing under
the action of gravity [43]. Meanwhile, the extracellular organic matter (EOM) from algal
cells induced by Fe(VI) is also an essential factor in the coagulation of the algae–Fe(VI)
system [44]. EOM is mainly composed of proteins, polysaccharides, and lipids and exhibits
anionic and non-ionic polyelectrolyte behaviors [45]. The amount and properties of EOM
produced vary with algal species, oxidant type, and oxidant dose [13]. Depending on its
concentration and molecular weight, EOM can enhance or hinder flocculation [46].
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3. Degradation of Algae-Derived Organic Matters by Fe(VI)
3.1. Degradation of AOM by Fe(VI)

AOM is an important protoplasmic organic derivative produced by algae, mainly
composed of extracellular polysaccharides and proteins [41,47], which includes EOM and
intracellular organic matter (IOM) [48]. IOM is internal material or organelles that are re-
leased from cell lysis due to the aging of algal populations and aggressive physico-chemical
processes [49]. Algae produce a large amount of viscous extracellular polysaccharides,
which enhance the hydrophilicity and viscosity of algal cells. Therefore, dissolved AOM is
challenging to be removed by traditional methods, causing severe pollution in water. How-
ever, the removal rate of AOM by Fe(VI) is between 88 and 93%. Especially, the removal rate
of low-molecular-weight (LMW) acids is between 98 and 100% [50]. Thus, Fe(VI) effectively
removes organic matter derived from algae. Through oxidation, Fe(VI) can transform
organic compounds into more easily precipitated or removed forms, thereby reducing the
concentration of organic matter derived from algae. In addition, the main component of
AOM are biopolymers (BPs), which mainly consist of surface-active polysaccharides with
carboxyl and hydroxyl groups. BPs may have a strong affinity for trivalent metal Fe(III),
forming large-size colloidal Fe-BP complexes, and the complex particles are large enough to
easily settle after coalescing, which results in a removal efficiency of AOM of up to 97–100%.
Therefore, Fe(VI) effectively removes AOM derived from algae through mechanisms such
as oxidation, adsorption, and precipitation, thereby improving water quality.

3.2. Degradation of Algal Toxins by Fe(VI)

Among the HAB-associated pollutants, algal toxins are of particular concern, as these
traceable compounds have been linked to various health effects and can cause a range of
serious liver, digestive, nervous, and skin diseases in humans [51,52]. Of note, 25–30% of
the existing 50 genera of freshwater cyanobacteria can produce toxins, such as Microcystis,
Anabaena, Aphanizomenon, Oscillatoria, Cylindrosperomopsis, and Lyngbya. Toxins produced
by cyanobacteria include anatoxin-a, anatoxin-as, aplysiatoxin, cylindrospermopsin, mi-
crocystin LR, nodotoxin R, and saxitoxin [53]. The United States has not yet established
the maximum pollution level for cyanotoxins but included them in the U.S. Environmental
Protection Agency (EPA) Final Contaminant Candidate List 4 (CCL4) [6].

Algal toxins are not considered a defense mechanism of algal cells but are released
during oxidative stress and nutrient deprivation [54]. These toxins are mainly composed
of seven-amino acid rings, which are stable, non-volatile, and water-soluble [55]. These
properties make algal toxins persistent in the environment and difficult to be degraded
by conventional treatment methods. As a strong oxidizing agent, Fe(VI) could inactivate
algal cells and decompose the released algal toxins. Subsequently, these macromolecular
toxins are captured by Fe(VI)-induced iron flocs through coagulation and then settle down
by gravity. Furthermore, the oxidation efficiency of algal toxins depends on the pH. At
pH 5.5, the toxin removal rate was 90% with 0.05 mM Fe (VI). In contrast, at pH 7.5, the
toxin removal rate was only 78% with a Fe(VI) dose of 0.16 mM. The effects of Fe(VI)
pre-oxidation on M. aeruginosa viability and the fate of microcystins in different waters
were analyzed. It was found that although Fe(VI) induced cell lysis, the concentration of
extracellular microcystins did not increase significantly. The results showed that the toxin
was easily oxidized and decomposed, but its removal efficiency depended on the dosage
of Fe(VI), the pH, and the contact time [56,57]. Fe(VI) has a satisfactory degradation effect
on various algal toxins produced by various algae. Compared with other conventional
algal removal agents, Fe(VI) does not generate harmful byproducts in the removal process,
avoiding secondary pollution. However, when using Fe(VI) to oxidize algal toxins, it is
indispensable to strictly control the dosage of Fe(VI) and the solution pH.

When treating algae-rich water with Fe(VI), the toxicity towards algae exhibits vari-
ability, influenced by factors such as Fe(VI) concentration, algal species, algal physiological
state, and treatment duration. Fe(VI) functions as a potent oxidizing agent, initiating
reactions with organic compounds on the surface of algal cells, thereby inducing membrane
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rupture and damage. This process leads to cell death and the subsequent release of toxic
intracellular substances, including algal toxins [58]. Furthermore, Fe(VI) can interfere with
algal photosynthesis and respiration processes, thereby disrupting their physiological func-
tions. The toxicity effects are concentration-dependent, with higher Fe(VI) concentrations
exerting more pronounced toxic effects, potentially resulting in acute cell death [59]. It
should be noted that different algae species may display varying sensitivities to Fe(VI), with
some exhibiting greater susceptibility, and others possessing inherent resistance. Thorough
evaluation of Fe(VI) reaction conditions and concentration and diligent monitoring and
control measures are essential when treating algae-rich water, thereby mitigating potential
adverse effects, including the presence of algal toxins.

4. Fe(VI) Combined with Aluminum Sulfate for Algal Removal

Aluminum sulfate, known for its low cost, simple operation conditions, and efficacy in
large-scale water purification, remains the most widely used chemical for algal removal [60].
The concentration of the particles formed by Fe(VI) reduction is usually too low to cause
effective coagulation, and flocculation achieved by adding aluminum sulfate after Fe(VI)
pretreatment can significantly improve the removal of algae. When Fe(VI) and aluminum
sulfate are combined, the synergistic effect of pre-oxidation by Fe(VI) and subsequent
flocculation by aluminum sulfate can achieve a remarkable algal removal efficiency in a
very short time [20]. On the one hand, Fe(VI)-dependent pre-oxidation inactivates part of
the algae and induces the formation of coagulants. On the other hand, the formation of
intermediate forms of precipitant iron species during pre-oxidation improves coagulation
by increasing the particle concentration in water. In addition, aluminum sulfate reduces the
stabilization of algae through charge neutralization or algal aggregation, thereby improving
flocculation and solid–liquid separation in a later stage [61]. It was observed that the
ferric hydroxide colloid derived from Fe(VI) decomposition caused the conglomeration of
algal cells during prolonged pre-oxidation and the damaged algal cells changed the zeta
potential on their surface, while aluminum sulfate continually enhanced the subsequent
coagulation by inducing the sedimentation of the remaining algal cells [62,63]. Moreover,
the concentration of AOM in water samples decreased within a short contact time when
using this combined technique for algal removal. Besides the oxidation of AOM by Fe(VI),
also the addition of aluminum sulfate can promote the removal of AOM. The aluminum
hydroxide colloids formed by aluminum sulfate strengthened the adsorption of AOM [64].
Therefore, Fe(VI) combined with aluminum sulfate further increases the removal rate of
residual algae and reduces the cost of water purification. However, the potential toxicity
increase due to high residual aluminum levels calls for the careful management and further
optimization of this technique in future research and applications [61,65].

5. Fe(VI) Combined with Fe(II) for Algal Removal

When Fe(VI) is used for algal removal, Fe(VI) oxidation is affected by environmental
pH and Fe(VI) dose. Fe(II), serving as a pre-oxidation agent, was applied to enhance
conventional Fe(VI)-dependent oxidation and coagulation in algae-laden water treatment.
The oxidative stress powered by the pre-oxidation of Fe(VI) led to the deactivation of algal
cells and a decrease in the zeta potential. The coupling of Fe(VI) and Fe(II) produces a
large amount of Fe(OH)3. The in situ formed Fe(OH)3 in the presence of abundant reactive
surfaces promoted floc growth by facilitating the clustering and cross-linking of AOM
and algal cells, simultaneously leading to satisfactory reductions in OD680, turbidity, and
UV254 of the analyzed samples [43,66]. In contrast, an overdose of Fe(VI) would result in
severe cell destruction along with the release of IOM. Previous results showed that the
zeta potential decreased from −5.39 mV to −11.26 mV and −21.85 mV when Fe(VI) dose
increased from 20 to 30 and 50 µM, respectively. Meanwhile, DOC was also increased
dramatically from 1.78 to 2.91 and 3.59 mg/L, respectively [14]. On the one hand, excessive
oxidation by Fe(VI) endowed the algal cell surface with a powerful capacity to consume
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positively charged Fe(II) coagulants [67]. On the other hand, the adverse effects of IOM
release outweighed the removal ability of the flocculant to adsorb organic matter.

Also the algal toxin removal ability of the combination of Fe(VI) and Fe(II) should
not be neglected. The MC-LR released following pre-oxidation-induced cell destruction
was first degraded by Fe(VI)-dependent oxidation [60]. During the formation and growth
of flocs, the residual MC-LR was further removed by adsorption and precipitation [59].
Fe(II)-based solidification significantly improved the oxidation and flocculation efficiency
of Fe(VI); so, the removal rate of MC-LR was also substantially improved [37,68]. In
summary, although the combination of Fe(VI) and Fe(II) can dramatically promote the
removal of algal cells, AOM, and algal toxins, the selection of Fe(VI) and Fe(II) doses should
be carefully considered to avoid excessive pre-oxidation leading to severe cell lysis, IOM
leakage, and severe impairment of coagulation.

6. Perspectives

In recent years, water blooms caused by eutrophication have frequently erupted, pos-
ing serious challenges to drinking water treatment and a threat to its safety. Consequently,
comprehensive research on algaecides, particularly Fe(VI), has become crucial. Fe(VI)
is recognized as a promising agent in drinking water treatment systems due to its dual
primary treatment mechanisms: chemical oxidation and coagulation. Used commonly in
liquid form, Fe(VI) is highly effective at removing algae at a relatively low cost. The efficacy
of Fe(VI) is influenced by factors such as pH, hydrodynamic conditions, and temperature.
Excessive algal growth releases AOM and toxins, degrading water quality and posing
health and environmental risks. Fe(VI) is particularly effective at removing AOM, which
underscores its advantages as an algal removal agent. Detailed studies on the character-
istics of AOM and their correlation with DBP formation during chlorination are essential
to fully understand the oxidation mechanisms of Fe(VI) and to optimize the treatment of
algae-rich waters.

Moreover, addressing the end-chain processing of algae biomass after treatment is
critical. Once settled by algaecides like Fe(VI), the biomass often retains a substantial
water amount. Fe(VI) not only reduces this intercellular water, enhancing dehydration
and increasing the solid content in the resultant sludge, but also offers opportunities for
resource recovery. Properly processed, this biomass could be converted into biofuels,
agricultural fertilizers, or other valuable bioproducts, thus supporting a circular economy
and promoting a sustainable algal management. This prospect encourages further research
into harmless dehydration processes and the exploration of Fe(VI) broader application
potential to achieve effective coagulation, oxidation, and dehydration in algae removal.

Fe(VI) is versatile and capable of being used alone or in combination with other
reagents. When combined with chlorine, it significantly reduces the subsequent DBP forma-
tion compared to chlorination alone. Fe(VI) also enhances conventional Fe(II)-dependent
coagulation when used for pre-oxidation, although it requires a careful dosage management
to prevent excessive pre-oxidation. However, the preparation and stabilization of Fe(VI)
present notable challenges, as its decomposition rate heavily depends on its purity and
initial state, the method of preparation, and environmental conditions such as tempera-
ture and pH. Therefore, reducing Fe(VI) environmental dependency and expanding its
application scope remain a primary focus for future research.

7. Conclusions

In conclusion, algal blooms and AOM pose a significant risk to drinking water quality.
This review highlights the effectiveness of Fe(VI) oxidation in algae removal. Factors
affecting Fe(VI) efficiency, oxidation and coagulation mechanisms, and the combined use of
Fe(VI) and aluminum sulfate are discussed. This combined approach enhances coagulation,
reduces DBP formation, and effectively removes AOM. Furthermore, the synergistic effect
of Fe(VI) and Fe(II) improves algae and algal toxin removal. This evaluation provides
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valuable insights for the safe and efficient treatment of algal material, thereby guiding
future research in this area.
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