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Abstract: Climate change has exacerbated severe rainfall events, leading to rapid and unpredictable
fluctuations in river water levels. This environment necessitates the development of real-time,
automated systems for water level detection. Due to degradation, traditional methods relying on
physical river gauges are becoming progressively unreliable. This paper presents an innovative
methodology that leverages ResNet-50, a Convolutional Neural Network (CNN) model, to identify
distinct water level features in Closed-Circuit Television (CCTV) river imagery of the Chengmei
Bridge on the Keelung River in Neihu District, Taiwan, under various weather conditions. This
methodology creates a virtual water gauge system for the precise and timely detection of water levels,
thereby eliminating the need for dependable physical gauges. Our study utilized image data from
1 March 2022 to 28 February 2023. This river, crucial to the ecosystems and economies of numerous
cities, could instigate a range of consequences due to rapid increases in water levels. The proposed
system integrates grid-based methods with infrastructure like CCTV cameras and Raspberry Pi
devices for data processing. This integration facilitates real-time water level monitoring, even without
physical gauges, thus reducing deployment costs. Preliminary results indicate an accuracy range of
83.6% to 96%, with clear days providing the highest accuracy and heavy rainfall the lowest. Future
work will refine the model to boost accuracy during rainy conditions. This research introduces a
promising real-time river water level monitoring solution, significantly contributing to flood control
and disaster management strategies.

Keywords: ResNet-50; Convolutional Neural Network; water level detection; river monitoring
system; real-time monitoring system; virtual water gauge; grid-based

1. Introduction

The escalating impact of climate change, marked by a worldwide increase in severe
weather events, particularly unpredictable and rapid fluctuations in river water levels,
necessitates the development of reliable, real-time water level detection systems [1–3]. In
Taiwan, a country experiencing a heightened frequency of typhoons and heavy rainfall [4,5],
the increased risk of rising river water levels underscores the need for remote hydrological
monitoring, especially during typhoons or significant precipitation [6]. This situation
highlights the vital importance of automated water level measurement systems [7–10].

Traditional methods, which heavily rely on physical river gauges, are becoming in-
creasingly unreliable due to environmental degradation [11–15]. An alternative approach
using CCTV cameras to monitor water gauges installed in significant rivers and flood-prone
areas has been explored. Yu [16] proposed a differencing image technique that detects
minor changes in water levels by analyzing the Region of Interest (ROI) between previous
and current frames and applying the Otsu threshold method. However, the robustness of
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this method under different illuminations and locations still needs to be tested. Kim [17]
developed a cloud-based system, the River Eye Image Water Level Gauge, which integrates
video surveillance for river flow and water level measurements. This system is currently
undergoing testing at four sites. Hiroi [18] presented a water-level sensor system that
uses infrared image processing for real-time river-level monitoring and accurate flood
prediction in urban areas. Pan [19] developed a low-cost unmanned surveillance system
that uses a map-based web service, video cameras, water level analyzers, and wireless
communication routers for real-time water level measurements. The deep learning-based
method demonstrated superior performance in terms of accuracy and stability. Sabba-
tini [20] proposed a computer vision solution for automatic river water-level monitoring,
showing excellent performance in discerning frame quality, especially during nighttime.
Narayanan [21] introduced a method that uses participatory sensing and computer vision
to estimate flood levels.

However, the absence of gauges in some rivers and inaccurate readings due to inade-
quate maintenance hinder precise water level detection [22,23]. As illustrated in Figure 1,
poorly maintained gauges often present unclear numerical readings, preventing image
recognition technology from accurately determining the current water level and leading
to potential misjudgments. This highlights an urgent need for further research to mitigate
these issues.
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To address this challenge, this paper introduces an innovative approach that utilizes 
existing CCTV footage to establish a virtual water gauge. This method subsequently ap-
plies image processing techniques to determine the current water level of the river. The 
proposed model, which employs ResNet-50 [24–26], a Convolutional Neural Network 
(CNN) model [27–31], is trained using data derived from the CCTV river imagery of the 
Chengmei Bridge on the Keelung River in Neihu District, Taiwan. This data was collected 
from 1 March 2022 to 28 February 2023. 

The Keelung River, an essential water system in Northern Taiwan, has an approxi-
mate length of 96 km and a catchment area of around 512 square kilometers. It traverses 
prominent cities in Northern Taiwan, including Taipei, New Taipei, and Keelung, signifi-
cantly influencing these regions’ geographical and economic landscapes. 

The Keelung River has been the site of numerous severe floods throughout the years, 
marked by notably devastating events brought on by Typhoon Lynn in October 1987, Ty-
phoon Winnie in August 1997, Typhoon Xangsane in October 2000, and Typhoon Nari in 
September 2001. These typhoons unleashed torrential rains, leading to extensive flooding 
within the Keelung River basin. For example, Typhoon Xangsane in 2000 resulted in an 
inundation of approximately 465 hectares spanning various districts in Taipei City, New 

Figure 1. It is challenging to recognize unclear numerical readings in river gauge images. Source:
https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=55 (accessed on 17 October 2022).

To address this challenge, this paper introduces an innovative approach that utilizes
existing CCTV footage to establish a virtual water gauge. This method subsequently
applies image processing techniques to determine the current water level of the river. The
proposed model, which employs ResNet-50 [24–26], a Convolutional Neural Network
(CNN) model [27–31], is trained using data derived from the CCTV river imagery of the
Chengmei Bridge on the Keelung River in Neihu District, Taiwan. This data was collected
from 1 March 2022 to 28 February 2023.

The Keelung River, an essential water system in Northern Taiwan, has an approximate
length of 96 km and a catchment area of around 512 square kilometers. It traverses promi-
nent cities in Northern Taiwan, including Taipei, New Taipei, and Keelung, significantly
influencing these regions’ geographical and economic landscapes.

The Keelung River has been the site of numerous severe floods throughout the years,
marked by notably devastating events brought on by Typhoon Lynn in October 1987,
Typhoon Winnie in August 1997, Typhoon Xangsane in October 2000, and Typhoon Nari in
September 2001. These typhoons unleashed torrential rains, leading to extensive flooding
within the Keelung River basin. For example, Typhoon Xangsane in 2000 resulted in an
inundation of approximately 465 hectares spanning various districts in Taipei City, New
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Taipei City, and Keelung City, causing 59 fatalities and flooding around 10,000 households.
Moreover, Typhoon Nari in 2001 led to severe flooding in the Keelung River basin, sub-
merging numerous areas in Taipei City, New Taipei City, and Keelung City, resulting in
104 deaths and approximately 20,000 flooded households.

The most recent incident occurred on 16 October 2022, when Typhoon Nisha swept
across the Keelung River basin. This event led to a dramatic surge in the river’s water level,
peaking at 5.04 m, exceeding the alert level by two meters. This occurrence highlighted the
Keelung River basin’s vulnerability to flood risks under extreme weather conditions. Such
disasters can significantly impact residents in low-lying areas and the surrounding com-
munities, resulting in property damage, road traffic disruptions, and casualties. Therefore,
implementing effective flood prevention measures and disaster management strategies in
the Keelung River basin is critically important to mitigate the impacts of future extreme
weather events.

This study is particularly significant for the Keelung River, especially near the Cheng-
mei Bridge. Its geographical location, impact on the surrounding cities, and environmental
challenges make it an ideal site for testing our innovative water level detection methods.
Influenced by heavy rainfall, the river’s water level fluctuations allow us to refine and test
our system to enhance the region’s flood prevention and disaster management strategies.

A unique feature of this study is the utilization of the existing CCTV infrastructure
installed across numerous rivers. By integrating a cost-effective hardware device, Rasp-
berry Pi [32–34], the pretrained grid-based virtual water gauge model can be executed
to determine the current river water level. This approach significantly reduces the cost
of establishing river water level monitoring facilities and can be readily implemented in
various locations.

The paper is structured as follows: The subsequent section will detail the methodology,
including the model’s training and operation. The following section will present the study’s
results, including its effectiveness during heavy rainfall. The concluding section will discuss
the implications of the study, its limitations, and future research directions. This innovative
approach represents a significant advancement in flood control and disaster management,
offering considerable potential for enhancing cities’ resilience to flooding and other water-
related disasters.

2. Materials and Methods

In this section, we elaborate on developing and implementing three primary models
designed to enhance the accuracy and reliability of river water level monitoring. Firstly, the
Grid Selection Model uses CCTV footage and image processing techniques to identify the
optimal grid for establishing a virtual water gauge. Secondly, the Grid State Recognition
Model accurately determines the state of the selected grid, categorizing it as devoid of
water, partially filled with water, or filled with water. This categorization is crucial for
determining the river’s current water level. Lastly, the Water Level Calculation Model
calculates the water level height of the virtual water gauge, converting the grid’s state
into a numerical value that represents the river’s current water level. These models work
collectively to provide accurate, real-time water level detection. Their methodologies,
execution, and collaborative functioning are detailed in the following sections and depicted
in Figure 2.

2.1. Grid Selection Model

The Grid Selection Model, a critical system component, is designed to select representa-
tive grids from CCTV footage. These grids effectively reflect water level variations, forming
the foundation for a virtual water gauge. The model operates in five stages. River imagery
and weather data are initially collected to guide the subsequent processes. Following this,
the recognition area within the imagery is identified, focusing on relevant areas to enhance
efficiency and precision. The images are then divided into smaller, manageable grids for
individual examination. These images undergo dynamic binarization, transforming into
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a binary format for a streamlined analysis. The final stage involves selecting grids that
accurately reflect water level changes. These grids provide data for precise water level
monitoring. Each stage is meticulously fine-tuned to maximize the model’s effectiveness,
with an in-depth exploration of each stage offering a comprehensive understanding of the
Grid Selection Model’s operation.
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2.1.1. Collection of River Imagery and Weather Data

The acquisition of river imagery is a critical phase in our methodology. For a mean-
ingful analysis, gathering images representing various water level changes is essential.
Notably, images captured after rainfall events, which cause water levels to surge, are
particularly valuable, as they distinctly record fluctuations in water levels.

Simultaneously, we collect weather information specific to the river’s location, en-
compassing the current weather conditions and sunrise and sunset times. This data aid
in refining the threshold for binarization during the dynamic image binarization stage,
considering the environmental factors in the imagery. These weather data are typically
acquired from meteorological observation stations or similar entities.

For this study, river imagery was sourced from the CCTV at the Chengmei Bridge
on the Keelung River in Taiwan. This open data was gathered from 1 March 2022 to
28 February 2023 via the Water Resources Agency’s Water Situation Image Monitoring
Station’s cloud service platform, a Ministry of Economic Affairs subsidiary. The CCTV
river images, with a resolution of 1920 × 1080, are updated every minute, as illustrated in
Figure 3.

Additionally, weather data, including hourly weather conditions and sunrise and
sunset timings from 1 March 2022 to 28 February 2023, was compiled for the Neihu
District of Taipei City, where the Chengmei Bridge is situated. These data were sourced
from the Central Weather Bureau’s website, Taiwan’s Ministry of Transportation and
Communications Division.

This comprehensive collection of river imagery and weather data forms a solid foun-
dation for the subsequent stages of our Grid Selection Model, significantly enhancing the
accuracy of our water level monitoring system.
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2.1.2. Determination of the Recognition Area

The initial step in establishing a virtual water gauge within the CCTV footage of a
river involves selecting an appropriate region. This region is the basis for filtering suitable
unit grids to construct the virtual water gauge. The selection of this region is critical and
should align with the actual water level fluctuations in the river.

This designated region assists in selecting the ideal grid units that constitute the virtual
water gauge. The lower limit of this region corresponds with the lowest point of the actual
water level, represented as zero on the water gauge. Conversely, the upper limit of this
region aligns with the highest point of the water level. This process and the corresponding
water levels are depicted in Figure 4.
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In locations equipped with water gauges, the proposed grid-based virtual water level
can be directly inferred from the height of the water gauge, as demonstrated in the image.
However, for areas lacking water gauges, it becomes necessary to calculate the conversion
formula and parameters that link the virtual water level to the actual water level. This
process requires on-site measurements. Using this information, the current water level in
the river can be accurately determined, even in locations where water gauges are absent or
the readings are obscured.

In this case, when identifying the recognition area from the collected CCTV river
imagery at Chengmei Bridge, the lowest point within the recognition area corresponds
with the part of the river where the water level is 0 m on the water gauge. Conversely, the
highest point aligns with the highest point on the river water gauge, situated at 7.5 m. This
is illustrated in Figure 5.

https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40
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2.1.3. Image Gridification

The next step in creating a virtual water gauge from the river imagery involves
segmenting the identified area within the image into a grid format. The dimensions of
these grids should closely correspond to the pixel count in the image that represents the
unit height of the actual water level. With appropriate segmentation, we can select the most
suitable grids to form the virtual water gauge.

For the ensuing grid selection, we employ the ResNet50 model, which is implemented
using the TensorFlow package in Python, to identify the features of the grid images. This
methodology will assist us in selecting grids suitable for constructing the virtual water
gauge. It is imperative to note that the image input size for the ResNet50 model is 224 × 224.
Therefore, we must ensure that the grid dimensions do not introduce any distortions or
alterations to the inherent features of the grid during the scaling process to match the
required input size.

To this end, the number of pixels corresponding to the grid height, denoted as GridPixel,
is determined using Equation (1). Assuming the unit height of the actual water level
corresponds to P pixels in the image, the formula is as follows:

GridPixel =
{

7 × 2N |N = ⌊logP/7
2 ⌋} (1)

N is an exponential term in this equation that adjusts the grid size to closely approx-
imate P. This formula aims to align the grid height (GridPixel) with the image height (P)
corresponding to the unit height of the actual water level. Simultaneously, it ensures that,
when increased by a power of 2 (to the Nth power), the final size is 224 × 224. The choice of
7 as the base in this formula is informed by the fact that, when 224 is continuously halved,
the smallest value achievable is 7.

In this study, involving the river imagery from Chengmei Bridge, an actual 1 m
corresponds to 65 pixels in the image. According to Equation (1), where P is given as 65, the
value of GridPixel can be calculated by using Equation (1): GridPixel = {7×2N|N = ⌊log65/7

2 ⌋
= 3} = 7 × 23 = 56, which simplifies as the GridPixel is 56.

Therefore, when performing image gridification, a grid height unit of 56 pixels should
be used for processing. Figure 6 shows the recognition region partitioned into grids of
uniform size, each approximating the unit height of the real-world water level.

2.1.4. Dynamic Image Binarization

The binarization process is crucial in image recognition, particularly when recognizing
river water levels [35,36]. However, employing dynamic image binarization is necessary
due to several potential complications. Traditional static thresholding methods often
need to perform better when applied to images captured under various environmental
conditions. A single threshold value may not be universally suitable for different lighting
and weather conditions or times of the day. This can lead to suboptimal binarization and,
consequently, decreased recognition accuracy. Additionally, a static approach needs more

https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40
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flexibility to adapt in real time to environmental changes, which can further compromise
the reliability of the image recognition process.
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We have proposed a polynomial regression model [37] to address these shortcomings 
and establish a dynamic binarization threshold prediction model. This model is designed 
to predict the optimal binarization threshold in real time, enabling it to adapt to changing 
environmental factors. In this study, we implemented this dynamic binarization threshold 
prediction model to binarize image data within a specified timeframe. For instance, Figure 
8 demonstrates the dynamically predicted threshold values for each hour from 0:00 to 
23:00 between 15 March and 18 March 2022. 

Figure 6. Grid partitioning of the river imagery at Chengmei Bridge, size = 56 × 56 pixels. Source:
https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40 (accessed on 14 March 2022).

To illustrate this, refer to Figure 7, which showcases images taken at 8:00 a.m. at the
Nanhu Bridge over the Keelung River under different weather conditions. These images
were binarized using a fixed threshold of 150. Figure 7a depicts a sunny day, and Figure 7b
represents an overcast day. The results demonstrate that a fixed threshold can discern
the water gauge’s numbers in Figure 7b. However, in Figure 7a, some numbers need to
be more identifiable, indicating the limitations of using a fixed threshold under varying
weather conditions.
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Figure 7. Binarized images at 8:00 a.m. at Nanhu Bridge on Keelung River using a fixed threshold of
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We have proposed a polynomial regression model [37] to address these shortcomings
and establish a dynamic binarization threshold prediction model. This model is designed
to predict the optimal binarization threshold in real time, enabling it to adapt to changing
environmental factors. In this study, we implemented this dynamic binarization threshold
prediction model to binarize image data within a specified timeframe. For instance, Figure 8
demonstrates the dynamically predicted threshold values for each hour from 0:00 to 23:00
between 15 March and 18 March 2022.

Using the threshold values predicted by our model, we successfully improved the
image recognition accuracy of CCTV images for Chengmei Bridge on the Keelung River
spanning 2022 to 2023, as shown in Figure 9.

https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40
https://fmg.wra.gov.tw/FMGP/SingeView?sn=15893&ft=C&ht=0
https://fmg.wra.gov.tw/FMGP/SingeView?sn=15893&ft=C&ht=0
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Figure 9. (a) Binarization of an image captured on a sunny day at 5:00 p.m. with a threshold value
of 70. (b) Binarization of an image captured on a rainy day at noon with a threshold value of 110.
Source: https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40 ((a) accessed on 7 May 2022, (b) accessed
on 16 May 2022).

The binarization process of images requires distinct threshold values depending on
varying weather conditions and times. For instance, Figure 9a illustrates that a threshold of
70 is optimal for binarizing images taken on a clear, sunny day at 5:00 p.m. Conversely, for
images captured on a rainy day at noon, a higher threshold value of 110 is recommended,
as demonstrated in Figure 9b.

This dynamic binarization strategy allows for acquiring binarized images ideally
suited for recognition tasks, effectively circumventing the constraints of traditional static
image binarization. This adaptability to environmental variations ensures reliable and
accurate image recognition, regardless of the prevailing conditions during image capture.

2.1.5. Selection of Grids for Virtual Water Gauge

This study introduces a grid selection method for creating a virtual water gauge.
As illustrated in Figure 10, following the binarization of the image, the process selects
an appropriate grid from each row to construct the virtual water gauge. The crucial
characteristic of the grids chosen as candidates for the virtual water gauge within the same
column is their ability to distinctly differentiate between water-free, partially water-filled,
and fully water-filled states. This method enhances the precision in recognizing water
levels under varying environmental conditions, thus contributing to advancements in
image recognition.

https://fmg.wra.gov.tw/fmgp/ccd_proxy?sn=40
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Each identical grid from the collected river images undergoes a binarization process, 
with all historical data of the same grid categorized into three groups: “no water”, 
“partial water”, and “full water”, as displayed in Figure 12. 

Figure 10. Select suitable grids from each row to construct a virtual water gauge.

Figure 11 exemplifies this concept with two images from the same row in their original
and binarized forms. Figure 11a depicts a clear day without water, while Figure 11b
represents a rainy day with a water-filled grid. It is evident from these images that the blue
grid exhibits significant differences in the binarized images between the water-free and
fully water-filled states, while the yellow grid does not. Therefore, the blue grid is more
suitable than the yellow grid for constructing the virtual water gauge. This innovative
method enhances the precision of water level recognition, contributing significantly to
advancements in image recognition techniques.
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The grid selection method proposed in this study encompasses the following four
primary steps:

1. Grid Clustering Each identical grid from the collected river images undergoes a bina-
rization process, with all historical data of the same grid categorized into three groups:
“no water”, “partial water”, and “full water”, as displayed in Figure 12. To facilitate
this process, we employ a semi-supervised auto-labeling technique using ResNet50,
and we start with a small set of manually labeled images under the categories of “no
water”, “partial water”, and “full water”. Using this labeled set, we train an initial
model. This trained model is then used to predict labels for the unlabeled images.
Images where the model’s predictions are highly confident are identified and added
to the labeled set with their predicted labels, known as pseudo-labeling. We then
retrain the model on this newly augmented labeled set. This iterative process performs
pseudo-labeling and retraining the model until a specified stopping condition is met,
such as no significant improvement in the model performance. This semi-supervised
auto-labeling approach allows the model to progressively learn from a more extensive
dataset, improving its performance, even if the initial labeled dataset is small.

2. Grid Preprocessing Before extracting features with the ResNet50 model, ensuring that
the grid size meets the model’s input requirements, i.e., 224 × 224, is imperative. If
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the grid size does not meet the ResNet50 model’s input requirements, the original
grid is expanded to 224 × 224 using bilinear interpolation [38–41]. This preserves the
details and features of the original grid, ensuring visual consistency and preventing
shape or pixel distortion, thereby enabling the extraction of accurate feature vectors.

3. Grid Feature Extraction This step primarily involves extracting features of each grid’s
“no water”, “partial water”, and “full water” states using ResNet50. Preprocessed
grid historical images are input into the ResNet50 model. Assuming the number of
images is n, the input shape is (n, 224, 224). After convolution calculations, the feature
vector is extracted from the layer before the fully connected layer, with a shape of (n,
7, 7, 2048), which is then transformed into a one-dimensional array for the subsequent
similarity calculations. Figure 13 illustrates that we ultimately obtained the feature
vectors for the three categories.

4. Virtual Water Gauge Grid Selection This step aims to select the most suitable grid
from each row to serve as a virtual water gauge. Here is the process:

• Feature Vector Similarity Calculation for Each Grid For each grid, compute its
feature vectors under three different water level states: “no water” (denoted as
N), “partial water” (denoted as P), and “full water” (denoted as F). These feature
vectors, which encapsulate the image characteristics of each grid under different
water level states, are obtained through the previously mentioned Grid Feature
Extraction model.

• Cosine Similarity Calculations The cosine similarity formula calculates the simi-
larity between feature vectors of different water level states [42–45], denoted as
SA×B. This formula is given by

SA×B =
AB

||A|| ||B|| (2)

where A and B are the feature vectors, • denotes the dot product, and ||A||
and ||B|| are the magnitudes of vectors A and B, respectively. For this analysis,
we substitute (A, B) in the formula with (N, P), (N, F), and (P, F) to calculate
the cosine similarities for these combinations. A value closer to 1 for a cosine
similarity indicates a higher similarity between the feature vectors of two water
level states. Therefore, if a grid’s feature vectors under different water levels have
a high cosine similarity, it implies that the grid’s feature vectors are ineffective
in distinguishing between water level states, making it less suitable as a virtual
water level gauge.

• Similarity Average Calculations For each grid, we calculate the average of the
cosine similarities SN×P, SN×F, and SP×F to get Similarity[r][k], which represents
the similarity of the kth grid in the rth row:

Similarity[r][k] =
(SN×P + SN×F + SP×F)

3
(3)

Figure 14 provides a box plot illustrating the similarity values for each row of
grids. These values were derived from images captured at the Chengmei Bridge
on the Keelung River, collected from 1 March 2022 to 28 February 2023.

• Select the grid with minimum similarity Finally, we select the grid with the
smallest average similarity for each row to serve as the virtual water level gauge.
Grid[i]virtual water gauge represents the index of the grid with the smallest similarity
in the ith row, and argmin_k [46] is a function that delivers the index k of the
minimum value in the sequence Similarity[i]:

Grid [i]virtual water gauge = argmin_k(Similarity[i][k]) (4)
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The steps outlined earlier form the proposed grid selection method in this research.
This method aids in identifying the most fitting grid to serve as a virtual water gauge for
detecting water levels. As depicted in Figure 15, the grid with the lowest similarity value
within its row, marked by a red box, is selected as the virtual water gauge.

2.2. Grid State Recognition Model

In this study, we design individual Grid State Recognition Models for each grid
identified by the Grid Selection Models to compose the virtual water gauge. The primary
purpose of these Grid State Recognition Models is to discern the current water level status
of the grid from real-time CCTV footage, categorizing it as “no water”, “partial water”, or
“full water.”
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Figure 15. Selection of the grid with the lowest similarity in each row as a virtual water gauge. The
blue line represents the water level of the virtual water gauge, corresponding to the actual water level
height of the physical water gauge.

To build the Grid State Recognition Model, we employ the architecture of the ResNet50
model. The model input for each grid of the virtual water gauge is the binary grid image
of all the historical image data after being clustered into the “no water”, “partial water”,
and “full water” categories. We resized the binary grid image to 224 × 224 using bilinear
interpolation. After multiple training iterations, we successfully trained a model capable
of identifying the grid status as “no water”, “partial water”, or “full water” based on the
input binary grid image, as depicted in Figure 16.
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2.3. Water Level Calculation Model

Our Water Level Calculation Model uses the “no water”, “partial water”, and “full
water” states of a virtual water gauge grid, as identified by the Grid State Recognition
Model, as the input. These states are utilized to calculate the water level of the virtual water
gauge. We assume that the height of a grid corresponds to the actual water level, referred
to as GridHeight, where GridHeight is equal to 0.86 m based on a grid size of 56 pixels and a
correspondence of 1 m to 65 pixels in the river image from the Chengmei Bridge CCTV.

For the “no water” state, the corresponding river water level is 0, while, for the “full
water” state, it is 1 × GridHeight. For the “partial water” state, we first calculate the grid
water level height ∆H within the grid, which is then converted into the corresponding river
water level height ∆H × GridHeight.

The calculation of the water level height ∆H within the “partial water” grid is carried
out in four steps, as depicted in Figure 2:

1. Preprocessing The binary “partial water” state is converted by dividing the image
values by 255. Pixels with water are converted to 0 and those without water to 1,
producing a 56 × 56 matrix.

2. Horizontal Water Ripple Filtering We employ two convolution operations to filter out
horizontal water ripples [47–49]. The first convolution operation uses a 1 × 7 filter ma-
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trix with all values set to 1 and a stride of 7. Each row undergoes separate convolution
operations, resulting in a 56 × 8 matrix (see Figure 17). To calculate the vertical height
of the water level in the grid, the 56 × 8 matrix obtained from the first convolution
operation undergoes a second convolution operation to produce a 56 × 1 matrix. This
operation uses a 3 × 8 filter matrix with all values set to 1 and a stride of 1, with
convolution performed from bottom to top. To prevent the original grid height from
being affected by the convolution operation, a padding operation [50,51] is performed
on the 56 × 8 matrix before the second convolution. The padding matrix is 2 × 8 with
all values set to 1, as illustrated in Figure 18.

3. Vertical Water Ripple Filtering For a more precise determination of the water level
height, we further process the matrix obtained from the lateral ripple filtering for
vertical ripple filtering. A single convolution operation is used to eliminate vertical
water ripples gradually. Before this operation, the 56 × 1 matrix undergoes padding,
with a 2 × 1 padding matrix where all values are 0. Then, a convolution operation is
performed using a 3 × 1 filter matrix with all values set to 1 and a stride of 1. This
operation yields a 56 × 1 matrix of water probabilities for each row (see Figure 19).

4. Grid Water Level Height Calculation Lastly we transform the matrix of water proba-
bilities into a matrix of 1s and 0s by setting a threshold value θ. Values below θ are
converted to 0 and those above θ to 1, resulting in the grid water level height matrix
H. The grid water level height ∆H is then calculated using Equation (5); in this case, θ
is 0.7, and the GridPixel is 56.

∆H =
∑GridPixel

1 H[i]
GridPixel

(5)

Subsequently, the river water level is calculated using Equation (6), where NFull_Water
represents the total number of “full water” grids.

LevelHeight = (1 × NFull_Water + ∆H)× GirdHeight, (6)

Our Water Level Calculation Model provides a comprehensive approach for estimating
water levels from CCTV images. By integrating the Grid State Recognition model, we can
interpret the state of the grid and calculate the corresponding water level. This model is a
highly effective tool for real-time monitoring and predicting river water levels, significantly
contributing to disaster prevention and management.
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3. Results

This section delves into assessing the model’s accuracy, cost-effectiveness, and overall
performance. A crucial aspect of the validation procedure entails determining the feasibility
of implementing real-time river water level monitoring on a Raspberry Pi platform. The
platform from which the study’s data are sourced solely provides CCTV river images for the
Keelung River Chengmei Bridge, devoid of any physical measurement data. Consequently,
our precision assessment relies exclusively on the model’s results. Nevertheless, during the
preliminary evaluation stages, we manually interpreted the water levels from the images,
marking them to establish a baseline for the model assessment. Consequently, we expanded
the grid matrix of the virtual water gauge from its original 9 grids, which correspond to
the actual water gauge, to 15 grids. This augmentation ensures that the coverage spans the
lowermost section of the image.

3.1. Model Accuracy

The process of authenticating the model’s accuracy principally involved the following
essential steps:
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1. Image Clustering Leveraging the weather data from the Central Weather Bureau, the
river images under investigation were categorized into three distinct classes: sunny,
cloudy, and rainy.

2. Initial Water Level Determination The water level for the first frame in the test video
was manually annotated to establish an initial reference point.

3. Evaluation of the Virtual Water Gauge Accuracy This process acknowledges that the
river water level exhibits sudden surges or drops when an anomaly is observed in the
virtual water gauge level, as demonstrated in Figure 20. A rapid decline promptly
follows an increase, which we classify as a spike, signifying an error in the water level
assessment. Figure 20a,b illustrate the outcomes of the Water Level Calculation Model
under rainy and heavy rain conditions, respectively. The results of the Water Level
Calculation Model under clear weather conditions are presented in Figure A1. If the
current water level diverges from the previous one by more than θ, it is marked as
a spike, indicating a potential error in the water level assessment. In this study, θ
was assigned to correspond to GridPixel. The formula utilized to compute accuracy is
provided by Equation (7):

Accuracy =
(Total number of tests − Number of spikes)

Total number of tests
(7)
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During the initial evaluation, the accuracy of the virtual water gauge level was found
to be 93% on sunny days, 88.4% on cloudy days, and a mere 50.1% on rainy days. A
thorough analysis of the inaccurate image data indicated that the primary source of these
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errors was wrong predictions of the dynamic binarization values, which significantly
distorted the water level estimates.

Crucial adjustments were implemented to rectify these issues, primarily focusing on
refining the dynamic binarization threshold prediction model. However, the original model
incorporated weather factors, and the influence of the rainy day factor was reduced due to
the limited volume of image data from rainy days.

The dynamic binarization threshold prediction model was restructured into three
distinct models, each tailored for sunny, cloudy, and rainy conditions. This modification
aimed to bolster the model’s adaptability to various weather conditions and, importantly, to
equip each model with a dedicated dataset for enhanced learning and prediction accuracy.

The results of these adjustments were highly encouraging. The accuracy of the virtual
water gauge level increased to 96.3% on sunny days, 90.9% on cloudy days, and, remarkably,
83.6% on rainy days, as illustrated in Figure 21. These improvements underscore the
effectiveness of the refined approach in minimizing errors associated with inaccurate
dynamic binarization predictions, particularly under adverse weather conditions.
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Figure 21. Impact of the binarization threshold on the accuracy of the virtual water gauge level.

Upon rectifying the dynamic binarization values, the model demonstrated enhanced
accuracy across all weather conditions, with a substantial improvement observed under
rainy conditions. This underscores its effectiveness and robustness in accurately determin-
ing water levels.

The model’s accuracy ranged from 83.6% to 96%. The highest accuracy was recorded
during clear weather conditions, while the lowest was observed during heavy rainfall. This
fluctuation can be attributed to the complexity and clarity of river imagery under different
weather conditions.

3.2. Virtual Water Gauge System

This research combines the proposed grid-based virtual water gauge with the Rasp-
berry Pi and corresponding river water level sensor components to design a low-cost
system for real-time river water level monitoring.

The system encompasses the following characteristics:

• Main Functions: The CCTV monitoring function can capture images with a resolution
of 1920 × 1080. It also detects the image grid water level and calculates the water level
height utilizing a virtual water gauge.

• Specifications: The system has sensors for the temperature, humidity, light intensity,
and rain detection. It also incorporates a waterproof infrared camera, an Internet
of Things communication module, Arduino Mega2560, Raspberry Pi 4B, solar pan-
els, a solar power manager, a rechargeable lithium battery, a waterproof box, and
support rods.

• Power Supply: The system can accommodate a maximum power supply of 5 V, 3 A
and utilizes a 20 W monocrystalline silicon solar panel and a 10 Ah lithium battery.

• Cost: USD 750.
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The developed physical system is depicted in Figure A2. Figure A2a presents an exte-
rior view of the virtual water gauge system, while Figure A2b illustrates the configuration
of the components within the waterproof box.

3.3. Grid-Based Methods and Infrastructure Integration

To verify if the grid-based virtual water gauge system could fulfill the requirements of
real-time river water level monitoring using a Raspberry Pi, we implemented the system
on both a standard PC and a Raspberry Pi 4 to analyze an image of Chengmei Bridge’s
water level. The time required for a single frame was recorded as 0.1259 s and 0.5428 s,
respectively. Table 1 shows the PC and Raspberry Pi 4B hardware specifications used in
this validation process.

Table 1. Hardware specifications of the PC and Raspberry Pi 4B used for performance testing.

Model Type Specification Computing Time

PC
CPU: i5-8300H

GPU: GTX: GTX-1650
RAM: 20 GB

0.1259 s

Raspberry Pi 4 B CPU: ARM Cortex A72
RAM: 8 GB 0.5418 s

We amalgamated grid-based methods with infrastructure elements like CCTV cameras
and Raspberry Pi devices for data processing. This fusion of technologies enabled us to
devise an efficient system capable of real-time monitoring, thereby enhancing the reliability
of our model.

Integrating the virtual water gauge system significantly enhanced the real-time moni-
toring capabilities of our model. This system, which operates independently of the reliabil-
ity of physical gauges, demonstrated its ability to provide accurate water level readings
while effectively reducing deployment costs.

When applied to real-time river monitoring, this system presents several benefits:

• Speed and Efficiency: As indicated in the tests, the system can process images swiftly,
even on a low-powered device like a Raspberry Pi. This facilitates near-real-time
monitoring, essential when immediate responses to fluctuating water levels are needed,
such as during floods or heavy rainfall.

• Accessibility and Cost-Effectiveness: Using a Raspberry Pi makes the system highly ac-
cessible and cost-effective. A Raspberry Pi is affordable and widely available, allowing
system deployment in multiple locations without substantial financial expenditure.

• Automation and Accuracy: The system automates the process of water level monitor-
ing, eliminating the need for time-consuming and error-prone manual measurements.
Incorporating image recognition and the virtual water gauge also enhances the preci-
sion of water level readings.

• Flexibility: The system can be adapted to monitor various rivers or bodies of water
by simply changing the image source, making it a flexible solution tailored to diverse
monitoring needs.

• Environmentally Friendly: The ability of the system to operate on a low-powered
device like a Raspberry Pi means it can be powered by renewable energy sources, such
as solar panels, marking it as an environmentally friendly solution.

4. Discussion

This section examines the model’s accuracy and performance validation, particu-
larly emphasizing its performance under various weather conditions. Furthermore, we
investigate how weather conditions affect the precision of the virtual water gauge to en-
hance the model’s decision-making in future scenarios. Despite this, we acknowledge
certain constraints of our study, including the necessity to gather data in differing climates
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and the challenge of establishing the virtual water gauge scale without a physical water
gauge. We propose the following solutions to mitigate these challenges and increase the
system’s practicality.

1. Clarifying Model Accuracy The initial data accuracy for rainy days was 50.1%, mainly
due to threshold prediction errors within the dynamic binarization prediction model.
This resulted from the reduced sample size during heavy rainfall periods, which
diluted the binarization threshold characteristics during the modeling process. While
the adjusted accuracy increased to 83.6%, we could further augment the model accu-
racy by applying techniques such as Resampling [52], Cost-Sensitive Learning [53],
or other methods to manage unbalanced datasets and enhance the model’s ability to
predict binarization thresholds. Alternatively, installing a photometric sensor at the
monitoring site to set the binarization threshold directly based on lumen values could
minimize errors in the judgment of the virtual water gauge water levels due to the
binarization threshold.

2. The Relationship between Weather and Virtual Water Gauge Accuracy We categorized
the images into sunny, cloudy, and rainy conditions to analyze the influence of
different weather scenarios on the model.

• During sunny days, spikes were primarily attributed to misinterpretations caused
by sun reflections on the grid, fallen leaves or other debris, and large waves
created by strong winds on the water’s surface.

• On cloudy days, the reflection and shadow on the water surface, influenced by
cloud variations, could cause the intensity of the sunlight on the river surface
to change rapidly as the cloud layer moves. This may induce fluctuations in
the light intensity during the image processing stage, potentially leading to
inaccuracies in water level detection. Consequently, future measures may require
algorithm adjustments or the utilization of data from other sensors to mitigate
the impact of these light fluctuations on water level measurements.

• On rainy days, especially during intense rainfall, the selected grid was filled with
rainwater, leading to misjudgments of a full water level, or the rain hitting the
water surface caused large waves, leading to misjudgments of a waterless state.

In the future, we can deploy the Boyer–Moore majority algorithm [54,55] or other
data mining techniques to identify the primary categories or samples to circumvent
or rectify situations where the grid is misjudged.

3. Merits of the Grid-Based Approach The grid-based method used in this study offers
two key benefits:

• Efficiency in Image Processing: With the image size of 1920 × 1080 pixels and the
grid size of 56 × 56 pixels, this approach substantially reduces the computational
complexity and workload by up to 98.6%. This efficiency enables real-time river
water level monitoring, enhancing the system’s overall performance.

• Precision in Height Calculations: Unlike traditional water gauges that use me-
ter units, the grid height calculations allow for a more detailed height scale,
capturing exact height data, such as 1.23 m. This granularity provides compre-
hensive height information, enhancing the accuracy and precision of water level
measurements and predictions.

4. Limitations and Future Directions Compared to physical water gauges, a fundamental
limitation of this research is the necessity to gather river image data under various
climatic conditions for training before deployment unless preexisting historical river
image data are available. We plan to introduce an automated process in future research
to overcome this limitation. This approach will involve establishing a computerized
data collection and processing workflow to save time and ensure data consistency. In
instances where rivers are equipped with actual water gauges, the scale of the virtual
water gauge can be defined based on the water gauge in the image. However, another
challenge arises for rivers without real water gauges. In these cases, a temporary
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ruler must be established on-site during the initial setup. This ruler is then screen-
captured, and the scale of the virtual water gauge is defined through it. In response
to these challenges, our lab is harnessing Augmented Reality (AR) technology to
measure object heights using CCTV or mobile camera devices such as mobile phones.
This approach aims to alleviate the need for physically establishing a ruler on-site.
Furthermore, we plan to apply geometric and trigonometric functions to correct
height deviations caused by camera angles. These advancements can significantly
enhance the accuracy and applicability of virtual water gauges. By implementing
these strategies, we aim to address the current limitations and expand the application
of virtual water gauges, enabling swift deployment in most rivers.

This study illuminates the complexities and considerations of utilizing AI technology
for intelligent water resource management and environmental sciences. Despite the iden-
tified challenges and limitations, this research has demonstrated promising potential for
applying AI in this domain. We anticipate that the insights garnered will not only enhance
the accuracy and reliability of our existing model but also lay the groundwork for future
innovations. As we refine our methodology and explore new techniques, we are committed
to advancing our understanding and application of AI technology in hydro-informatics
systems toward a more sustainable future.

5. Conclusions

The research presented in this paper demonstrates the significant potential of AI
technology in environmental sciences and water resource management. Our study focused
on developing and validating a grid-based virtual water gauge model, which utilized a
Raspberry Pi platform, for real-time river water level monitoring. The model’s accuracy
varied across different weather conditions, with the best results achieved on sunny days at
96.3%, cloudy days at 90.9%, and rainy days at 83.6%.

This study also culminated in the design of a cost-effective and efficient real-time
river water level monitoring system. The system combines the grid-based virtual water
gauge with a Raspberry Pi and other corresponding components, providing an accessible
and automated solution for water level monitoring. The system demonstrated a strong
performance, even on a low-powered device, and offered flexibility in monitoring various
rivers or bodies of water.

However, the research also identified certain limitations and challenges. These in-
cluded data collection under varied climatic conditions and the challenge of establishing
a virtual water gauge scale without a physical water gauge. Future work should address
these limitations and improve the model’s accuracy and robustness.

Potential future improvements include applying unbalanced dataset management
techniques to enhance binarization threshold predictions, deploying data mining tech-
niques to rectify grid misjudgments, and automating model training. Additionally, future
research could explore applying geometric and trigonometric functions to correct height
deviations caused by camera angles.

Despite the challenges, this study provides valuable insights into the application of
AI technology in hydro-informatics systems. As we continue to refine our methodology
and explore new techniques, we remain committed to enhancing our model’s accuracy,
reliability, and practicality, laying the groundwork for future innovations in this critical
area. Ultimately, we aim to advance the understanding and application of AI technology in
environmental sciences, contributing to a more sustainable future.
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