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Abstract: In the numerical simulation of earth-rock dam, accurate and reliable mechanical parameters
of the dam material are the important basis for dam deformation predictions and dam safety evalua-
tions. Based on the deformation monitoring data of Luding core wall rockfill dam, the rheological
parameters of rockfill and core wall materials are inverted in this paper. Combined with the actual
filling and impoundment process of the dam, the numerical simulation is carried out, and the stress
deformation and differential settlement of the dam after completion and impoundment are analyzed.
The results showed that the stress deformation results of the dam based on the inversion parameters
were in good agreement with the actual deformation. The horizontal displacement, settlement, and
principal stress of the dam during the completion period were symmetrically distributed along the
core wall. The maximum horizontal displacement occurred at the main dam on both sides of the
core wall and the upstream and downstream dam slopes, and the maximum settlement occurred in
the middle of the core wall. During the impoundment period, under the action of reservoir water
pressure and upstream rockfill wetting deformation, the deformation and stress of the dam body no
longer met the symmetrical distribution law, and the maximum horizontal displacement of the dam
body during the impoundment period was located at 2/3 of the upstream dam slope. The maximum
settlement of the dam body was located at 1/2 of the dam height. The maximum principal stress on
the upstream side of the core wall was located on the left side of the bottom of the core wall, and
the minimum principal stress was also located on the left side of the bottom of the core wall. The
simulation results of the deformation and stress met the general law of earth-rock dam engineering.
During the completion period, the deformation inclination of the dam crest was less than 1%. During
the impoundment period, the deformation inclination of the dam crest area increased due to the
wetting deformation of the upstream rockfill material. At the same time, the deformation inclination
of the dam crest axis was larger than that of the upstream and downstream sides, and the deformation
inclination of the dam crest at the middle of the valley was the largest, but it did not exceed 3%, that
is, there would be no longitudinal cracks, which is consistent with the actual situation. The research
results can better predict the stress deformation and crack of the dam body, and provide important
support for dam safety evaluations.

Keywords: high core wall rockfill dam; parameter inversion; finite element calculation; deformation
inclination; cracks

1. Introduction

Deformation stability and control are key technical issues in the construction of high
rockfill dams [1,2]. There are many examples of large deformation, uneven settlement,
leakage, cracks, and other problems caused by improper deformation control in the existing
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high rockfill dams in China, and some even directly cause dam failures [3,4]. At present,
there are a large number of high earth and rock dams under construction and preparation
in the western region of China [5]. With the increase in the number and magnitude of high
rockfill dams, it is increasingly important to analyze stress deformation and cracks to ensure
the safe and stable operation of the dam. Obtaining correct and reliable dam material
parameters is the foundation for calculation and analysis [6]. The stress deformation
analysis of earth-rock dams based on inversion parameters is of great significance for
predicting the potential adverse deformation and safety risks that may occur in a dam [7,8].

The deformation characteristics of rockfill materials are complex, and indoor tests are
influenced by factors such as stress path limitations and size effects, resulting in parameters
that often differ significantly from their actual parameters [9,10]. Therefore, obtaining the
rheological parameters of dam materials through parameter inversion is the research object
of many scholars [11,12]. The basic idea of inversion analysis of geotechnical mechanical
parameters was first proposed by Kavanagh, Gioda, Maier, and others in 1971. In 1981,
Gioda [13], an Italian professor, carried out the research work of optimization analysis
based on the idea of numerical iteration. The Powell method, simplex method, quasi-
gradient method, least squares method, and other optimization methods were used to
study the displacement back analysis. In 1983, Sakurai [14] combined a finite element
method to carry out a numerical calculation of practical engineering, and the parameters
of soil and rock materials were obtained using inversion. After that, Simpano et al. [15]
applied the genetic algorithm to inversion analysis, and set the precedent by going from a
non-intelligent inversion to a modern intelligent inversion algorithm. In the early 1990s,
inversion analysis work in China was gradually carried out. Zhou et al. [16] discussed the
plastic characteristics of rheological deformation of rockfill materials under multi-stage
loading conditions. Inspired by genetic engineering, Zhou et al. [17] proposed an improved
genetic algorithm based on gene fragment difference to solve high-dimensional non-linear
inversion problems. Wu et al. [18] studied complex multi-model and multi-parameter
problems using the decoupling back analysis method. Zhu et al. [19] studied parameter
inversion of the Maopingxi asphalt concrete core rockfill dam based on the immune genetic
algorithm. Zhao et al. [20] used the particle swarm inversion algorithm combined with
Adina to carry out an inversion analysis and research on the rockfill materials of Nuozhadu
core wall rockfill dam. Chen [21] proposed a new settlement prediction model combined
with parameter inversion, which had high deformation prediction accuracy for high rockfill
dams. Li et al. [22] proposed an FEM-Bayesian kriging (FBK) method which can effectively
characterize the deformation behavior of earth dams. Liu et al. [23] accurately analyzed the
relationship between concrete strength and various variables by integrating the orthogonal
test and neural network method.

Based on the traditional finite element calculation of dams and the deformation
monitoring data of Luding dam, the rheological parameters of the core wall and the
rockfill area are inverted in this paper. Then, a three-dimensional stress deformation
simulation calculation is carried out based on the inversion parameters, and the deformation
characteristics and crack development of Luding high core wall rockfill dam are analyzed
by using the simulation results. It provides a more complete and scientific method for
predicting the behavior of rockfill dam and the idea of crack analysis, which provides
experience and reference for subsequent projects.

2. Project Overview

The Luding Hydropower Station is located in Luding County, Sichuan Province. It is
the 12th level power station developed by the Dadu River main flow elevator, with the main
task of generating electricity. The normal storage level of the reservoir is 1378.0 m, with a
total storage capacity of 219.5 million m3 and a regulated storage capacity of 22 million m3.
It has daily regulation performance and an installed capacity of 920 MW [24].

The project is classified as a second class project, with a scale of large (2). The power
station hub mainly consists of water retaining structures, flood discharge structures, water
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diversion and power generation structures, etc. The water retaining structures are clay
core wall dams, with one flood discharge tunnel on the left bank and two flood discharge
tunnels on the right bank. The water diversion and power generation structures are
arranged outside the flood discharge system on the right bank of the riverbed.

The dam crest elevation of clay core wall dam is 1385.5 m, the maximum dam height
is 84.0 m, the dam crest length is 537.0 m, the upstream and downstream dam slopes are
1:2, and the dam crest width is 12.0 m. The dam body is divided into four areas: core wall,
dam shell rockfill, filter layer, and transition layer. The dam body adopts clay core wall for
anti-seepage. The riverbed section of the dam foundation adopts a 110 m deep anti-seepage
wall connected to curtain grouting, and the anti-seepage plan of closed anti-seepage walls
is adopted on both sides. The typical cross-section of the dam is shown in Figure 1.
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Figure 1. Typical profile of Luding core wall rockfill dam.

3. Finite Element Simulation

Based on the self-developed static finite element calculation program of earth-rock
dams, this paper simulates the filling and impoundment process of the dam. In the numeri-
cal simulation, the static deformation, rheological deformation, and wetting deformation
under the action of self-weight and water load are mainly considered, which correspond
to the constitutive model, rheological model, and wetting model, respectively. In order
to better simulate the real deformation form of the core wall dam, this paper attempts to
combine the monitoring data and use the intelligent algorithm to invert the mechanical
parameters of the dam material. Due to natural factors, the monitoring data of the Luding
core wall rockfill dam during the filling and partial impoundment period were lost. We
should have inverted the constitutive model parameters to better simulate the true state of
the dam. However, due to the lack of data, we had no way to combine the data of the filling
and impoundment period to invert the constitutive model parameters. Therefore, we could
only combine the existing operating data to invert the rheological parameters, and combine
the inverted parameters to approximate the true state of the dam as much as possible.

According to the above research content, the technical route adopted in this paper is
shown in Figure 2.

In this paper, the self-developed earth-rock dam calculation program is used to realize
the simulation calculation process. The simulation principle flow of the earth-rock dam
filling and impoundment process is shown in Figure 3.

3.1. Finite Element Model and Simulation Process

The three-dimensional finite element model of Luding clay core rockfill dam was
established. As shown in Figure 4, the model mainly uses eight-node hexahedral elements.
The total number of model elements was 33,665, and the total number of model nodes was
34,855. The model was divided into 10 material partitions such as core wall, upstream
rockfill area, downstream rockfill area, filter layer, and transition layer, as shown in Figure 5.
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Figure 2. Technology roadmap.

This simulation simulates the entire process of dam filling, water storage, and opera-
tion. The calculation period was from the date of dam filling to the second half of 2021. The
dam construction and water storage simulation were divided into 112 load steps, including
36 load steps during the filling period, 17 water storage load steps, and 69 rheological load
steps. On 19 March 2010, the downstream cofferdam was filled to the design elevation;
on 31 May 2010, the upstream cofferdam was filled to the design elevation; the dam body
filling began in July 2010, and, on 6 March 2011, the lower gate of the 1 # diversion tunnel
was sealed; on 25 April 2011, the dam was filled to the design elevation; the water storage
began on 20 August 2011, and, after entering the operating period, the long-term deforma-
tion of the dam body was simulated and calculated based on the process of reservoir water
level changes.
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Figure 4. Three-dimensional finite element model of Luding dam.
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3.2. Constitutive Model

The Duncan tensor E-v constitutive model [25] was adopted and elastic modulus and
tangential Poisson’s ratio are expressed as follows:

Initial Elastic Modulus:
E0 = KPa(

σ3

Pa
)

n
(1)

where K and n are parameters, Pa is atmospheric pressure, and σ3 is confining pressure.
Tangent elastic modulus under loading state:

Et = [1 − R f S]KPa(
σ3

Pa
)

n
(2)

S =
(1 − sin φ)(σ1 − σ3)

2c cos φ + 2σ3 sin φ
(3)

where S is the stress level, R f is the damage ratio, c is the effective cohesion, φ is the
effective friction angle, and σ1 − σ3 is the corresponding deviatoric stress of the test.

Tangential Poisson’s ratio:

νt =
G − Flg

(
σ3
Pa

)
(1 − A)2 (4)

wherein

A =
D(σ1 − σ3)

KPa(
σ3
Pa
)

n
(

1 − R f (σ1−σ3)

(σ1−σ3) f

)2 (5)

where G, F, and D are parameters.
The static model parameters of the Luding dam material were obtained through indoor

experiments. The parameters of the E-ν model are shown in Table 1.

Table 1. Dam material constitutive model parameters.

Dam Material γ K n C (10 kPa) Φ (◦) Rf G F D

Core wall 1.68 108 0.354 9.8 21.9 0.686 0.39 0.3 2.7
Filter 2.08 1309 0.476 0 46.1 0.703 0.49 0.16 8.8

Transition 2.23 759 0.16 0 44.6 0.71 0.22 −0.04 4.7
Rockfill 2.19 1258 0.18 0 46.6 0.84 0.3 −0.122 5.4

3.3. Rheological Model

The rheological properties of rockfill materials also have an important influence on
the stress and deformation of the dam [26,27]. The commonly used rheological models in
China include the Shen Zhujiang three-parameter model [28], Li Guoying seven-parameter
model [29], Cheng Zhanlin nine-parameter model [30], and Zhu Sheng seven-parameter
model [31]. This paper adopted the Li Guoying seven-parameter model:

εt = ε f (1 − eαt) (6)

εv f = b(
σ3

Pa
)

m1
+ c(

q
Pa

)
m2

(7)
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γ f = d(
S

1 − S
)

m3

(8)

where εt is the rheological strain at time t; ε f is permanent flow strain; e is the natural index;
α is the rheological rate; εv f is the permanent volume flow strain; γ f is permanent shear
flow strain; and α, b, c, d, m1, m2, and m3 are the seven parameters of the above rheological
model, which were obtained using inversion.

3.4. Wetting Deformation Model

The wetting deformation has a significant impact on the deformation, seepage, and
stability of earth-rock dam engineering. Therefore, this article considered the wetting
deformation caused by the initial water storage, and adopted the wetting deformation
model and simulation method proposed by Zhou et al. [32].

Wetting axial strain:

∆εw
a =

[
K1

( σ3
Pa
)
+ A1

]
SL

1 − SL
+ K0

(
σ3

Pa

)m0

(9)

Wetting secant modulus:

Ew =
σ1 − 2νwσ3

[K1(
σ3
Pa )+A1]

1−SL
+ K0

( σ3
Pa
)m0

(10)

Wetting Poisson’s ratio:
νw = c + dSL (11)

where K0, K1, m0, A1, c, and d are test parameters.
The parameters of the wetting model of the similar project Guanyinyan dam are shown

in Table 2 [32].

Table 2. Upstream rockfill wetting model parameters.

Parameter K0 M0 K1 A1 c d

Upstream rockfill 0.061 0.596 0.052 0.923 0.348 0.104

3.5. Intelligent Inversion of Rheological Parameters

The rheological parameters used in this experiment included seven parameters: α, b, c,
d, m1, m2, and m3. The upstream and downstream rockfill materials have the same rheolog-
ical parameters, and the reverse filter layer and filter layer also have the same rheological
parameters as the rockfill materials. Therefore, only the rockfill materials and clay core wall
materials were subjected to rheological parameter inversion analysis. The initial inversion
values were determined based on the experience of selecting rheological parameter values
for Guanyinyan rockfill dam materials. Through the orthogonal experimental method for
parameter sensitivity analysis, it was found that the parameters with higher sensitivity
were b, c, and d, so inversion research was conducted on them. This article used the BP
neural network and genetic algorithm for parameter inversion, combined with measured
deformation, to obtain rheological parameters for the final simulation calculation [23,33].

In this paper, three sensitive rheological parameters in the rockfill area and three sensitive
rheological parameters in the core wall area were combined, and six rheological parameters
corresponded to one fitness value. A total of 300 groups of parameter samples were selected
for neural network training through orthogonal method and random access method, and
the fitting effect of test set, verification set, training set, and prediction model prediction
output value was obtained according to the network regression curve, as shown in Figure 6.
It can be seen that the mean squared error remained below 0.02. According to the network
regression curve, it can be seen that the test set, validation set, training set, and prediction
model’s predicted output values fit well. By substituting the trained network into the
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genetic algorithm for optimization and continuously adjusting and analyzing the data, the
following parameters for the genetic algorithm in this article were obtained: the initial pop-
ulation number was 200, the initial elite number was 10, the crossover genetic probability
was 0.8, the mutation probability was 0.01, the immigration probability was 0.2, and the
termination evolutionary algebra was 177. The rheological parameters of our inversion
were obtained using the genetic algorithm optimization, as shown in Table 3:
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Table 3. Rheological parameters obtained using inversion.

Model Parameter b c d m1 m2 m3 α

Rockfill area 0.4 0.05 1 0.301 0.3 0.4 0.0051
Core wall area 1.426 0.2 0.225 0.6 0.9 0.302 0.0015

After the inversion parameters are obtained using the above inversion method, the
finite element calculation of Luding earth-rock dam was carried out by using the inversion
parameters combined with the four measuring points selected in this paper. The calculated
settlement value obtained using the finite element calculation was compared with the
measured settlement value of the measured data, as shown in Figure 7. It can be seen that
the fitting effect between the calculated value and the measured value was good, so the
numerical simulation results were consistent with the actual dam body’s behavior, and the
simulation results can represent the actual dam body situation.
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4. Calculation Results of Stress and Deformation of Dam Body

The stress and deformation of the dam were calculated in the completion period and
the impoundment period, and the safety of the dam was evaluated according to the stress
and deformation of each position of the dam body. This article selected the 0 + 193 section
as the representative research section, and the cloud diagram of the horizontal displacement,
settlement, and maximum and minimum principal stresses calculation results under the
two working conditions of completion and water storage of this section is shown in
Figures 8 and 9. The deformation characteristic values of the dam during the completion
period and the impoundment period are shown in Table 4.

Table 4. Dam deformation characteristic values.

Time Limit
Maximum Horizontal

Displacement in
Upstream Direction/m

Maximum Horizontal
Displacement in

Downstream Direction/m

Maximum
Settlement/m

Maximum Settlement
in Proportion to Dam

Height/%

Completion period 0.05 0.04 0.65 0.7%
Impoundment period 0.4 0.1 1.1 1.3%

It can be seen from Figure 8 that the horizontal displacement and settlement of the
dam during the completion period were symmetrically distributed along the core wall. The
maximum horizontal displacement occurred at the main dam on both sides of the core
wall and the upstream and downstream dam slopes, which is about 5 cm. The maximum
settlement occurred in the middle of the core wall, which is about 65 cm, or 0.7% of the
dam height. The major and minor principal stresses of the dam were also symmetrically
distributed along the core wall. The extreme value of the major principal stress occurred
on both sides of the bottom of the clay core wall, with a size of about 2.20 MPa, and the
extreme value of the minor principal stress occurs on both sides of the bottom of the core
wall; this was about 0.67 MPa. The simulation results of the deformation and stress met the
general law of earth-rock dam engineering.

Under the action of reservoir water pressure and upstream rockfill wetting defor-
mation, the displacement and stress of the dam body during the impoundment period
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changed greatly compared with during the completion period. It can be seen from Figure 7
that the deformation and stress of the dam body no longer satisfy the law of symmetrical
distribution. The maximum horizontal displacement of the dam body during the impound-
ment period was located at 2/3 of the upstream dam slope, which is about 40 cm. The
maximum settlement of the dam was located at 1/2 of the dam height, at about 110 cm,
accounting for 1.3% of the dam height. The maximum principal stress on the upstream
side of the core wall was greater than that on the downstream side, with the extreme value
located on the left side of the bottom of the core wall, measuring about 3.00 MPa. The
minimum principal stress extreme value was also located on the left side of the bottom of
the core wall, measuring about 0.62 MPa. All the simulation results complied with general
laws of earth-rock dam engineering.

Comparing Figures 8 and 9, it can be seen that after the dam impoundment, the
upstream rockfill material underwent significant changes in both horizontal displacement
and settlement due to water storage deformation. The upstream rockfill area experienced
significant upstream displacement and settlement, which is highly likely to cause uneven
settlement at the dam crest, leading to longitudinal cracks at the dam crest and endangering
the safety of the dam. Therefore, it was necessary to calculate and analyze cracks based on
the analysis of dam stress and deformation.
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5. Fracture Calculation and Analysis

The crack research of earth-rock dams mainly includes two aspects: the crack judgment
and the crack propagation simulation [34,35]. The current methods for calculating cracks in
earth-rock dams mainly include settlement analysis, the deformation inclination method,
Leonard’s method, etc. [36–40]. In this paper, the deformation inclination method was used
to calculate and analyze the cracks in the Luding core wall earth-rock dam. Figure 10 is the
basic principle of the deformation inclination method. x indicates the horizontal direction
and y indicates the direction in which the uneven settlement occurs. A and B are two points
with a horizontal distance of ∆x. The settlements SA and SB occur and move to A′ and B′,
respectively. The settlement difference between the two is ∆S = SA − SB. The deformation
inclination γ between the two points is

γ ≈ tan γ =
∆S
∆x

(12)

Based on experimental and engineering experience, the critical inclination γc at the
time of cracking can be determined. If γ > γc, it is considered that cracking occurs, other-
wise, it does not occur. For dam building soil and stone materials, the critical inclination is
generally taken as 1% or less.
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The deformation inclination representation in a finite element simulation is as follows:
γx =

k

∑
i=1

∂Ni
∂x ui,y

γz =
k

∑
i=1

∂Ni
∂z ui,y

(13)

where k is the number of unit nodes, Ni and ui are the shape function and displacement
corresponding to the ith node of the element, and ui,y is the displacement of the ith node in
the y direction.

The Formula (13) for calculating the deformation inclination was written into the finite
element calculation program of the earth-rock dam, and the deformation inclination could
be calculated directly through the displacement of the dam body after the completion and
impoundment of the dam, so as to analyze the cracks.

Calculation of Dam Deformation Inclination

Figures 11 and 12 are deformation inclination nephograms of the dam when the
filling is completed and after impoundment, respectively. It was found that the overall
deformation inclination of the dam body was below 1% when the dam was completed.
After impoundment, the deformation inclination near the dam crest was significantly larger
than that at the completion of the dam, and the deformation inclination of the dam crest
generally exceeded 1%, but did not exceed 3%. According to Gu’s research [41], cracks will
not occur in earth-rock dams when the deformation inclination is below 1%, and there is
a possibility of cracks occurring when the deformation inclination is between 1% and 3%.
Cracks must occur when the deformation inclination exceeds 3%. It can be seen that the
filling construction quality of the dam meets the standard, and there were no cracks in
the dam when the filling was completed; the wetting deformation of the upstream rockfill
material after impoundment led to a sharp increase in the deformation inclination of the
dam crest, which is a key stage prone to cracks and needs to be focused on.

In order to deeply study the change law of the deformation gradient in the dam
crest area, three reference lines parallel to the dam axis running through the left and right
banks were selected at the upstream, middle, and downstream sides of the dam crest,
respectively, as shown in Figure 13, to study the change law of the deformation gradient on
the three lines.
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The deformation inclination on the three lines during the completion period and the
impoundment period is shown in Figures 14 and 15. It can be seen that the deformation
inclination of the dam crest during the completion period was below 1%, and there would
be no cracks, which is in line with the actual situation. During the water storage period,
due to the wetting deformation caused by the flooding of the upstream rockfill area there is
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a tendency for the upstream dam slope and shell to detach from the core wall, resulting
in an increase in the deformation inclination at the dam crest. However, the value was
below 3% and no cracks were generated, which is in line with the actual situation. At the
same time, it can be clearly seen that the deformation gradient of the upstream, middle,
and downstream sides of the dam crest basically followed the law of large deformation
gradients in the middle along the dam axis and small deformation gradients on both banks.
In addition, in the simulation results, the deformation inclination in the middle of the dam
crest was greater than that on both the upstream and downstream sides of the dam crest,
indicating that cracks were more likely to occur in the middle of the dam crest. The reason
is that under the action of water storage humidification and water pressure, the upstream
rockfill and the core wall are separated, and the dam crest is stretched perpendicular
to the dam axis directly above the core wall. This trend is most significant during the
initial impoundment period of the dam, and will be alleviated in the subsequent long-term
operation. That is, when there are no other factors, the dam does not produce cracks during
the initial impoundment period, so there is a high probability that cracks will not occur
during the subsequent operation. This shows that the cracks on the dam crest are easily
caused by the wetting deformation after the initial impoundment of the earth-rock dam,
and the cracks on the dam crest may occur at the dam axis. Analyzing the deformation
gradient value of the dam crest has important reference significance for judging whether
the dam will produce cracks.
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6. Conclusions and Foresight
6.1. Conclusions

This article adopted the core wall rockfill dam of Luding Hydropower Station as the
research object, taking into account the rheological and wetting properties of the rockfill
material. The finite element method was used to numerically simulate the filling and
storage processes of the dam, and the rheological parameters of the key dam materials
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were inverted. The actual parameters of the inversion were used to analyze the current
stress, deformation, and cracks of the dam through the finite element method, and the
stress during the completion and storage periods of the dam were summarized. Based on
the characteristics of deformation and cracks, the following conclusions can be drawn:

1. During the completion period, the horizontal displacement, settlement, and major and
minor principal stresses of the dam body were symmetrically distributed along the
core wall. The maximum horizontal displacement occurred at the main dam body
on both sides of the core wall and the upstream and downstream dam slopes. The
maximum settlement occurred in the middle of the core wall, the maximum principal
stress occurred on both sides of the bottom of the clay core wall, and the minimum
principal stress occurred on both sides of the bottom of the core wall. The deformation
and stress simulation results met the general laws of earth-rock dam engineering.

2. During the storage period, under the influence of reservoir water pressure and the
wetting deformation of upstream rockfill materials, the displacement and stress of the
dam body underwent significant changes compared to the completion period. The
deformation and stress of the dam no longer followed the symmetrical distribution
pattern, and the maximum horizontal displacement of the dam during the water
storage period was located at 2/3 of the upstream dam slope. The maximum settlement
of the dam body was located at 1/2 of the dam height, the large principal stress on
the upstream side of the core wall was greater than that on the downstream side, and
the extreme value was located on the left side of the bottom of the core wall, while
the extreme value of the small principal stress was also located on the left side of the
bottom of the core wall. All the simulation results complied with general laws of
earth-rock dam engineering.

3. The deformation inclination of the dam during the completion period was less than
1%, and there would be no cracks formed. After impoundment, due to the wetting
deformation of the upstream rockfill area, the deformation gradient of the dam crest
changed greatly. After the initial impoundment, the deformation gradient values of
the upstream, middle, and downstream sides of the dam crest all increased and were
greatest in the middle along the dam axis and perpendicular to the dam axis, that is,
the center of the dam crest was the area with the largest deformation gradient, but the
maximum value did not exceed 3%. There was a trend of longitudinal cracks along the
dam axis, which is consistent with the actual situation. Regular monitoring of cracks
in this area is needed to prevent cracks from endangering dam safety.

6.2. Foresight

1. This study was limited due to the lack of monitoring data during the dam filling period,
so only the rheological parameters were inverted. In subsequent similar dam type
research, the dam material Duncan-Chang constitutive model parameter inversion
can be carried out in combination with the monitoring data during the filling period.
Based on this, the simulation results will be more realistic.

2. In this paper, when using the deformation inclination method to predict cracks, only
the linear area of cracks on the surface of the dam top was judged and analyzed. In
the follow-up research plan, image recognition technology will be used to analyze the
cracks in the whole section of the dam top, which will enable us to analyze the cracks
more intuitively and accurately.
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