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Abstract: A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this
study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure
interactions. The propagation of a tsunami is simulated by solving the 3D Navier–Stokes equations
using a finite volume method with the volume-of-fluid technique. The structure motion under
the tsunami impact force is simulated by solving the motion equation using the generalized alpha
method. The structure motion is fed back into the fluid solver via a technique that combines a
sharp-interface immersed boundary method with the cut-cell method. The flow model predicts
accurate impact forces of dam-break flows on rigid blocks in three experimental cases. The fully
coupled 3D flow-structure model is tested with experiments on a large-scale (1:5) model bridge under
nonbreaking and breaking solitary waves. The simulated wave propagation and structure restoring
forces generally agree well with the measured data. Then, the fully-coupled fluid-structure model
is compared with an uncoupled model and applied to assess the effect of flexibility on structure
responses to tsunami loading, showing that the restoring force highly depends on the dynamic
characteristics of the structure and the feedback coupling between fluid and structure. The maximum
hydrodynamic and restoring forces decrease with increasing structure flexibility.

Keywords: fluid-structure interactions; three-dimensional model; tsunami loading; fully-coupled;
immersed boundary method; cut-cell method

1. Introduction

About 10 percent of the global population live in coastal areas that are less than
10 m above sea level [1] and susceptible to natural disasters, such as tsunamis and storm
surges. Recent examples include the 2004 Indian Ocean tsunami, 2010 Chilean tsunami,
and 2011 East Japan tsunami, which caused many casualties and tremendous damage
to the impacted areas [2–4]. As a tsunami approaches the shoreline, its dynamics are
significantly affected by the local shoreline topography [5]. It may break up and become
highly turbulent, then run up the shoreface and hit coastal structures [6]. Its loading on the
structures depends on the features of the flow and structures. The underlying physics of
fluid-structure interactions are little understood and plagued with uncertainties.

It is very challenging to carry out proper field experiments of tsunamis due to their de-
structive nature. Therefore, laboratory experiments using scaled models have been carried
out to find insights into the underlying physics and develop the current state of knowledge.
The experiments include run-up, pressure, and force measurements. Most of the past
experiments modeled the tsunami inundation as a two-dimensional (2D) flow, and some of
the recent experiments have given priority to the three-dimensional (3D) nature of the flow
field, as summarized by St-Germain [7], Al-Faesly [8], and Istrati [9]. These experiments
used dam-break flows [10–15] and solitary waves [9,16–18] to approximate tsunamis.
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Another methodology to investigate tsunami wave propagation and its impact is
numerical modeling. Numerical models are usually based on two approaches: Eule-
rian and Lagrangian. The Lagrangian approach has gained popularity due to several
reasons: (1) it is meshless, (2) no special techniques are required for water-air interface
tracking, and (3) it has excellent conservation property. Out of the meshless techniques,
the smoothed particle hydrodynamics (SPH) has found wider acceptance. SPH was first
introduced to simulate astrophysical processes [19] and then adapted to hydrodynamics
in the 1990s [20]. St-Germain et al. [21] used a serial version of SPH to calculate tsunami-
induced loading on a square block and validated the simulations with experimental data
from Al-Faesly et al. [10]. Wei et al. [22] used a GPU-based SPH model to investigate the
force measured by Arnason [11]. They noted that the gate opening in a dam-break flow
plays a significant role in the development of the hydraulic bore. Furthermore, Wei and
Dalrymple [23] used the same SPH model to investigate the tsunami force on a bridge su-
perstructure and analyzed the performance of tsunami mitigation by a service road bridge
and an offshore breakwater. They observed that the service road and offshore breakwaters
are effective in reducing the force on the main bridge.

The Eulerian approach divides the flow domain into a number of small elements
called cells, a collection of which is referred to as a mesh. It requires special techniques to
define the evolution of a free surface when solving Navier–Stokes equations. The often-
used techniques include marker-and-cell, volume-of-fluid (VOF), and level set methods.
The VOF method has found wider acceptance over other techniques due to its simplicity,
lower memory consumption, and performance. Since its initial implementation by Hirt and
Nichols [24], VOF has branched into a multitude of different schemes over the past decades.

Hayatdavoodi et al. [17] carried out experimental and numerical investigations of
a two-lane coastal bridge subjected to tsunami-induced loading. They used the inviscid
flow model (Euler’s equations) along with the VOF to model the flow field numerically.
They examined the effect of the skew angle of the bridge on the wave loading. Bricker and
Nakayama [25] used the VOF-based interFOAM® solver to analyze the failure of the Utatsu
highway bridge in Minamisanriku due to the 2011 East Japan Tsunami. They found that the
trapped air between the girders, bridge inclination, and presence of a nearby seawall had
contributed to the bridge failure. Sarjamee et al. [26] and Asadollahi et al. [27] also investi-
gated the influences of turbulence models and drag coefficient on the tsunami loading.

Until recently, almost all the physical experiments and numerical models related to
tsunami-induced forces considered only rigid structures and ignored the dynamic responses
of the structures. However, the dynamic responses of the structures and the interactions
with the surrounding flow field may not be negligible as the structures become flexible.
Recently a few studies have started to consider structural dynamics. For example, Istrati and
Buckle [28] used a commercially available multiphysics code to simulate the fluid-structure
dynamic interactions for a bridge superstructure model. They found that the flexibility of
the bridge significantly alters the induced tsunami loading as well as the bridge connection
forces. Though their numerical results were not validated with experimental data, their
works demonstrated the importance of considering the dynamic response of structures
subjected to extreme hydrodynamic loading and opened a discussion for further research
on understanding the underlying complex physics. On the other side, Abraham [29] used
dam-break experiments to study the interaction of a flexible plate subjected to extreme
wave impact loading, and Istrati [9] carried out experiments to analyze the fluid-structure
interactions of tsunami waves on large-scale (1:5) bridge models. The experimental results
suggest that the dynamic response of structures affects the reaction forces in the structures.

Considering structural responses to the hydrodynamic loading significantly compli-
cates the computation process of tsunami dynamics. Various approaches exist to addressing
such fluid-structure interaction (FSI) problems, including boundary-conforming dynamic
mesh, Arbitrary Lagrangian–Eulerian (ALE) [30], meshless, immerse-boundary (IB) [31],
cut-cell [32], and machine learning methods [33,34]. While boundary-conforming mesh,
ALE, and meshless methods, like SPH, introduce additional computational overheads,
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IB-based methods offer a simpler means of incorporating structural motion into the fluid
domain [35]. It is noteworthy that OpenFOAM, an open-source toolkit, provides various
FSI solvers, such as ALE-based fsiFoam [36] and solids4Foam [37]. A comprehensive review
on wave-structure interaction using OpenFOAM can be found in Huang et al. [38].

The present study has attempted to develop a coupled fluid-structure model to capture
the local fluid-structure interactions during tsunami impacts. The effort involves identifying
and implementing computationally efficient techniques to solve the 3D Navier–Stokes
equations for tsunami propagation, model the structural dynamics, and integrate the
structural solver into the fluid model. The developed model is validated using experimental
data and then applied to explore how the structural dynamics affect the fluid-structure
interactions.

2. Flow Model
2.1. Governing Equations

The bore front of a tsunami wave is highly turbulent and three-dimensional and
exhibits the nature of a shock wave. Therefore, a 3D flow model based on the Navier–
Stokes equations is preferred to capture the flow dynamics. The governing equations of
water flow are written as follows based on the conservation of mass and momentum:

∇ ·→u = 0 (1)

∂

∂t

(
ρ
→
u
)
+∇ ·

(
ρ
→
u ⊗→

u
)
= −∇p + ρ

→
g +∇ ·

(
µ∇→

u
)
+

→
F σ (2)

where t = time;
→
u = flow velocity vector; p = pressure; ρ = water density;

→
g = gravitational

acceleration vector;
→
F σ = other external forces; µ = dynamic viscosity due to molecular

motion and turbulence; ⊗ = cross product of vectors; and ∇ =
→
i ∂/∂x +

→
j ∂/∂y +

→
k ∂/∂z ,

with x, y, and z = spatial coordinates.
The governing equations are discretized by employing the finite volume method

(FVM). The study domain is divided into a suitable number of hexahedral control vol-
umes (cells) shown in Figure 1a. The numerical discretization and solution procedure are
described in the following sections.
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Figure 1. (a) 3D control volume and (b) cell face between current and neighbor cells.

2.2. Free-Surface Capturing Using the Weller-VOF Technique

There are a variety of VOF schemes in the literature to capture the hydraulic bore
propagation. These schemes can be grouped into two classes: (1) geometric and (2) al-
gebraic [39]. In geometric methods, the sub-cell representation of the volume fraction
is explicitly reconstructed with geometric means. In algebraic techniques, an algebraic
function is manipulated to represent fluid interfaces. The geometric techniques have less
numerical diffusion and thus provide sharper fluid interfaces. However, they are relatively
difficult to implement in three dimensions and have an increased computational require-
ment [40]. Furthermore, they are also difficult to use with features in modern computer
architectures, such as the SIMD (Single Instruction Multiple Data) and AVE (Advanced
Vector Extensions) instruction sets. On the other hand, the algebraic methods are simple
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to implement, require less computation, and are easy to parallelize. However, algebraic
methods show more numerical diffusion than geometric methods [39].

For the present 3D model, the algebraic VOF method used in the interFOAM solver [41]
is selected by balancing the computation effort, ease of parallelization, and accuracy. The
interFOAM solver is one of the multiphase solvers implemented in the OpenFOAM CFD
toolkit. It has been repeatedly tested and validated by the active OpenFOAM research
community around the globe. Particularly, the Weller-VOF scheme [39,42] is used in the
present model. It simulates the time evolution of the water-air interface by solving the
following transport equation of water volume fraction (ψ):

∂ψ

∂t
+∇ ·

(
ψ
→
u
)
+∇ ·

[
ψ(1 − ψ)

→
u r

]
= 0 (3)

where
→
u r = relative velocity between water and air, also referred to as an artificial compres-

sive velocity. The standard VOF schemes use Equation (3) without the third term, which
becomes insignificant in the domain away from the fluid interfaces.

Integrating Equation (3) in the control volume, using the divergence theorem to
simplify the expressions, and using the Euler scheme for the temporal derivative yields

ψn+ν+1
P − ψn+ν

P
∆t

VP + ∑
f

ψn+ν
f FN,n+ν

f + ∑
f

[
ψn+ν

(
1 − ψn+ν

)]
f FNL,n+ν

r, f = 0 (4)

where VP = control volume size; ∆t = time step; FN = volumetric flux from the mixture ve-
locity; FNL

r = volumetric flux from the artificial interference compression velocity; subscript
P = current cell center; subscript f = cell face; and ν = iteration step number.

The face values ψ f and [ψn+ν(1 − ψn+ν)] f are calculated using a blended scheme
(BS) [43]. In this method, the face values are calculated by averaging a lower-order scheme
and a higher-order one:

ψ f = ωψL
f + (1 − ω)ψH

f (5)

where ω = weighting coefficient computed by a suitable limiter function.
For the subsequent numerical tests, the first-order upwind scheme is selected for ψL

f ,

and the second-order central difference scheme is used for ψH
f . Furthermore, the van Leer

limiter [44] is used in the ψ f face value calculation, whereas the following interfaceCom-
pression limiter is used for the [ψn+ν(1 − ψn+ν)] f term:

ω = min
{

max
[
1 − max

(
(1 − 4ψP(1 − ψP))

2, (1 − 4ψN(1 − ψN))
2
)

, 0
]
, 1
}

(6)

where N = neighboring cell of the face f.
Moreover, the artificial compressive flux term in Equation (4) is modeled with

FNL,n
r = Cα

∣∣∣ϕn
f

∣∣∣∥∥∥∥∆
→
S f

∥∥∥∥
(
→
n · ∆

→
S f

)
(7)

where Cα = interface compression coefficient, set as 1.0 as suggested by Deshpande et al. [39];
→
n = interface unit normal vector (Figure 1); ϕn

f = volumetric flux calculated at the previ-

ous time step; ∆
→
S f = outward area vector of the cell face f ; | | = absolute value; and

∥ ∥ = Euclidean norm of a vector.
Equation (4) is solved by using the flux-corrected transport technique [45,46]. More

details of the solution algorithm for calculating the volume fraction field can be found in
Damián [47].
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2.3. Solution of Momentum Equations

The momentum equation is slightly modified to simplify the solution process and
handle sharp density differences at the interface [48]:

∂

∂t

(
ρm

→
u
)
+∇ ·

(
ρm

→
u ⊗→

u
)
= −∇p∗ +∇ ·

(
µm∇

→
u
)
+
(
∇→

u
)
· ∇µm −

(→
g ·→x

)
∇ρm +

→
F σ (8)

where ρm and µm = density and viscosity of the water-air mixture, respectively, and
p∗ = p − ρm

(→
g ·→x

)
.

Integrating Equation (8) over the control volume and using the Euler scheme for the
temporal derivative yields

(
ρn+1

m
→
u

n+1
)

P
−
(

ρn
m
→
u

n)
P

∆t VP + ∑
f

(
.

m f
→
u

n+1
f

)
= ∑

f
µm, f

(
→
u

n+1
N −→

u
n+1
P

)
∥∆

→
S f ∥

∥
→
d PN∥

+

(
−∇p∗,n+1

P +
(
∇→

u
)n

P
· ∇µn+1

m,P −
(→

g ·→x
)

P
∇ρn+1

m,P +
→
F σ,P

)
VP

(9)

where
→
d PN = position vector from the current cell to the neighboring cell N (Figure 1b),

and
.

m f = mass flux at cell face f :

.
m f =

(
ρm

→
u
)

f
· ∆

→
S f +

[
ψ(1 − ψ)(ρ − ρair)

→
u r

]
f
· ∆

→
S f (10)

→
F σ includes additional external forces exerted on the control volume. In the present

study, the only additional external force is the surface tension acting at the fluid interface.
However, this force is insignificant in the turbulent flow regime, which governs the tsunami
hydraulic bores. Nonetheless, the method of Brackbill et al. [49] is used for modeling the
surface tension as →

F σ = σκ∇ψ (11)

where σ = constant (0.07 used), and κ = the interface curvature calculated with
κ = ∇ · (∇ψ/∥∇ψ∥).

In the discretized momentum equation, the cell face velocity
→
u f is calculated using

the first-order upwind scheme. The mass flux term is kept constant over the time step to
linearize the equation. For convenience, the discretized momentum equation is written as

AP
→
u P = ∑

P→N

(
AN

→
u N

)
−∇p∗ +

→
S P (12)

where P → N = over all neighboring cells of the current cell P;
→
S P = source term lumping

the remaining explicit terms; AN = coefficient corresponding to the neighboring cell N;
and AP = sum of coefficients from all the neighboring cells. The pressure gradient term is
treated explicitly. This step is often referred to as the momentum predictor step.

2.4. Pressure-Velocity Coupling

The continuity equation is discretized as∫
CV

(
∇ ·→u

)
dV =

∫
CS

→
u f · d

→
S = ∑

f

(
→
u f · ∆

→
S f

)
= 0 (13)

Because there is no governing equation dedicated for the pressure, the above continuity
equation is used to derive the pressure equation. Two approaches are often used to
arrange the grid system. One is the collocated grid, where pressure and velocities are
stored at cell centers. The other approach is the staggered grid, where pressure is stored
at cell centers and velocities are stored at cell faces. A checker-board oscillation likely
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exists in the collocated grid because the pressure of the current cell is decoupled from the
discretized pressure equation [50,51]. This adverse oscillation can be eliminated by using
the momentum interpolation technique of Rhie and Chow [52], or by using the staggered
grid [50]. The staggered grid is cumbersome to implement and limits the shape of the cells
used. Therefore, the collocated grid is used in this study. Following Rhie and Chow [52],
the velocity at cell face f is obtained as follows by interpolating the momentum equation
defined in Equation (12) based on the distance from cell center to face center (Figure 1b):

→
u f =

→
H(

→
u N)

AP


f

−
(

1
AP

∇p∗
)

f
(14)

where
→
H(

→
u N) = ∑

P→N

(
AN

→
u N

)
+

→
S P given in Equation (12), (∇p∗/AP) f ≈ (1/AP) f (∇p∗) f ,(→

H(
→
u N)/AP

)
f
= fP

(→
H/AP

)
P
+ (1 − fP)

(→
H/AP

)
N

, (1/AP) f = fP(1/AP)P + (1 −

fP)(1/AP)N , and fP = interpolation weight factor calculated with

fP = ∥
→
d f N∥/

(
∥
→
d f N∥+ ∥

→
d f P∥

)
.

Substituting Equation (14) into Equation (13) and using

(∇p∗) f · ∆
→
S f =

(
p∗N − p∗P

)
∥∆

→
S f ∥/∥

→
d PN∥ yields

aP p∗P + ∑
P→N

(aN p∗N) = ∑
f

→
H(

→
u N)

AP


f

· ∆
→
S f (15)

where aN = (1/AP) f ∥∆
→
S f ∥/∥

→
d PN∥ , and aP = −∑

f
aN .

Equation (15) is often referred to as the pressure Poisson equation, which generates
a symmetric, diagonally dominant matrix. It is solved using the conjugate gradient (CG)
method. The CG solver is an efficient sparse matrix solver and require minimal resource
compared to general matrix solvers.

Once pressure is calculated, the cell center velocity is updated as

→
u P =

→
H
AP

+
1

AP

[∑
f

→
n f ⊗ ∆

→
S f

]−1

·
[
∑

f

[
σκ f lx − ρ f lx − p∗f lx

1/(AP) f

]
→
n f

] (16)

where σκ f lx = (σκ) f (∇ψ) f · ∆
→
S f , ρ f lx = (

→
g ·→x ) f (∇ρ) f · ∆

→
S f , p∗f lx = (∇p∗) f · ∆

→
S f , and

→
n f = unit vector normal to the face f.

The PISO (Pressure-Implicit with Splitting of Operators) algorithm [53] is used for
updating and coupling pressure and velocity fields. PISO is different from other iterative
techniques in the SIMPLE algorithm class. The solution process starts with solving the
volume fraction transport equation. The mass flux and density terms are calculated at this
step. Then the discrete momentum equations are solved with updated mass flux using
pressure from the previous iteration. Finally, the predicted velocity field is used to calculate
the new pressure field. PISO applies a finite number of iterations (usually two or three)
and assumes that the pressure and velocities are converged, then moves to the next time
step solution.

Note that all the previous derivations of the discrete equations are based on an orthog-

onal mesh where the position vector
→
d PN is parallel to the area vector ∆

→
S f . Unfortunately,

for real-world complex geometries, it is not always possible to generate orthogonal meshes.
The grid nonorthogonality is addressed in the current model by using the over-relaxation
method proposed by Jasak [54]. The area vector is divided into two components: one main-
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taining orthogonality to the face and the remaining nonorthogonal vector. The orthogonal
component is treated implicitly and the nonorthogonal component is treated explicitly and
arranged into the source term during the iteration or time marching process.

2.5. Turbulence Closure

The sub-grid turbulence model of Smagorinsky [55] is used to calculate the eddy
viscosity. This model does not require the solution of a system of equations and has shown
adequate accuracy for the current applications. It calculates the viscosity as

µ = µ0 + ρC2
S∆2

√
2∑

ij
T2

ij (17)

where µ0 = dynamic viscosity due to molecular motion, ∆ = V1/3
P , T = [∇→

u + (∇→
u )

T
]/2,

and CS = calibration coefficient. The coefficient CS can range between 0.1 and 0.25. It is
found that a value of 0.1 gives the best results in this study.

2.6. Boundary Conditions

A non-slip boundary condition is applied at the walls. The shear stress on a wall face
is computed with

→
τ w = ρC f bU

→
u P (18)

where C f b = calibrated wall friction coefficient; and U = magnitude of the velocity parallel
to the wall.

The following condition is applied to all faces open to the atmosphere:

p =

{
p0 for outflow
p0 − 1

2 ρa∥
→
u P∥2 for inflow

(19)

where p0 = air pressure, which is usually set to zero and fed to the flow solver during
the solver initialization phase; and ρa = air density. The inflow or outflow condition is
determined by using the volumetric flux calculated at the boundary face. The velocity

→
u P

is calculated at the previous iteration. This boundary condition can handle flow reversal.
Robust means to generate necessary waves to represent tsunamis in field condi-

tions are essentially considered in this study. There are five widely-used numerical
wave generation techniques in the literature: relaxation zone method, static and dynamic
boundary methods, mass source method, and impulse source method, as summarized
by Conde [56], Miquel et al. [57], and Windt et al. [58]. The static boundary method intro-
duced by Morgan et al. [59] is chosen as the primary wave generation method in this study
since it can accurately represent the free surface and is simple for implementation. It is
briefly discussed here, while a detailed description can be found in Morgan et al. [59] and
Chen et al. [60].

The used method has two main steps: (1) calculate volume flux at the boundary face,
and (2) determine velocity profile at the boundary face according to the underlying wave
theory. The volume flux at the boundary face is calculated by taking the dot product
between the area vector (outward) and the velocity vector at the boundary. The calculated
volume flux is multiplied by the volume fraction calculated at the boundary to suppress air
phase velocity. The volume fraction at the boundary face is computed as follows:

ψb =

{
max

[
min

(
η + zSWL − z f ,

δz
2

)
,− δz

2

]
+

δz
2

}
/δz (20)

where zSWL = vertical coordinate of still water level (SWL), η = free surface elevation
measured from the SWL, z f = vertical coordinate of the boundary face, and δz = cell height.
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Moreover, a zero-gradient boundary condition is used in the volume fraction equation
and the pressure Poisson equation on the wave generation boundary. For regular waves,
the particle velocity is given with the linear wave theory. Solitary waves have been widely
used to represent tsunamis in experiments as well as numerical simulations. Although their
validity in representing an actual tsunami event have been questioned by wave gauge data
from recent tsunami events such as the 2011 Tohoku tsunami [61], solitary waves are still
being used due to their simplicity. The wave celerity, surface profile, and velocity profile of
the first-order solitary wave described in Sorensen [62] are used in the present study. In
addition, the present flow model can simulate focused wave [63], random wave, and wave
profile input via an external file.

The local mesh resolution plays a major role in the accuracy of the wave surface. For
improved accuracy, Chen et al. [60] recommended a maximum grid size of H/8 (eight cells)
along the direction of wave height, and of L/70 (70 cells) along the wavelength (L) for
regular waves. The recommended or finer meshes are used in this study.

2.7. Time Step Control

The time step is adjusted based on the cell Courant number (Co) defined as

Co =

→
u f · ∆

→
S f

→
d PN · ∆

→
S f

∆t (21)

For the maximum allowable Co number, Gopala and van Wachem [64] recommended
a value less than 0.3, Berberović et al. [65] used a value approximately equal to 0.2, and
Damián [47] suggested 0.1. In the current study, a value of 0.2 is assigned to Co.

2.8. Flow Model Coding

The 3D flow code is written in the C++ programming language, with the object-
oriented programming concept. It is parallelized using OpenMP. The Kitware® open-
source VTK library is used for writing results in binary format. This data format is based
on XML and supported by almost all post-processor software. Furthermore, the Intel®

high-performance Math Kernel Library (MKL) is used for writing faster matrix solver
algorithms, such as the conjugate gradient solver. Additionally, MKL’s inbuilt GMRES
solver is used [66].

3. Structure Motion Model

The structure’s response to externally applied hydrodynamic loading is governed by
the equation of motion:

[M]
..
x + [C]

.
x + r = f (22)

where [M] = mass matrix, [C] = damping matrix, r = restoring force, f = external excitation,
x = displacement,

.
x = velocity, and

..
x = acceleration.

Equation (22) can be solved by a plethora of numerical time integration schemes, each
of which has advantages and disadvantages. The selection of a suitable time integration
scheme is based on the scheme’s accuracy, and more importantly, on the ability to tolerate
or remove the high-frequency error/component possibly present in the hydrodynamic
force imposed onto the structure. Some of the widely-used schemes include the Newmark
method [67], generalized alpha method [68], and Bathe schemes [69,70]. The generalized
alpha method is used in this study for solving the structural motion due to the ease of
introducing controllable numerical damping into the system. It achieves high-frequency
dissipation while minimizing low-frequency dissipation [68].

In the generalized alpha method, the new displacement and velocity at time level
n + 1 are given by

xn+1 = xn + ∆t
.
xn

+ ∆t2
[(

1
2
− β

)
..
xn

+ β
..
xn+1

]
(23)
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.
xn+1

=
.
xn

+ ∆t
[
(1 − γ)

..
xn

+ γ
..
xn+1

]
(24)

and the basic form of the algorithm is given as

[M]
..
xn+1−αm + [C]

.
xn+1−α f + [K]xn+1−α f = f(tn+1−α f ) (25)

where xn+1−α f =
(

1 − α f

)
xn+1 + α f xn,

.
xn+1−α f =

(
1 − α f

) .
xn+1

+ α f
.
xn,

..
xn+1−αm

= (1 − αm)
..
xn+1

+ αm
..
xn, tn+1−α f =

(
1 − α f

)
tn+1 + α f tn, and [K] = stiffness matrix.

Equations (23) and (24) can be rearranged in terms of the displacement at the new
time step n + 1. The system of equations is written in the following form:

[K̂]xn+1 = f̂ (26)

where the matrix [K̂] and the modified force vector f̂ are calculated with

[K̂] =
1 − αm

β∆t2 [M] +
γ
(

1 − α f

)
β∆t

[C] +
(

1 − α f

)
[K] (27)

f̂(t) = [M]
[

1−αm−2β
2β

..
xn

+ 1−αm
β∆t

.
xn

+ 1−αm
β∆t2 xn

]
+[C]

[
∆t
(

1 − α f

)(
γ
2β − 1

) ..
xn

+
(1−α f )γ−β

β

.
xn

+
γ(1−α f )

β∆t xn
]

−[K]
(

α f xn
)
+ f(tn+1−α f )

(28)

The parameters αm, α f , β and γ are carefully chosen to control the accuracy and
numerical damping. They are given with β = (1 − αm − α f )

2/4, γ = 1/2 − αm + α f ,
αm = (2χ∞ − 1)/(χ∞ + 1) , and α f = χ∞/(χ∞ + 1) . Thus, the generalized alpha method
has just one control parameter χ∞. When χ∞ = 1, no numerical damping is introduced
into the system, whereas χ∞ = 0 causes high-frequency components to be annihilated in
one time step [68]. This state is referred to as asymptotic annihilation. A value of 0.2 is used
for χ∞ in this study.

4. Incorporating Structure Motion into the Fluid Solver

In order to carry out the simulation of fluid-structure interactions in a fully coupled
manner, it is required to introduce the structure motion into the fluid solver. Among the
FSI methods described in the Introduction section, the boundary-conforming dynamic
mesh approach requires the mesh to be updated every time the boundary changes. The
remeshing introduces many additional challenges, such as difficulty in programming and
interpolation of results from the old mesh onto the new mesh. The ALE approach does not
require the mesh to be updated as often as the previous method but may require remeshing
if distortion beyond an acceptable limit occurs. The IB and cut-cell methods do not require
the mesh to conform to the structure’s boundaries, so they are selected in the present study.

4.1. Immersed Boundary Method with Cut-Cell Technique

In an IB method, the presence of an object is transferred into the fluid by introducing
a forcing term in the momentum equation near the outer wall’s vicinity. The boundary
forces can be added to the continuous [31] or discretized [71] Navier–Stokes equations. The
discrete forcing method does not impose additional stability constraints in the boundary
representation and enables a sharper interface representation [71,72]. Detailed reviews of
various IB methods can be found in Huang and Tian [73], Kajishima and Taira [72], Kim
and Choi [74], and Mittal and Iaccarino [71].

Even though IB methods have tempting advantages when handling moving bound-
aries, these methods have their limitations as well. The interested flow regime in the
present study is turbulent, whereas most of the existing IB methods are limited to low to
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moderate Reynolds numbers [73,74] with few exceptions [75]. Moreover, at high Reynolds
numbers, mass and momentum conservation becomes important [72]. The continuous
and discrete forcing methods may suffer from poor mass conservation [76] since none of
them are designed to satisfy the conservation laws [71]. Nevertheless, conservation of
mass and momentum can be treated to some extent by combining the IB method with the
cut-cell method. Initial work on combined cut-cell IB methods can be found in Udaykumar
et al. [77–79] and Ye et al. [80]. Later work by Seo and Mittal [81] has improved the method
further by working on mass conservation. An IB method based on the cut-cell technique is
selected in the present study, as introduced in the following text.

4.2. Representation of Structure on the Fluid Mesh

The present method follows the steps in the sharp-interface IB method proposed
by Mittal et al. [82]. The original IB method does not include any cut-cell correction. A
collection of small faces (or facets) are used to represent the boundaries of an immersed
object. The cells outside of the boundary are called fluid cells, and inside ones as solid cells.
In handling the boundary motion, the cells cut by the solid boundary are first identified by
comparing the shortest distance from an IB facet to the surrounding cells. This operation
is cumbersome at initial steps as the entire mesh may need to be traversed to identify
interested cells. However, the computational complexity is minimized in later steps since
the search window is limited to the current cell’s neighbors. The cells cut by the solid
boundary are referred to as cut boundary cells.

Once the cut boundary cells are determined, an outward surface norm is drawn from
the IB face. The norm is drawn to pass through a cut boundary cell. The first fluid cell that
the surface norm lands on is referred to as a fluid boundary cell. The fluid boundary cell
must reside outside of the immersed boundary. A special type of cells called ghost cells
(GC) is introduced to impose the boundary conditions. The ghost cells lie within the solid
region of the immersed body [83]. The ghost cells are found by following similar steps but
using the inward surface norm instead of the outward norm. One additional feature in the
present method is lumping the pair of cut and fluid boundary cells together and treating
them as one unit. Figure 2 illustrates the fluid boundary, cut boundary, and ghost cells, as
well as the outward surface norm from an IB facet.
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Figure 2. Mesh arrangement for the immersed boundary cut-cell method (Shaded area shows the
merge of fluid boundary cell and free volume of cut boundary cell).

The image point (IP) of GC’s center, with respect to the IB facet, is used for impos-
ing boundary conditions. Moreover, the point where the surface normal meets the IB
facet is referred to as the body interceptor (BI) point. The steps of finding BI and IP are
straightforward once GC is located.

In the present method, the free volume (volume outside of the solid) left after the IB
faces cutting through the Cartesian mesh is absorbed by the adjacent fluid boundary cell.
Furthermore, the solid cells and cut boundary cells are masked out from computations.
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The motion of the solid body causes the cut boundary cell’s free volume to change. A
Lagrangian mesh handler tracks these volume changes, and the governing equations are
updated accordingly.

Because the IP usually does not coincide with a fluid cell center, its flow properties
need to be interpolated from the surrounding cells. This is carried out by using a trilinear
interpolation on the stencil consisting of eight neighboring points. When identifying the
interpolation stencil for each image point, BI points are first marked for each IB facet. Since
ghost cells do not contain flow data, they are not used in the data interpolation stencil.
Instead, they are replaced with the corresponding BI points. The polygon (3D or 2D) formed
by connecting fluid boundary cells and BI points encompasses the image point and forms
the given IP’s interpolation stencil.

4.3. Modification to Governing Equations

Since the fluid boundary cells residing near the IB’s vicinity have absorbed the free
volume from the adjacent cut boundary cells, the governing equations on these cells need
some modifications. These modifications are straightforward and simple to implement.
In the source code, an “if” statement is used to activate the modifications only when IBs
are present.

Before solving the volume fraction equation, an effective ψ value is calculated for each
fluid boundary cell. The effective volume fraction takes into account the volume fraction
of the fluid boundary cell and the volume fraction contribution from the cut boundary
cells. The numerical integration of the convection-diffusion equation over moving grids
introduced by Wu [84], Kundu et al. [85] and Marsooli and Wu [86] is adopted here to
handle the aforementioned adjustment of cut boundary cells. In this method, the mass flux
across cell faces in the convection terms of Equation (4) need to be recalculated, and the
temporal derivative term of Equation (4) is discretized as

∫
CV

∂ψ

∂t
dV =

ψn+1
P Vn+1

P − ψn
PVn

P
∆t

(29)

where VP = summation of fluid boundary cell volume and cut boundary cell’s free volume.
Similarly, if a cell is adjusted, the mass flux in the momentum Equation (9) is recalcu-

lated and the temporal derivative of momentum is modified as

∫
CV

(
∂

∂t
(ρm

→
u )
)

dV =

(
ρn+1

m
→
u

n+1
)

P
Vn+1

P −
(

ρn
m
→
u

n )
P

Vn
P

∆t
(30)

In addition, the shear force on the lumped cell face is calculated with

SF = µ

(
→
u

n+1
IP −→

u
n+1
IB

)
∥∆

→
S∥

∆l
(31)

where
→
u IB = velocity of IB facet, which is added to the RHS source term;

→
u IP = velocity

at image point, which is interpolated from the surrounding cells and treated implicitly;
and ∆l = distance between IP and IB points. Balaras [87] suggested interpolation of
viscosity from the surrounding cells similar to velocity interpolation. However, the current
implementation keeps the workflow simple by copying the viscosity directly from the fluid
boundary cell.

The pressure Poisson Equation (15) is modified as follows to include the volume
change on a combined fluid boundary cell during the time step:

aP p∗P + ∑
P→N

(aN p∗N) = ∑
f

→
H(

→
u N)

AP


f

· ∆
→
S f +

(
Vn+1

P − Vn
P

∆t

)
(32)
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5. Validations of the 3D Flow Model

The structure motion model was well tested by Forouzan et al. [88] in a study of
hybrid simulation of fluid and structure interactions. The developed 3D flow model is
validated herein with three recent experiments, by comparing the measured and calculated
hydrodynamic forces or pressures on blocks generated by the impact of dam-break flows.
The shear force on the structure is neglected, so the hydrodynamic force is calculated by
integrating pressure over the boundary faces of the structure:

→
F = ∑ p f ∆

→
S f (33)

5.1. Impact Pressure on a Block Due to Dam-Break Flow

The first test case is the experiment carried by Kleefsman et al. [15] in a closed wave
tank with 3.22 m in length, 1 m in width and 1 m in depth (Figure 3). A vertical gate was
set up at 0.55 m from the upstream end to mimic a dam. A block was located 1.248 m
downstream of the gate. The block was 0.161, 0.403, and 0.161 m in the longitudinal, lateral,
and vertical directions, respectively. The block was fitted with pressure sensors along the
centerline on the front and top faces. The initial bed downstream of the gate was dry. A
dam-break flow was generated when the 0.55 m deep impound water was released by
almost instantaneously lifting the gate. The water flowed over and around the block, and
then back and forth inside the tank.
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Figure 3. Plan view of the experimental setup of Kleefsman et al. [15]. All dimensions in meters.

The numerical model uses a mesh consisting of nonuniform brick cells. The cell size
around the block is about 5, 8, and 6 mm in the longitudinal, lateral, and vertical directions,
respectively, and gradually increases upstream and downstream from the block and with
the height above the bed. The bed friction coefficient Cb f is calibrated as 0.005. Figure 4
depicts the variations of water levels at wave gauges H2 and H4. The water level at H4 in
the reservoir zone dropped first as the dam-break wave went downstream, and then rose
when the reflected wave propagated back. Opposite variations occurred for the water level
at H2 in the downstream zone. The numerical results agree well with the experimental
data. The root-mean-square errors are 0.025 and 0.020 m at H2 and H4, respectively, and
4.6% and 3.7% of the initial reservoir water height.
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Figure 5 shows that the flow model is capable of capturing the pressure variations
generated by the impact of dam-break flow recorded by sensors P1, P2, and P3, which are
installed 0.021, 0.061, and 0.101 m, respectively, above the bed in the center-vertical line
on the front face of the block. The model correctly captures the initial wave arrival time.
The pressures increased rapidly to the peak values and decreased to about the hydrostatic
pressures. Larger peak pressures occurred at lower heights above the bed. The root-mean-
square errors are 6.0%, 6.1%,and 6.8% of the measured maximum pressures at P1, P2, and
P3, respectively.
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5.2. Impact Force on a Block Due to Dam-Break Flow

The 3D flow model is further tested by using the measured forces on blocks due to
dam-break flows in two experimental cases. One case is the experiment carried out by
Profs. Catherine Petroff and Harry Yeh at the University of Washington, Seattle, USA [14].
The experiment used a closed wave tank 0.61 m in width and 1.58 m in length (Figure 6). A
tall block with a square base (0.12 m by 0.12 m) was located 0.5 m downstream of the gate.
The upstream impound water depth was 0.3 m, and the downstream initial water depth
was 0.01 m. Once the gate was opened, the water flow hit the block and then was deflected
around the block and reflected from the downstream wall.
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In the numerical simulation, the bed friction coefficient Cb f = 0.005 as calibrated. The
mesh is similar to that in the previous case. The cell size around the block is 4 mm long
and 5 mm wide in the horizontal (x and y) directions, and gradually increases upstream
and downstream from the block. The vertical grid size starts at 2.5 mm near the bed and
gradually increases with the height above the flume bed.

Figure 7 compares the calculated and measured hydrodynamic forces on the block.
The experimental data are digitized from a plot of Gómez-Gesteira and Dalrymple [14]. The
temporal evolution of the hydrodynamic force is well predicted by the numerical model.
The simulation results shown in Figure 7 are obtained by assuming instant gate opening,
which causes the initial dam-break wave to arrive about 0.1 s earlier than the experimental
data. The force becomes negative when the wave reflected from the downstream wall hits
the downstream side of the block. The numerical model slightly overpredicts the peak
impact forces of the dam-break wave and the reflected wave. The root-mean-square error
is 10.3% of the measured maximum hydrodynamic force. The relative error is smaller if the
early arrival of the calculated dam-break wave is excluded.
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The other case is chosen from the experiments of Arnason [11]. The experimental
setup is similar to Figure 6, with large dimensions. The flume was 16.62 m long, 0.61 m
wide, and 0.45 m deep. The gate was installed at 5.9 m from the upstream end. The initial
water level was 0.25 m in the reservoir and 0.02 m downstream of the gate in the chosen
test case. A 0.12 m long square block was rigidly mounted. The front face of the block was
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placed 5.2 m away from the gate. This distance is assumed to be sufficient to develop a
turbulent bore front.

Three different meshes (M1 to M3) with varying grid resolutions are used to analyze
the effect of cell size. Mesh M1 has the least number of cells, slightly more than 0.9 million
cells. The mesh is nonuniform, and the cells near the structure are 80, 80, and 50 mm in the
longitudinal, lateral and vertical directions, respectively. In mesh M2, the cell size close to
the structure remains unaltered, but the mesh is refined in other sections of the domain,
especially between gate and structure. The mesh M2 consists of more than 1.1 million cells.
In mesh M3, cells are refined further throughout the entire flow domain; the cells near the
structure are 70, 60, and 30 mm long in the three directions, and the total number of cells is
close to 2 million. The bed friction coefficient Cb f = 0.005 for the three meshes.

Figure 8 shows the time history of the hydrodynamic forces calculated using the three
meshes. The model gives an earlier arrival time of the hydraulic bore. A non-physical force
appears around 3 s for coarse meshes M1 and M2 but not for the fine mesh M3. This force
is caused by adverse numerical diffusion in the volume fraction field. Furthermore, the
peak impact force is delayed when the mesh is refined. The root-mean-square errors are
15.7%, 15.9%, and 13.8% of the measured maximum hydrodynamic force for meshes M1,
M2 and M3, respectively. Like the previous case, the large relative errors are partly due to
the early arrival of the calculated dam-break waves. Overall, the finest mesh gives the most
accurate results. In addition, the numerical results exhibit some high-frequency waves,
which were not recorded in the experiments. This may be related to numerical schemes
and needs to be investigated further.
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6. Validations of the Coupled Fluid-Structure Model

The large-scale experiments of tsunami impact on bridges conducted by Istrati [9] are
one of the few recent experiments considering dynamic fluid-structure interactions. These
experiments used different wave input conditions and bridge configurations, with a 1:5
scaled bridge model to minimize the scaling effects. Thus, these experiments are used to
validate the present fluid-structure interaction model.

6.1. Experiment Setup

The flume was 104.24 m long, 3.66 m wide, and 4.57 m deep. There was a 21.49 m
long flatbed region next to the wave generator. The flume bed was raised to form a false
bed through a 7.32 m long ramp with a 1:12 slope, and another ramp with a 1:12 slope was
installed at the flume end to dissipate the wave energy and thereby minimize the reflection
(Figure 9). The still water depth near the wave generator was 2.0 m. Solitary waves with
different heights were generated, which exhibited nonbreaking and breaking features in
front of the bridge model.
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Figure 9. Side view of the wave flume depicting wave gauge placement and bridge location used in
the experiments of Istrati [9].

The 1:5 scale bridge model was 1.938 m wide and 3.456 m long, and the total bridge
height was 0.264 m. The width and length were measured along and normal to the wave
propagation direction, respectively. The bridge had a reinforced concrete deck and W8x13
steel I-beams for its four girders. The bridge was mounted on a substructure assembly,
which consisted of two HSS7x5 bent caps. The substructure was mounted on linear guide
rails and rollers and placed onto test frames (W18x76 beam) that were rigidly bolted to the
flume walls. The connections between the bridge superstructure and substructure could
be changed to achieve different bridge dynamic characteristics. Figure 10 depicts a side
view of the bridge, substructure, and test frame. Further details of the bridge model can be
found in Istrati [9].
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Figure 10. Side view of the bridge model [89].

The connection types used in the tests were steel bearing, elastomeric bearing, shear
keys, and springs between the substructure and the test frame. A total of ten configurations
of bridge structure were used in the experiments. The most rigid case (ST1) consisted of
steel bearings, shear keys, and rigid links at the substructure. The second configuration
(ST2) was similar to ST1, but steel bearings were replaced with elastomeric ones. ST5 had
connections similar to ST2, but plywood sections perpendicular to the girders were used to
capture air. Configurations ST2 and ST5 are considered in the present numerical study.
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6.2. Numerical Flow Domain and Structure Model Setup

Due to computational time and resource constraints, the flow is assumed to be two-
dimensional as the bridge span completely occupies the wave flume’s width, and a part
of the flatbed zone next to the wave maker is not included in the computational domain.
Preliminary simulations are conducted to identify the regions where water may reach
vertically. The final flow solution domain is outlined in Figure 11.
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the added or virtual mass effect as surrounding water accelerates with the submerged 
bridge. For the current bridge geometry, water accumulation is less likely and thus is ne-
glected. The virtual mass is not considered additionally since the current simulations con-
sider the interactions between fluid and structure inherently. 

The experimental setup did not contain any dedicated damping devices, but force 
measurements showed that the system experienced damping. Numerical simulations 
with no damping show large oscillations in the restoring force throughout the simulation 

Figure 11. Computational domain for the large-scale tsunami experiments (not to scale in x and
z directions).

In the computational mesh, the cell size along the x-direction is 4 cm near the wave
generation boundary (left side of Figure 11) and 2 cm near the bridge. For bore or breaking
wave conditions, the x-direction cell size gradually shrinks to 2 cm near the region where
the wave breaking occurs. However, for nonbreaking wave conditions, the cell size can be
4 cm for most of the distance between the left boundary and the bridge. The z-direction cell
size starts at about 5 cm at the flume bed, gradually decreases to 2 cm at the SWL, and is
kept at 2 cm in the region above the SWL.

The bridge has complex geometric features that are challenging to model. Therefore,
it is significantly simplified in the numerical simulation, as shown in Figure 12. Most of
the simplifications align with the geometric model of Xiang et al. [90]. Additionally, the
substructure is not included in the simulations.
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Figure 12. Simplified bridge model for numerical simulation (all dimensions in meters).

In the fully coupled fluid-structure simulations, due to the 2D flow assumption, the
structure’s motion had to be constrained to two dimensions. Additionally, the analyzed
bridge configurations have shear keys to stop rotational motion, so the bridge is modeled
as a single degree-of-freedom damped vibration system. The connection’s stiffness is
back-calculated using the mass and dominant natural frequency for the selected data series.
The elastomeric bearings are assumed to have constant stiffness.

The bridge’s dry mass without any instrumentation is used in the simulations, which
is roughly 1287.3 kg. During the experiments, the bridge might undergo an effective mass
increase due to water accumulation as the water flooded the structure, as well as due to the
added or virtual mass effect as surrounding water accelerates with the submerged bridge.
For the current bridge geometry, water accumulation is less likely and thus is neglected.
The virtual mass is not considered additionally since the current simulations consider the
interactions between fluid and structure inherently.

The experimental setup did not contain any dedicated damping devices, but force
measurements showed that the system experienced damping. Numerical simulations with
no damping show large oscillations in the restoring force throughout the simulation time,
which do not match the experimental observations. Thus, damping is explicitly introduced
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in the generalized alpha method through the damping matrix [C]. A constant 5% damping
ratio is used in the simulations.

6.3. Comparison of Numerical Results and Experimental Data

Figure 13 compares the water surface variations for the solitary wave of height
H = 0.42 m at different wave gauges along the flume. The input waves generated in the
numerical model agree well with the experimental input waves, except at the tailing part
where the experimental waves deviate from solitary waves. Figure 13c,d show that the
numerical wave is higher than the experimental one at WG9 and WG12. This may be
caused by the assumption of a two-dimensional flow and the reduction in the flow domain
length near the wave maker. The root-mean-square errors of the calculated water levels are
0.011, 0.012, 0.021 and 0.025 m at WG1, WG2, WG9 and WG12, respectively.
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Figure 13. Comparison of calculated and measured water surfaces for the solitary wave of H = 0.42 m.

Figure 14 shows several snapshots of the simulated resultant flow velocity contour
map when the solitary wave of H = 0.42 m hits the bridge model. The wave crest is deflected
upward by the bridge model, while water underneath the deck flows around the lower
tips of the girders and splashes downstream of the bridge. A part of the deflected wave
is reflected and another part overtops the bridge deck. As the water level recedes, the
overtopping wave portion falls over the deck tail and complex flows appear around and
between the girders. Some air is trapped between the girders.

Figure 15 shows the time history of restoring forces ([K]x) for bridge configuration ST2
under nonbreaking solitary waves of 0.42 and 0.55 m in height. The natural frequency of
the bridge is calibrated as 18.5 Hz based on the measured force variation under the solitary
wave of H = 0.42 m, and applied to the case of H = 0.55 m. With this estimate, the model
predicts well the initial variation pattern of restoring forces under both wave heights. The
root-mean-square errors are 17.7% and 20.6% of the measured maximum restoring forces
in the cases of H = 0.42 and 0.55 m, respectively.
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Figure 15. Horizontal restoring forces for bridge configuration ST2 under the solitary waves of
(a) H = 0.42 m and (b) H = 0.55 m.

Figure 16 shows the time history of restoring forces for bridge configuration ST5 under
solitary waves of H = 0.7 and 0.9 m. These solitary waves are nearly breaking or broken
before hitting the structure. The natural frequency of the bridge is calibrated as 13 and
11.5 Hz based on the measured restoring force variations under these two wave conditions.
The model predicts well the initial variation pattern of restoring forces under both waves.
In both Figures 15 and 16, the variation frequencies of the calculated and measured forces
exhibit larger deviations in the end period because the natural frequencies are calibrated
in the initial period. The root-mean-square errors are 17.8% and 40.1% of the measured
maximum restoring forces in the cases of H = 0.7 and 0.9 m, respectively.

From the above four cases, the model overpredicts the restoring forces in the initial
impact period under low waves but underpredicts the force under high waves. First,
this may be because more air entrained into water when the waves are broken or nearly
breaking. The present model does not consider the effect of air entrainment. Second, the
same 5% damping coefficient is used in all the cases. In fact, the damping efficiency can vary
with wave heights that give different locations and distribution of the impact force on the
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structure, as well as with bridge configurations that have different damping mechanisms in
the structure. It is not straightforward to identify a suitable damping coefficient that works
well for all the flow cases and bridge configurations. Third, the shear force between the
structure and the flow acts as another source of damping effect. This force is neglected in
current simulations since it is much smaller than the pressure force. Moreover, the structure
had shear keys, which could stop the rotation and large horizontal motion of the structure;
however, this is not included in the structural model that uses a single degree-of-freedom
system (SDOF). A multi-degree-of-freedom bridge model may improve the numerical
results. In addition, the assumption of constant stiffness for elastomeric bearings can also
be a source of errors, because the properties of elastomeric bearings depend on the level
and rate of shear strain [9] and can affect the bridge dynamics (e.g., natural frequency).
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7. Discussion

The coupled fluid-structure model validated in the previous section is applied to assess
the effect of structure flexibility on the impact force and is compared with an uncoupled
model, as described in the following text.

7.1. Comparison of Forces on Structures with Different Flexibilities

Figure 17a compares the calculated hydrodynamic forces on the bridge configuration
ST2 with varying flexibility under a solitary wave of 0.42 m in height. Figure 17b compares
the corresponding restoring forces. The hydrodynamic force is the resultant pressure force
in the front of the structure. In addition to the calibrated natural frequency of 18.5 Hz, a
hypothetical natural frequency of 4 Hz is used. Figure 18 shows the calculated structure
velocities with these two natural frequencies.

Figure 17a shows that the hydrodynamic forces between the two flexible configurations
exhibit small deviations at the initial impact. The deviations are slightly above 5%. It seems
that the hydrodynamic force is not very sensitive to the natural frequency. This may be
because the structure velocity is small, as shown in Figure 18. The structure velocity
increases with decreasing natural frequency (increasing flexibility), but the magnitude
of structure velocity is much smaller than that of flow velocity. However, the results in
Figure 17b show that the restoring force of the structure significantly depends on the
structure’s natural frequency. The maximum hydrodynamic and restoring forces increase
with natural frequency or decrease with increasing flexibility of the structure.
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7.2. Comparison of Forces Calculated by Fully Coupled and Uncoupled Simulations

Further investigation of the importance of fully coupled fluid-structure simulations is
carried out by comparing the restoring forces calculated by fully coupled and uncoupled
models. The uncoupled model uses an external structural solver that is implemented in a
simple Matab® script. First, the fluid simulation is run assuming that the structure is rigid.
The calculated hydrodynamic force is then passed to the external structural solver. In the
uncoupled simulation, the restoring force of the structure is calculated, but the structure
motion is not fed back to the flow model.

Figure 19 compares the restoring forces calculated by the fully coupled and uncoupled
models on bridge configuration ST2 under the solitary wave of H = 0.42 m. The calibrated
natural frequency of 18.5 Hz is used for the results in Figure 19a, and the hypothetical
natural frequency of 4 Hz is used for the results in Figure 19b. For the stiffer structure
(high natural frequency), the uncoupled simulation gives a slightly lower restoring force at
the initial impact and a higher one in the following periods than the coupled simulation.
For the more flexible structure (low natural frequency), almost the same restoring force at
initial impact is obtained by the fully coupled and uncoupled simulations, whereas after
the initial impact, the uncoupled simulation gives a higher restoring force than the fully
coupled simulation.
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Figure 20 shows the restoring forces calculated by the fully coupled and uncoupled
models on bridge configuration ST5 under the bore (breaking solitary wave) of H = 0.9 m.
Unlike the case of the nonbreaking solitary wave shown in Figure 19, the restoring force
calculated by the uncoupled simulation in the bore case is smaller than that calculated
by the coupled simulation shown in Figure 20. Both Figures 19 and 20 show that the
deviations between the coupled and uncoupled simulations increase with time and the
uncoupled simulation gives shorter periods for restoring force variations than the fully
coupled simulation.
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The aforementioned analyses demonstrate that the restoring force depends on the
structural dynamics and the feedback coupling between fluid and structure. Whenever
available, it is advisable to consider the fully coupled simulations when analyzing structures
subjected to tsunami-like loading. The immersed boundary approach used by the present
study has a minimal overhead on the overall simulation. Certainly, the computational
loading of the structural analysis will increase as the complexity of the structure increases.

8. Conclusions

A 3D fully-coupled fluid-structure model has been developed in this study to under-
stand the importance of dynamic characteristics of structures and the necessity of fully
coupled fluid-structure models when subjected to tsunami-like loading. To simulate the
propagation of tsunamis, the volume fraction transport equation is solved along with the
3D Navier–Stokes equations by employing the finite volume method. The model predicts
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the forces induced by hydraulic bores very closely to experimental measurements. The
structure motion equation is solved using the generalized alpha method. The structure
motion is fed back into the fluid solver via a technique that combines a sharp-interface
immersed boundary method with the cut-cell method.

The fully coupled 3D flow-structure model has been tested with existing experimental
data for a 1:5 scale bridge model under nonbreaking and breaking solitary waves. The
simulated wave propagation and structure restoring forces agree generally well with the
measured data. Then, the fully coupled fluid-structure model is applied to assess the effect
of structure flexibility on responses to tsunami-like loading. The simulations show that the
restoring forces depend highly on the dynamic characteristics of structures, whereas the
hydrodynamic forces on flexible structures deviate little if the structure velocity is much
smaller than the flow velocity. The maximum hydrodynamic and restoring forces decrease
with increasing structure flexibility,

Moreover, the present fully coupled model has been compared with an uncoupled
model. The restoring forces calculated by the uncoupled simulations in the nonbreaking
and breaking solitary wave cases can be larger or smaller than those calculated by the
coupled simulations, whereas the uncoupled simulations give shorter periods for the
restoring force variations than the fully coupled simulations in both wave cases. It is
demonstrated that the restoring force depends on the structural dynamics and the feedback
coupling between fluid and structure. Whenever feasible, it is preferable to consider the
fully coupled simulations when analyzing structures subjected to tsunami-like loading.

However, the developed flow-structure model has the following limitations. First, the
developed flow model solves incompressible Navier–Stokes equations, the compressibility
effect of trapped air between the girders cannot be captured correctly. A compressible flow
solver for the air phase needs to be used if such effects are to be considered. Second, the
developed flow model requires a considerable amount of computation time, so computer
resources and the computation efficiency are still the main concerns when the model
is applied to transient flows in large domains. Third, the flow model uses the simple
sub-grid turbulence model, so advanced, higher-order turbulence models and large eddy
simulations need to be explored in the future. Fourth, the structural model assumes a
constant structure mass and damping. However, an actual structure may undergo mass
changes due to water accumulation, absorption, debris accumulation, etc., and the damping
factor may vary as the structure is submerged. Fifth, the developed model has been tested
only for small displacements and it does not consider structure deformations, for which
a 3D finite-element structure model is needed. Finally, data scarcity is a major obstacle
faced in model validations. Additional reliable experimental data would help to refine the
numerical model further.
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75. Tukovic, Z.; Karač, A.; Cardiff, P.; Jasak, H.; Ivankovic, A. OpenFOAM finite volume solver for fluid-solid interaction. Trans.

Famena 2018, 42, 1–31. [CrossRef]
76. Udaykumar, H.S.; Mittal, R.; Rampunggoon, P. Interface tracking finite volume method for complex solid-fluid interactions on

fixed meshes. Comm. Numer. Methods Eng. 2001, 18, 89–97. [CrossRef]
77. Udaykumar, H.S.; Mittal, R.; Rampunggoon, P.; Khanna, A. A sharp interface cartesian grid method for simulating flows with

complex moving boundaries. J. Computat. Phys. 2001, 174, 345–380. [CrossRef]
78. Udaykumar, H.S.; Shyy, W.; Rao, M.M. ELAFINT: A mixed Eulerian–Lagrangian method for fluid flows with complex and

moving boundaries. Int. J. Numer. Methods Fluids 1996, 22, 691–712. [CrossRef]
79. van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Computat.

Phys. 1979, 32, 101–136. [CrossRef]
80. Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education

Limited: London, UK, 2007; p. 503.
81. Wei, Z.; Dalrymple, R.A. Numerical study on mitigating tsunami force on bridges by an SPH model. J. Ocean Eng. Mar. Energy

2016, 2, 365–380. [CrossRef]
82. Wei, Z.; Dalrymple, R.A.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H. SPH modeling of dynamic impact of tsunami bore on bridge

piers. Coast. Eng. 2015, 104, 26–42. [CrossRef]
83. Windt, C.; Davidson, J.; Schmitt, P.; Ringwood, J. On the assessment of numerical wave makers in CFD simulations. J. Mar. Sci.

Eng. 2019, 7, 47. [CrossRef]
84. Wu, W. Computational River Dynamics; Taylor & Francis: Abingdon, UK, 2007; p. 494.
85. Xiang, T.; Istrati, D.; Yim, S.C.; Buckle, I.G.; Lomonaco, P. Tsunami loads on a representative coastal bridge deck: Experimental

study and validation of design equations. J. Waterw. Port Coast. Ocean. Eng. 2020, 146, 04020022. [CrossRef]
86. Xiao, F.; Ii, S.; Chen, C. Revisit to the THINC scheme: A simple algebraic VOF algorithm. J. Computat. Phys. 2011, 230, 7086–7092.

[CrossRef]
87. Yang, J.; Balaras, E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving

boundaries. J. Computat. Phys. 2006, 215, 12–40. [CrossRef]
88. Ye, T.; Mittal, R.; Udaykumar, H.S.; Shyy, W. An accurate Cartesian grid method for viscous incompressible flows with complex

immersed boundaries. J. Computat. Phys. 1999, 156, 209–240. [CrossRef]
89. Yeh, H. Design tsunami forces for onshore structures. J. Disaster Res. 2007, 2, 531–536. [CrossRef]
90. Zalesak, S.T. Fully multidimensional flux-corrected transport algorithms for fluids. J. Computat. Phys. 1979, 31, 335–362. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1137/0907058
https://doi.org/10.1007/s11069-016-2658-5
https://doi.org/10.1016/j.jcp.2011.06.003
https://www.ncbi.nlm.nih.gov/pubmed/21857745
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
https://doi.org/10.1098/rsos.220097
https://www.ncbi.nlm.nih.gov/pubmed/35401993
https://doi.org/10.1260/2041-4196.3.2.221
https://doi.org/10.21278/TOF.42301
https://doi.org/10.1002/cnm.468
https://doi.org/10.1006/jcph.2001.6916
https://doi.org/10.1002/(SICI)1097-0363(19960430)22:8%3C691::AID-FLD371%3E3.0.CO;2-U
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1007/s40722-016-0054-6
https://doi.org/10.1016/j.coastaleng.2015.06.008
https://doi.org/10.3390/jmse7020047
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000560
https://doi.org/10.1016/j.jcp.2011.06.012
https://doi.org/10.1016/j.jcp.2005.10.035
https://doi.org/10.1006/jcph.1999.6356
https://doi.org/10.20965/jdr.2007.p0531
https://doi.org/10.1016/0021-9991(79)90051-2

	Introduction 
	Flow Model 
	Governing Equations 
	Free-Surface Capturing Using the Weller-VOF Technique 
	Solution of Momentum Equations 
	Pressure-Velocity Coupling 
	Turbulence Closure 
	Boundary Conditions 
	Time Step Control 
	Flow Model Coding 

	Structure Motion Model 
	Incorporating Structure Motion into the Fluid Solver 
	Immersed Boundary Method with Cut-Cell Technique 
	Representation of Structure on the Fluid Mesh 
	Modification to Governing Equations 

	Validations of the 3D Flow Model 
	Impact Pressure on a Block Due to Dam-Break Flow 
	Impact Force on a Block Due to Dam-Break Flow 

	Validations of the Coupled Fluid-Structure Model 
	Experiment Setup 
	Numerical Flow Domain and Structure Model Setup 
	Comparison of Numerical Results and Experimental Data 

	Discussion 
	Comparison of Forces on Structures with Different Flexibilities 
	Comparison of Forces Calculated by Fully Coupled and Uncoupled Simulations 

	Conclusions 
	References

