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Abstract: The brittleness index is one of the most integral parameters used in assessing rock bursts and
catastrophic rock failures resulting from deep underground mining activities. Accurately predicting
this parameter is crucial for effectively monitoring rock bursts, which can cause damage to miners
and lead to the catastrophic failure of engineering structures. Therefore, developing a new brittleness
index capable of effectively predicting rock bursts is essential for the safe and efficient execution of
engineering projects. In this research study, a novel mathematical rock brittleness index is developed,
utilizing factors such as crack initiation, crack damage, and peak stress for sandstones with varying
water contents. Additionally, the brittleness index is compared with previous important brittleness
indices (e.g., B1, B2, B3, and B4) predicted using infrared radiation (IR) characteristics, specifically
the variance of infrared radiation temperature (VIRT), along with various artificial intelligent (AI)
techniques such as k-nearest neighbor (KNN), extreme gradient boost (XGBoost), and random forest
(RF), providing comprehensive insights for predicting rock bursts. The experimental and AI results
revealed that: (1) crack initiation, elastic modulus, crack damage, and peak stress decrease with an
increase in water content; (2) the brittleness indices such as B1, B3, and B4 show a positive linear
exponential correlation, having a coefficient of determination of R2 = 0.88, while B2 shows a negative
linear exponential correlation (R2 = 0.82) with water content. Furthermore, the proposed brittleness
index shows a good linear correlation with B1, B3, and B4, with an R2 > 0.85, while it shows a poor
negative linear correlation with B2, with an R2 = 0.61; (3) the RF model, developed for predicting the
brittleness index, demonstrates superior performance when compared to other models, as indicated
by the following performance parameters: R2 = 0.999, root mean square error (RMSE) = 0.383, mean
square error (MSE) = 0.007, and mean absolute error (MAE) = 0.002. Consequently, RF stands as
being recommended for accurate rock brittleness prediction. These research findings offer valuable
insights and guidelines for effectively developing a brittleness index to assess the rock burst risks
associated with rock engineering projects under water conditions.

Keywords: rock brittleness; water contents; rock burst; infrared radiation characteristics and artificial
intelligent techniques
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1. Introduction

The rock brittleness index is a critical parameter used to assess the rock dynamic
response in terms of rock bursts due to various engineering activities like mining, tunneling,
cavern construction, and drilling operations in deep and brittle rock mass environments.
Furthermore, the tendency of rock burst or the dynamic failure of rock increases with
an increase in depth due to the accumulation of a substantial amount of strain energy
within the surrounding rocks. During an initiation of a rock burst event, the majority of
the accumulated strain energy transforms into kinetic energy and then causes the failure.
Hence, in deep mines and tunnels, rock brittleness is considered as an indicator of the
likelihood of rock bursts [1–17].

As the shallow deposits in the world are almost depleted, most of the mining activities
have proceeded toward great depth to fulfill the minerals demands of various stakeholders.
Furthermore, a rapidly increasing trend in tunneling and deep underground engineering is
also observed in this era. This may result in increasing the occurrences of dynamic failure
or rock bursts significantly [18]. To execute the excavation of deep deposits as well as
tunneling and deep engineering projects safely and efficiently, it is essential to effectively
predict the brittleness index for assessing and monitoring rock bursts in a better way.

Several studies in the literature have been reported on the prediction of the rock
brittleness index. In this regard, Meng et al. [19] listed several brittleness indices that
have been presented since 1967 to address a variety of applications, particularly in rock
mechanics. They have divided the indices into twelve groups for an easy understanding
and prediction of rock bursts. Later on, due to the expansion of technology, researchers
used different parameters for the development of various brittleness indices. Among these,
the most important group of brittleness indices was developed based on the analysis of
stress–strain curve parameters. In this regard, Liang et al. [20] proposed the ratio of peak
strength to peak strain (secant modulus) indices for shale brittleness. The studies of Gong
and Sun [21] revealed that brittleness is inversely proportional to elastic strain. However,
it is essential to note that even though elastic strain may be relatively small, it can be
accompanied by a substantial amount of irreversible strain. This observation suggests
a highly ductile nature of the rock material. This index cannot accurately describe the
brittleness of the rock. Wang et al. [22] proposed the ratio of crack initiation to peak stress as
a brittleness index. Bishop [23] gave the concept of the ratio of peak and residual strength
to peak strength. This indicator does not consider the rate at which strength diminishes
from its peak value to the residual strength. It solely focuses on the magnitude of stress
reduction, overlooking the degradation rate. It has been noticed from the literature that rock
brittleness is a key factor in rockburst prevention. Its accurate determination is important
in the field. Furthermore, the above studies primarily proposed indices in dry rock and
did not consider the water content. The literature shows that the brittleness of the rock
significantly decreases with an increase in water content from 5 to 17% [6,24–33] due to the
reduction in the elastic modulus, strength, crack initiation, and crack damage [34].

The mechanical behavior of rocks is very different in dry conditions compared to wet
conditions [35]. Deep hard-rock tunnels tend to be less prone to rock bursts when the
surrounding rock contains moisture. However, the dry rock mass remains vulnerable to
rock bursts [36]. In several hard-rock mines, for instance, Ortlepp [37], through the exami-
nation of rock bursts, concluded that rock masses with a higher water content experienced
a lower frequency of rock bursts. According to Fowkes [38], there is a substantially smaller
chance of rock burst activity in tunnels filled with water and mud. Therefore, the water
content significantly influences the mechanical behavior of rock surrounding tunnels or
caves. Numerous experimental studies conducted by academics worldwide have focused
on investigating spalling and rock bursts in hard-rock tunnels and caverns [33,39–48]. Rock
burst is directly linked with the brittleness of the rock: the higher the brittleness, the higher
the rock burst, and vice versa. Therefore, it is important to propose a brittleness index
under dry and different water conditions that can truly reflect the rock burst intensity
and tendency. Moreover, the above literature revealed that the previous authors proposed
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indices based on stress–strain curve behaviors. However, the accurate determination of
stress–strain behaviors of rocks in the field is difficult and may lead to inaccurate results due
to the mechanical vibration of the machinery, which causes disturbance to strain gauges.
This may misrepresent the actual condition of the field as well as the stress–strain behavior
of rock. Therefore, it is essential to address the mentioned research gap in a better way
using the latest technology, like infrared radiation and artificial intelligence.

Infrared radiation (IR) may be used to monitor rock collapse and analyze the thermal
data. The rock exhibits various information when under loading [49–52]. IR radiation can be
employed to capture this information and predict rock failure. The properties of IR undergo
notable changes during rock deformation, sliding friction, fracture development, and
dilatation under various loads, as demonstrated by a series of studies [53–58]. IR indices,
such as infrared radiation variance (IRV) and average infrared radiation temperature (AIRT),
may be used to indicate these variations in IR properties throughout the induced fracturing
process [40,42–44,59,60]. Compared to IRV [61], the AIRT is less able to quantitatively
describe and analyze the features of IR during rock fracture. Khan et al. [34] proposed
and predicted the early warning rock failure precursor using the techniques of artificial
intelligence (AI) and infrared radiation (IR), and Ma et al. [62] proposed and predicted
a dilatancy point indicator using artificial intelligence techniques and IR. Besides the IR
technology, various AI-based algorithms have been developed and successfully applied
in different complex problems related to rock engineering [63,64]. It has been revealed
from the mentioned literature that IR and AI technologies have not yet been applied in
the development and prediction of the rock brittleness index under different water and
loading conditions. Therefore, it is essential to develop a brittleness index based on the IR
characteristics and AI techniques with different water conditions under loading to assess
and monitor the rock burst activities in a better way for a safe and efficient execution of
rock engineering projects in deep rock mass environments.

In this research, the IR characteristics under loading on sandstone samples with various
water concentrations were studied. The experimental findings led to the introduction of
a new mathematical brittleness index based on fracture initiation, dilatancy stress, elastic
modulus, and peak stress under different water contents. The significance of the proposed
brittleness index was evaluated based on the four different brittleness indices selected
from the literature, represented as B1, B2, B3, and B4. To predict the rock brittleness index,
AI-based techniques such as random forest regression (RFR), k-nearest neighbor (KNN),
and extreme gradient boost (XGBoost) were also used. The efficacy of these models was
assessed using four different performance parameters, like coefficient of determination
(R2), root mean square error (RMSE), mean square error (MSE), and mean absolute error
(MAE). By combining the use of infrared (IR) technology and artificial intelligence (AI), it
becomes possible to forecast rock brittleness efficiently. This integration of IR and AI holds
significant potential in enhancing the prediction and prevention of rock-related disasters in
rock engineering projects. The findings of this study can contribute to the establishment
of a theoretical and practical framework for effectively monitoring and providing early
warnings of rock engineering catastrophes.

2. Materials and Methods
2.1. Sample Preparation

Sandstone samples, in the form of boulders, were gathered from a coal mine located in
Shandong Province, China. To ensure the preservation of geometrical integrity, rectangular
testing specimens with dimensions of 70 × 70 × 140 mm were prepared. The specimen
face was carefully polished to minimize non-parallelism, with a tolerance of 0.2 mm. For
convenience in the testing process, the samples were divided into groups labeled K, L, M,
and N. The group A rock samples were dried out in advance of the experiment by being
kept at a constant temperature (25 ◦C) in an oven for two days. Whereas the samples of
L, M, and N groups were submerged in the water tank for varied intervals of time, the
samples in group K were kept dry. Group K samples were wrapped with plastic film to
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avoid water liquidity, while other samples were left in water until the experiment began.
Cao et al. [50] provide a complete explanation of the water saturation curve by using the
findings of their experiments. The curve may be broken down into three stages: rapidly
increasing (between 1 and 28 h), moderately rising (between 28 and 91 h), and approaching
steady (between 91 and 140 h). After 118 h, there was no change in the water saturation
value, which indicated that the rock had reached its saturation point with a value of 3.113%.
The curve also displays the percentage of water present at 0 h (0%), 5 h (0.991%), 20 h
(2.136%), and 140 h (3.109%), respectively. In order to bring the data closer together, the
experimental values taken from each group but not representative of the average were
removed [50].

2.2. Experimental Equipment

Infrared (IR) cameras (Model FLIR A615 IR) were placed one meter away from the
rock samples, as shown in Figure 1. The IR camera can capture images at a resolution
of 640 × 480 pixels and a wavelength of 7.5~14 µm. Prior to being placed in the loading
machine, the rock samples’ ends were wrapped in plastic to prevent any end effects or heat
conductions. The loading rate of 0.1 mm/min and the fps IR imager capture rate of 25 were
kept constant throughout the studies.
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2.3. Mechanical Parameters
Elasticity Modulus

The intact rock elastic modulus (E) is the primary mechanical characteristic that
influences rock deformation and determines the slope of the stress–strain curve. Three
techniques may be used to compute it: average, tangent, and secant modulus [65]. In
this research, assuming that stress is a function of strain, the average modulus (E) was
employed. Equation (1) can be used to calculate the value of E.
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E =
Z(ε2)− Z(ε1)

ε2 − ε1
(1)

where Z(ε2) is peak stress, Z(ε1) is stress at the beginning of the elastic deformation stage,
ε2 is the strain at the peak stress point, and ε1 is the strain at the beginning of the elastic
deformation stage.

2.4. Index
2.4.1. Brittleness Index Base on Stress–Strain Curve

The stress–strain curves collected during the loading of rocks give a clear representa-
tion of their characteristics, making them very easy to analyze due to their intuitive nature.
Therefore, numerous brittleness indices have been developed, all of which are based on
the analysis of the structure and behavior of uniaxial and triaxial compressive stress–strain
curves. These indices aim to quantify the brittleness characteristics of rock materials and
provide valuable insights into their mechanical response under different loading condi-
tions. These curves provide beneficial insights into the behavior of rocks under various
loading scenarios and serve as a foundation for understanding the mechanical properties
of rocks. Therefore, the stress–strain curves acquired from rock loading play an essential
part in the construction of brittleness indices and provide an in-depth knowledge of rock
characteristics. These curves may be created by loading rocks with a variety of loads [8].
Indeed, stress–strain curves resulting from loading rocks are the most direct and intuitive
representations of rock properties. When considering uniaxial or triaxial compressive stress
conditions, various deformation, stress, and energy values extracted or derived from pre-
or post-peak stress–strain curves are frequently employed as indicators of rock brittleness.
These indicators provide valuable information about how rocks respond to loading and can
aid in assessing their propensity for brittle behavior. One of the most famous brittleness
indices was calculated by using ultimate strength and its corresponding strain value as
given in Equation (2) [21].

B1 =
σp

εp
(2)

where σp is peak stress and εp is peak strain.
Wang [66] conducted theoretical analysis and made preliminary calculations to es-

tablish a fundamental connection between the initial stress of brittle rock and brittleness
indices. These indices were based on the ratio between the rock’s compressive strength
and its tensile strength. Instead of factoring in the corresponding strain of the initial stress,
they simply used the initial stress value from the stress–strain curve to define brittleness
(B2–B4). However, this approach has led to conflicting outcomes compared to calculations-
based elastic modulus and energy consideration. Furthermore, the results obtained are
inconsistent and lack a smooth, continuous pattern. These indices are calculated by using
Equations (3)–(5).

B2 =
8σp

σi
(3)

B3 =
σiσp

16
(4)

B4 =

√
σiσp

16
(5)

where σi is crack initiation and σp is peak stress.

2.4.2. Infrared Radiation Variance (IRV)

The IR index means that IRV is frequently employed in the loading process for rock
fracture detection. This works out the spread of the IR temperature on the sample’s surface.
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Changes in surface temperature can be depicted by variance when the sample deforms and
damage. The IR image sequence matrix is determined using Equation (6).

IRVx =
1
R

I
C ∑C

t = 1 ∑R
s = 1[ fk (s, t)− AIRTx]

2 (6)

where x represents the image (IR) sequence frame number index, s represents row, and
t represents the thermograph matrix’s column. AIRTx in Equation (6) is represented as
Equation (7).

AIRTx =
1
R

I
C ∑C

t = 1 ∑R
s = 1 fx(s, t) (7)

where C and R are the maximum columns and rows.

2.5. Artificial Intelligent Techniques
2.5.1. Random Forest Algorithm

The standard Python package known as Scikit-learn (sometimes spelled sk-learn)
is used to build the random forest algorithm (RFR), also known as the random forest
learning algorithm. In the field of machine learning, RFR is categorized as an ensemble
approach that was first presented by [66]. Classification and regression analysis are two of
the applications that make use of this tree-based method. RFR generates trees by randomly
picking and replacing subsets of variables from the initial dataset. In this way, it successfully
incorporates both category and numerical information to handle difficulties relating to
prediction. Random forests include a feature called built-in cross-validation that allows
for ranking the relevance of the explanatory variables, which indicates the strength of
correlation that each component has with the outcome variable [67]. RFR is a method
that is often used in the discipline of rock engineering, specifically for predicting ground
movement, rock pillar stability, and landslides [13,48,68–70].

The request for proposal (RFP) typically incorporates two key components: the deci-
sion tree (DT) approach and the bagging technique. The DT approach is versatile and can
be utilized to address both classification and regression problems. However, the choice of
application depends on the characteristics of the dataset at hand. In order to prepare the
feature space for the DT method, it is first subdivided into several smaller parts. Iteratively,
the splitting is carried out up to the point when the stop threshold is reached [66].

DT is made up of three different parts: the internal, the external, and the branch.
The internal nodes are inextricably tied to decision-making skills to establish which node
should be contacted next. The terminals or leaf nodes are another name for the output
nodes that can no longer be split. In diverse geotechnical engineering scenarios, the DT
technique may be helpful and provide positive results. On the other hand, the RF method is
superior in terms of efficiency and precision to using a single tree in various data processing
applications. By outfitting control and averaging the DT, the reliability of the model may
be enhanced [71]. The regression model known as RF may be written down as [72].

P =
1
s ∑s

i = 1 Fi(Q) (8)

The input feature factor is denoted by Q, the prediction outcome is denoted by P,
and the number of regression trees generated is denoted by S. Figure 2 illustrates the
fundamental components that make up RF. In this context, “n” represents the total number
of trees constructed in an RF and “Result-1,” “Result-2,” up to “Result-n” represent the
outcomes of each individual decision tree (DT).
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2.5.2. KNN

The nearest neighbor machine learning methods make predictions based on the closest
data points in the training set. K-nearest neighbor (KNN) algorithm is a specific variant
that selects the k-closest neighbors to an input point and uses their labels or values to
make predictions. This algorithm is particularly efficient when dealing with large datasets
and low-dimensional feature spaces. However, it can become computationally expensive
in high-dimensional spaces due to the curse of dimensionality. KNN can be adapted to
different machine learning problems by adjusting the output function or distance metric
used to measure the similarity between data points. For instance, multi-label classification
can be accomplished by changing the KNN output function to assign labels based on the
most common labels among the K neighbors. Regression can be achieved by taking the
average or weighted average of the K nearest values. Semi-supervised learning can be
implemented using KNN to propagate labels from labeled to unlabeled data points based
on their proximity in the feature space [73].

The KNN approach is simple, effective, and easy to use. This technique is similar to
ANN and RFR for classification and regression [74]. The major aim of this technique is to
find a group of “k” samples close to the unidentified samples in the dataset (using distance
functions). Moreover, in KNN, unidentified samples are categorized by averaging their re-
sponses and interpreting the outcomes using the “k” samples [75]. The efficiency of KNN is
heavily reliant on the value of k. When addressing regression problems, Equations (9)–(11)
employ three distance functions to calculate the separation between neighboring points.

F(a) =

√
∑f

i = 0(ki − li)
2 (9)

F(mb) =

√
∑f

i = 0|ki − li| (10)

F(mc) =

(√
∑f

i = 0(|ki − li|)t
) 1

t
(11)

In the given context, the notation can be interpreted as follows:

• F(a) represents the Euclidean function, which calculates the distance between two points
using the Euclidean distance metric.
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• F(mb) represents the Manhattan function, which calculates the distance between
two points using the Manhattan distance metric.

• F(mc) represents the Minkowski function, which calculates the distance between
two points using the Minkowski distance metric. The specific value of t indicates the
order or power used in the Minkowski distance calculation.

• ki and li represent the respective coordinates or values of the ith dimension for points
k and l.

• t represents the order or power used in the Minkowski distance calculation.

2.5.3. Extreme Gradient Boosting

Extreme gradient boosting, or XGBoost, is an effective, adaptable, scalable, gradient-
boosted decision tree (GBDT) deep learning package. It was developed by Tianqi Chen and
Guestrin [76]. The XGBoost model’s structural details are shown in Figure 3.
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Figure 3. XGBoost model’s general structure.

It is better for the classification of large datasets according to their complexity or
priority required to attain a solution until the last step for obtaining the result. This method
provides a sequential manner for placing the tree in an algorithmic way, which gives the
advantage of reducing the overfitting of the data. This algorithm arranges the datasets in
such a way that each problem is ranked accordingly, and its associated tasks are shown
as a tree in parallel. A possible use of the XGBoost algorithm is to incorporate it into
machine learning because of its capability to take care of large datasets efficiently and
help recover the missing data as well. The main problems are classified accordingly. It is
based on the fact that when the best possible next model is combined with the previous
method, the prediction of the model to be analyzed at the end of the algorithm should have
minimum error. The machine learning concept employed in this algorithm is to set the
target outcomes for the next model in order to minimize the error. This method is carried
out from top to bottom until the combined result from each tree gives the correct outcome
efficiently [77].
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3. Results and Discussion
3.1. Data Statistical Analysis

In the current study, the parameters for the machine learning techniques include
variables consisting of time, IR, stress, and strain. The inputs, time, and variance of IR are
taken into consideration for the forecasting of stress and strain. The results of the statistical
analysis of the data for various water contents are represented in Table 1.

Table 1. Statistical analysis of variables.

Parameters Mean Standard
Deviation Minimum Median Maximum

Time 473.200 273.130 0.200 473.200 946.200
IR 0.010 0.008 0.000 0.008 0.028

Strain 0.010 0.000 0.000 0.010 0.010
Stress 20.430 18.163 0.005 15.518 55.053

Figure 4 shows the heat diagram, which indicates that the independent variable
strongly correlates with the dependent variable. It also reveals that the independent vari-
ables also have a very good correlation with each other, revealing that both the independent
variables are good at predicting the stress–strain curve.

Water 2024, 16, x FOR PEER REVIEW 9 of 31 
 

 

recover the missing data as well. The main problems are classified accordingly. It is based 
on the fact that when the best possible next model is combined with the previous method, 
the prediction of the model to be analyzed at the end of the algorithm should have mini-
mum error. The machine learning concept employed in this algorithm is to set the target 
outcomes for the next model in order to minimize the error. This method is carried out 
from top to bottom until the combined result from each tree gives the correct outcome 
efficiently [77].  

3. Results and Discussion  
3.1. Data Statistical Analysis 

In the current study, the parameters for the machine learning techniques include var-
iables consisting of time, IR, stress, and strain. The inputs, time, and variance of IR are 
taken into consideration for the forecasting of stress and strain. The results of the statistical 
analysis of the data for various water contents are represented in Table 1. 

Table 1. Statistical analysis of variables. 

Parameters Mean Standard 
Deviation 

Minimum Median Maximum 

Time 473.200 273.130 0.200 473.200 946.200 
IR 0.010 0.008 0.000 0.008 0.028 

Strain 0.010 0.000 0.000 0.010 0.010 
Stress 20.430 18.163 0.005 15.518 55.053 

Figure 4 shows the heat diagram, which indicates that the independent variable 
strongly correlates with the dependent variable. It also reveals that the independent vari-
ables also have a very good correlation with each other, revealing that both the independ-
ent variables are good at predicting the stress–strain curve. 

 
Figure 4. Heat map of dependent and independent variable. 

In this study, the data were split into 70% for training and 30% for testing. To analyze 
the distribution of each indicator, the data were scaled and normalized to a range of (0,1). 
This normalization process allows for a fair comparison of the data across different indi-
cators. The resulting boxplot in Figure 5 displays the distribution of each indicator. By 
observing the boxplots, it becomes evident that the data distributions vary across different 
indicators, confirming their independence. This highlights the importance of considering 
all input indicators collectively to enhance the accuracy of the analysis. Furthermore, it is 
worth noting that the distributions of the training and test sets for each input indicator 

Figure 4. Heat map of dependent and independent variable.

In this study, the data were split into 70% for training and 30% for testing. To analyze
the distribution of each indicator, the data were scaled and normalized to a range of
(0,1). This normalization process allows for a fair comparison of the data across different
indicators. The resulting boxplot in Figure 5 displays the distribution of each indicator. By
observing the boxplots, it becomes evident that the data distributions vary across different
indicators, confirming their independence. This highlights the importance of considering
all input indicators collectively to enhance the accuracy of the analysis. Furthermore, it
is worth noting that the distributions of the training and test sets for each input indicator
exhibit similarities. This similarity indirectly validates the random partitioning of the
data, further ensuring the reliability of the analysis. Figure 5a elucidates the data without
normalization, which shows that the data are dispersed in VIRT. Figure 5b replicates the
normalized data, which also reveals that the data consist of an outlier. Figure 5c shows the
normalized data without the outlier. The outlier in Figure 5c is removed and now the data
almost show a normal distribution.
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3.2. Effect of Water on Stress–Strain

The presence of water in rock masses substantially influences their susceptibility to
damage, resulting in a decrease in their mechanical properties [78]. This occurs due to
various factors, such as the weakening of interparticle bonds, chemical reactions, increased
pore pressure, and the promotion of microcrack growth. Consequently, the mechanical
qualities of the rock are negatively impacted, rendering it more vulnerable to deformation
and failure. As a direct result of this, the saturated rock that is subjected to stress evidences
a reduction in the amount of dissipation strain energy that is available for fracture processes
of water, whereas the crack closure and the unstable crack propagation stages increase.
Khan et al. [79] provide a description of the mechanical characteristics of stress–strain
curves in various water contents. They show that the peak stress, elastic modulus, crack
damage stress, and crack initiation stress are inversely proportional to the content of water
due to the lubricating effect of water, which accelerates the weakening effect of rock and
speeds up the pace at which tension is released. Table 2 presents the important mechanical
properties of sandstone for a range of different water concentrations. The result is consistent
with [79].

Table 2. Mechanical properties of different water-bearing sandstone specimens.

Samples
No.

Water Content
(%)

E
(GPa)

σp
(MPa)

ϵp
10−2

σi
(MPa)

σd
(MPa)

K-1 0.0000 10.1310 73.1210 1.2510 41.8100 63.3810
K-2 0.0000 9.8710 74.5810 0.9940 37.2300 62.2900
K-2 0.0000 9.4620 69.5520 0.8820 37.7410 57.1330
L-1 0.9710 8.7510 57.7910 1.0330 26.8200 44.1020
L-2 1.1350 8.9800 60.7720 1.1300 31.7500 42.4010
L-3 0.9910 9.3700 64.5310 1.2600 31.6000 49.6900
M-1 2.0750 7.2500 51.9230 1.1740 24.3320 38.4420
M-2 2.1360 7.9910 49.8420 1.2520 22.5500 34.9020
M-3 1.9540 7.8820 48.8930 1.1930 21.5600 33.7000
N-1 3.1090 5.8810 41.9710 1.1810 17.7910 28.1510
N-2 3.0040 5.4320 38.0320 1.2420 15.8500 28.1020
N-3 3.1130 4.8830 36.5710 1.2310 16.1800 26.3900

Note: E: elastic modulus, σp: peak stress; ϵp: peak strain, σi: crack initiation stress, σd: crack damage.

Initiation of Crack and Crack Damage Stress

To determine the stresses related to rock crack closure, crack initiation, and dilatancy,
the strain–stress and stiffness–stress curves were analyzed at different water concentrations.
By examining these curves, the stresses associated with each phenomenon can be calculated
and assessed. Samples with different water contents were subjected to uniaxial loading,
resulting in the generation of strain–stress and stiffness–stress curves. Figures 6 and 7
illustrate these curves, providing a visual representation of the response of the samples
under varying water content conditions [79]. These figures show strain–stress and stiffness–
stress curves, respectively. Point O is the origin of the initial loading point in the loading
process. These curves will grow to the point of intersection, known as the crack closure stage
(point A). The spot on the stiffness–stress curve where it reaches its maximum curvature is
referred to as the crack initiation point (B). This point is determined as a function of loading
time. The stage from A to B is known as the elastic deformation stage.
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Figure 6. Stress–strain curve: (a) different water content; (b) loading stages.
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Figure 7. Stiffness–stress and stress–strain curve of sandstone.

Point C on the stress–stiffness curve represents the maximum point where the curve
rises to its peak. At this point, there is a sharp decline in the curve, indicating the dilatancy
point. The stress level at this instance is referred to as the dilatancy stress.

The section from B to C represents the progressive growth stage of the crack. As the
loading continues, the curve reaches point D, which represents the maximum allowable
stress that the sample can withstand before failure.

At the CD stage, while the crack is still growing unstably, the sample may be heard
clearly. As the sound waves travel through the material, the tiny cracks grow, spread, and
eventually collide. Macrocracks appear; however, the loaded samples are still intact.
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3.3. Effect of Water Content on Rock Behaviors

Water is a significant factor in geological disasters that affect rock engineering because
it tends to collect in the small cracks and spaces within rocks. When water interacts with
rocks, it can lead to a range of physical, chemical, and mechanical changes that alter the
original internal structure of the rock [80]. As a result of water exposure, rocks may exhibit
varying degrees of reduced brittleness and strength compared to their dry state. The
extent of these changes can depend on factors that vary with rock type and the duration
and amount of water exposure [81]. Figure 8a shows the water content and brittleness
(B1) relationship. It reveals that there is a quadratic correlation between B1 and water
content. This relationship is inversely proportional, having a coefficient of determination of
R2 = 0.98. Figure 8b reveals a linear correlation between B2 and water content. The relation
is positive, which means that, with an increase in water content, the B2 value increases. This
means that the intensity of brittleness decreases when the B2 increases above 10. Figure 8c
shows a quadratic correlation between B3 and water content. This relationship is inversely
proportional, having a coefficient of determination of R2 = 0.99. Similarly, B4 shows a
quadratic correlation between B3 and water content, having a coefficient of determination
of R2 = 0.98 as shown in Figure 8d. Mathematically, all relationships of B1, B2, B3, and B4
with water can be calculated using Equations (12)–(15), respectively.

B1= 75.85 − 23.46 x + 3.04 x2 R2 = 0.98 (12)

B2= 14.843 − 1.264 x R2 = 0.84 (13)

B3= 169.229− 44.002 x + 1.972 x2 R2 = 0.99 (14)

B4= 13.268 − 2.493 x + 0.081 x2 R2 = 0.98 (15)

where x is water content.
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Figure 8. Relationship of different brittleness indices and water content: (a) B1; (b) B2; (c) B3; and
(d) B4.
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Figure 9a shows the elastic modulus and brittleness (B1, B2, B3, and B4) relationship.
This reveals that there is a positive exponential linear correlation between B1 and elastic
modulus, having a coefficient of determination of R2 = 0.86. Figure 9b reveals a negative
exponential linear correlation between B2 and elastic modulus, having a coefficient of
determination of R2 = 0.86. The relation is inverse, which means that with an increase in
water content, the B2 value decreases. This means that the intensity of brittleness decreases
when B2 increases above 10. Figure 9c shows a positive exponential linear correlation
between B3 and elastic modulus, having a coefficient of determination of R2 = 0.97. Similarly,
B4 shows a positive exponential linear correlation between B3 and elastic modulus, having
a coefficient of determination of R2 = 0.97 as shown in Figure 9d. Mathematically, all
relationships of B1, B2, B3, and B4 with elastic modulus under different water contents can
be calculated using Equations (16)–(19), respectively.

B1= e
E

2.252 −0.721E + 28.676 R2 = 0.86 (16)

B2= 12.882+5.889e
−2(E−5.845)2

30.969 R2 = 0.86 (17)

B3= 0.881e
E

1.912 − 1.326E + 32.916 R2 = 0.97 (18)

B4= 0.103e
E

2.336 − 0.172E + 4.389 R2 = 0.97 (19)
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Figure 9. Relationship of different brittleness indices and elastic modulus: (a) B1; (b) B2; (c) B3; and
(d) B4.
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Figure 10a shows the crack initiation stress and brittleness (B1, B2, B3, and B4) rela-
tionship. This reveals that there is a positive exponential linear correlation between B1
and crack initiation stress, having a coefficient of determination of R2 = 0.92. Figure 10b
reveals a negative exponential linear correlation between B2 and crack initiation stress,
having a coefficient of determination of R2 = 0.90. The relation is inverse to brittleness
intensity, which means that, with an increase in water content, the B2 value increases.
This means that the intensity of brittleness decreases when the B2 increases above 10.
Figure 10c shows a positive exponential linear correlation between B3 and crack initiation
stress, having a coefficient of determination of R2 = 0.99. Similarly, B4 shows a positive
exponential linear correlation between B3 and elastic modulus, having a coefficient of
determination of R2 = 0.99 as shown in Figure 10d. Mathematically, all relationships of B1,
B2, B3, and B4 with crack initiation stress under different water contents can be calculated
using Equations (20)–(23), respectively.

B1= 4850.054 − 4850.447 × e−3.927σi R2 = 0.92 (20)

B2= 4.235e−
σi

18.298 − 0.123σi+19.060 R2 = 0.90 (21)

B3= 4768.010e
σi

120.674 − 1.979σi − 808.706 R2 = 0.99 (22)

B4 = −0.581e
σi

20.465 + 0.424σi+0.610 R2 = 0.99 (23)
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Figure 10. Relationship of different brittleness indices and crack initiation stress: (a) B1; (b) B2; (c) B3;
and (d) B4.
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Figure 11a shows the crack damage stress and brittleness (B1, B2, B3, and B4) relation-
ship. This reveals that there is a positive exponential linear correlation between B1 and
crack initiation stress, having a coefficient of determination of R2 = 0.94. Figure 11b reveals
a negative exponential linear correlation between B2 and crack initiation stress, having a
coefficient of determination of R2 = 0.82. The relation is inverse, which means that, with an
increase in water content, the B2 value increases. This means that the intensity of brittleness
decreases when B2 increases above 15. Figure 11c shows a positive exponential linear
correlation between B3 and crack initiation stress, having a coefficient of determination
of R2 = 0.98. Similarly, B4 shows a positive exponential linear correlation between B3 and
elastic modulus, having a coefficient of determination of R2 = 0.98 as shown in Figure 11d.
Mathematically, all relationships of B1, B2, B3, and B4 with crack initiation stress under
different water contents can be calculated using Equations (24)–(27), respectively.

B1 = 0.230e
σc

1.845 + 1.274σc − 3.382 R2 = 0.94 (24)

B2 = 645.163e−
σc

1.845 + 1.503σc − 619.251 R2 = 0.82 (25)

B3 = 2.365e
σc

5.637 + 4.055σc − 72.840 R2 = 0.98 (26)

B4 = 0.852e
σc

1.166 + 0.203σc − 0.252 R2 = 0.98 (27)
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The above relationships between brittleness and indices and crack initiation, crack
damage, and elastic modulus show a high coefficient of determination, with an average
above 0.82. The presence of water directly affects the brittleness (reduces the brittleness
by 41% (average)) of rocks, as well as their mechanical properties, such as strength, elastic
modulus, crack initiation, and damage. Inverse relationships exist between the water
content and these mechanical properties. It can be concluded that rocks with a higher water
content exhibit lower brittleness compared to dry conditions, resulting in a decreased rock
strength and elastic modulus.

Furthermore, the stages of rock loading play a significant role in rock brittleness.
Higher rock brittleness corresponds to less crack closure and a stable crack propagation
stage, while elastic and unstable crack propagation stages become more prominent. Con-
versely, lower rock brittleness is associated with increased crack closure and stable crack
propagation. These relationships are illustrated in Figure 5.

3.4. Proposed Brittleness Index under Stress–Strain Condition

The content of water has a considerable impact on the proportional strain and stress at
several stress–strain curve phases, including elastic deformation, crack closure, and stable
and unstable crack prorogations. This water content leads to a proportional increase in
strain and decrease in stress at different stages. Different authors used different brittle-
ness indices for different materials and conditions, as summarized by Meng, Wong, and
Zhou [19]. In this study, the authors proposed an index considering crack initial stress,
crack damage stress, and peak stress. In water content conditions, crack initiation and
damage and peak stress are reduced with water content. Moreover, this is not propor-
tionally decreased with water content. Therefore, a brittleness index that can consider
these three kinds of stresses under different conditions of water content and reflect the
brittleness of rock under water content conditions is important for avoiding rock burst in
deep underground mining. The brittleness of rock under water conditions is reduced, and
its impact is less pronounced compared to dry conditions. Consequently, in highly brittle
rock formations, increased water content diminishes the rock’s brittleness and concurrently
mitigates the occurrence of rockburst phenomena. Previous studies have not adequately
accounted for the influence of water content on the effectiveness of brittleness. The pro-
posed brittleness index takes into account all three stress (crack initial stress, crack damage
stress, and peak stress) affected by varying water contents. It can be calculated by using
Equation (28).

BIDP =
1

1000σi
× Eσpσd (28)

where BIDP is the brittleness index, σd is crack damage stress, σi represents crack initiation
stress, and peak stress is represented by σp.

Figure 12 shows the proposed brittleness (BIDP) and previous brittleness (B1, B2, B3,
and B4) relationship, which reveals a strong linear correlation (R2 = 0.87) with B1, B3, and B4
and weak negative linear correlation (R2 = 0.61) with B2. The coefficient of determination
of the proposed BIDP and previous brittleness indices B1, B3, and B4 is greater than 0.80,
so this can be used in engineering [82]. The details of the intensity of brittleness for the
proposed index are given in Table 3.

Table 3. Brittleness intensity range for proposed index.

Indices

Intensity of Brittleness
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Figure 12. Relationship between proposed and existing brittleness index. (a) B1; (b) B2; (c) B3; and
(d) B4.

Table 4 reveals the intensity of different brittleness indices with the proposed index. It
shows that the existing index B1 gives a brittleness intensity grade that is extremely high in
water content, which does not reflect the true picture of the brittleness of rock in the current
study. Similarly, B2, B3, and B4 do not reflect the actual condition of the rock brittleness
under loading in different water contents, whereas these indices represent some brittleness
better than B1. The difference in the actual and calculated brittleness is due to a leak of
some parameters that are strongly affected by water content that are missing in B1, B2,
B3, and B4 indices. In the proposed brittleness BIDP, the overall mechanical parameter is
considered, which truly reflects the actual brittleness condition.

Table 4. Intensity comparison of proposed and existing brittleness indices.

Samples Water
Content Previous Brittleness Indices Proposed Brittleness

Indices

No. B1 Grade B2 B3 B4 Grade BIDP Grade

K-1 0.0000 58.4960 Extremely 13.9911 191.0743 13.8230 Moderate 110.8463 Extremely
K-2 0.0000 75.3330 Extremely 16.0260 173.5407 13.1735 Moderate 124.7824 Extremely
K-2 0.0000 79.0340 Extremely 14.7430 164.0601 12.8086 Moderate 105.2891 Extremely
L-1 0.9710 56.1070 Extremely 16.0419 104.0960 10.2027 Moderate 88.4351 Moderate
L-2 1.1350 53.7790 Extremely 15.3126 120.5944 10.9815 Moderate 81.1589 Moderate
L-3 0.9910 51.2140 Extremely 16.3370 127.4487 11.2893 Moderate 99.4308 High
M-1 2.0750 44.3760 Extremely 17.0715 78.9619 8.8861 Brittle 82.0329 Moderate
M-2 2.1360 39.8720 High 17.6823 70.2461 8.3813 Brittle 77.1435 Low
M-3 1.9540 41.0840 Extremely 18.1421 65.8833 8.1169 Brittle 76.4237 Low
N-1 3.1090 35.5680 Extremely 18.8729 46.6691 6.8315 Brittle 66.4114 Low
N-2 3.0040 30.6690 Extrmely 19.1960 37.6755 6.1380 Brittle 67.4306 Low
N-3 3.1130 29.7310 Brittle 18.0821 36.9824 6.0813 Brittle 59.6483 Low
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3.5. Brittleness Index Using IRV under Different Water Conditions

Figure 13 reveals the relationship between brittleness and ∆IRV. It shows that the
brittleness and ∆IRV have a negative quadratic relationship with R2 = 0.90 in different
water contents. The fitting function for brittleness and ∆IRV is as follows:

∆IRV= 92.58 −1.27 B (29)

where B is brittleness.
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The generalized equation between brittleness and IRV is

∆IRV= c − aB (30)

where c and a are constant
B =

−∆IRV
a

+
c
a

(31)

where 1/a represents the brittleness infrared radiation coefficient (BIRC) and c
a is the

brittleness constant. The rock brittleness is inversely proportional to the BIRC and directly
proportional to the brittleness constant.

3.6. IRV Characteristic under Stress–Strain Curve Stages

Ma et al. [62] explain the behavior of IRV with stress, as shown in Figure 14. It was
found that the IRV characteristic changed depending on the amount of water present at
various fracture stages. At fracture closure and during deformation, stable, and unstable
crack propagations, the rate of IRV is determined. In dry conditions, their respective values
are 0.0018, 0.0034, 0.0035, and 0.0048, with the latter being the lowest of the four. Similarly,
these values are 0.01265, 0.01433, 0.02223, and 0.02846 under water content conditions.
Additionally, Figure 14 illustrates a clear linear association between stress and IRV. This
relationship appears to be more pronounced in water-saturated conditions compared to
dry conditions. The presence of water enhances the IRV due to an increased water content.
The authors also inferred that an increase in water content leads to a reduction in rock
brittleness. This implies a negative linear correlation between IRV and brittleness, where
higher rock brittleness corresponds to lower IRV, and vice versa.
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Figure 14. IRV and stress for different water content: (a) dry; (b–d) saturated.

According to Khan, Ma, Cao, Hussain, Liu, Xu, Yuan, and Gu [79], stress decreases as
water content rises. They explained that whereas the matching IRV has a positive quadratic
association with water, the stress at fracture initiation and damage exhibits a negative
linear relationship (decreasing). This behavior is brought about via water lubrication,
which also causes an increase in fracture damage stress while reducing the rate of crack
initiation stress.

3.7. Prediction Models
3.7.1. Regression Models

In this study, machine learning algorithms such as KNN, RFR, and XGBoost were em-
ployed using the Python Scikit-Learn package. The data were preprocessed by normalizing
it to a standard scale before being divided into training and testing sets in a 70–30 split, as
shown in Figure 15. During the testing phase, the hyperparameters of each model were
adjusted to identify the optimal settings. For RFR and XGBoost, the hyperparameters
“n_estimators” (representing the number of decision trees in the model) and “max_depth”
(representing the maximum depth of each decision tree) were fine-tuned. In the case of
KNN, the “number of neighbors” hyperparameter was adjusted to determine the optimal
number of neighbors for the averaging process during forecasting. To find the optimal
hyperparameters, a grid search method was utilized, aiming to achieve the highest accuracy
while minimizing computational cost [83].

In the grid search method, prospective values for each hyperparameter are exhaus-
tively investigated throughout a broad range, and then the optimal combination of those
values is chosen as the method for achieving the desired results. When dealing with large
datasets, the computational cost of exploring a wide range of hyperparameter settings can
be substantial. However, the primary focus is to enhance the reliability of the results. To
identify a feasible range of hyperparameter values, each parameter varies at different levels
while keeping the other parameters constant. The optimal values for the hyperparame-
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ters of each model are presented in Table 5, which was compiled using grid search. In
Figure 16, a comparison is provided between the actual stress–strain data and the predicted
stress–strain derived from the model trained with the optimal parameters. This allows
for an evaluation of the model’s performance in capturing the observed behavior of the
stress–strain relationship.
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Table 5. Optimized hyperparameters of all techniques.

Output Model Parameters

Stress,
Strain

RF n_estimator = 30, max_depth = 13, random state = 42
KNN n_neighbors = 3, metric = Minkowski

XG Boost n_estimator = 100, reg_ lambda = 1, max_depth = 3, random state = 10

3.7.2. Performance of Models

The performance of each model was assessed using four different performance indica-
tors: coefficient of determination (R2), root mean square error (RMSE), mean square error
(MSE), and mean absolute error (MAE). The optimum word for the model is used when the
R2 and RMSE values are maximum and minimum, respectively. The details of each model
during the training and testing properties phase are described in Table 6. Based on the
optimum value of R2 and RMSE, the models were reflected through a radar plot as shown
in Figure 17, whereas the proposed brittleness index’s actual and predicted values are
shown in Figure 18. It can be seen from Figure 18 that the RF and XGBoost predicted values
coincide with the actual value, while KNN is near to the actual values but does not coincide
with actual values. Between RF and XGBoost, RF is more efficient in the prediction of the
brittleness index compared to XGBoost. The models were ranked based on performance
indicators as RF > XGBoost > KNN.
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Figure 16. Actual and predicted stress–strain curve in different water content conditions: (a) dry;
(b) 0.971%; (c) 2.075%; (d) 3.109%.

Table 6. Model efficiency during training and testing.

S.no Models
Accuracy (Training) Accuracy (Testing)

R2 MAE MSE RMSE R2 MAE MSE RMSE

1 XGBoost
Regressor 0.998 0.193 0.146 0.382 0.999 0.193 0.147 0.383

2 RF 0.999 0.142 0.078 0.279 0.999 0.164 0.069 0.262
3 KNN 0.853 6.195 60.961 7.807 0.853 6.201 61.017 7.811
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Figure 18. Actual and predicted values of brittleness for different models.

RF and XGBoost exhibited notably higher accuracy compared to KNN due to several
factors. Firstly, RF and XGBoost are ensemble methods that leverage multiple decision
trees. They handle complex relationships within the data more effectively by constructing
numerous trees and combining their predictions, resulting in superior predictive power.
This ensemble nature allows them to capture intricate patterns and nuances present in
the dataset, contributing to their higher accuracy. Additionally, RF and XGBoost are less
sensitive to noise and outliers compared to KNN, which can be influenced by irrelevant
or redundant features. Moreover, both RF and XGBoost have mechanisms to reduce
overfitting by using methods like bagging and boosting, respectively, while KNN can be
prone to overfitting due to its reliance on nearby data points. KNN, on the other hand,
relies on the proximity of data points for predictions, making it more susceptible to noisy
or irrelevant features. It performs well with smaller datasets but struggles when faced
with larger datasets or those containing less relevant information. Furthermore, KNN’s
prediction accuracy heavily depends on the chosen value of ‘k’ (the number of nearest
neighbors), which might not always be optimal for the dataset, leading to reduced accuracy
in certain scenarios. The performance indicators were calculated using Equations (32)–(35).

R2 =
∑n

i = 1 (k i)
2 − ∑n

i = 1 (k i−l′i
)2

∑n
i = 1 (k i)

2 (32)

RMSE =

√
∑n

i = 1 (k i−l′i
)

n
(33)

MSE =
∑n

i = 1 (k i−l′i
)

n
(34)

MAE =
∑n

i = 1
∣∣ (k i−l′i

)∣∣
n

(35)

The value of the actual data point is represented by k, the value of the predicted data
point is represented by l′, and n shows the total number of points.

The RF model emerges as a robust predictor of the brittleness index, showcasing
superior efficiency by closely aligning with actual values and securing the highest rank
based on performance indicators. Its capacity to handle large datasets while minimizing
overfitting underscores its strength, although computational demands and interpretability
challenges persist. KNN demonstrates simplicity and adaptability for smaller datasets,
approximating actual values moderately well; however, sensitivity to the k-value and
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susceptibility to irrelevant features pose limitations. Gradient boosting (XGboost) secures
a noteworthy position in performance but demands meticulous tuning, risks overfitting,
and may not be optimal for real-time applications or extensive datasets. These models
exhibit varying strengths and limitations in predicting the brittleness index, warranting
consideration of their trade-offs in different analytical contexts.

3.7.3. Models Strength and Limitation

Random forest (RF) showcases robustness in handling vast datasets and features,
minimizing overfitting through ensemble learning from multiple decision trees. Its ability
to estimate feature importance aids in effective variable selection. However, RF might
demand substantial computational resources during training and inference, particularly
with extensive trees, and could falter when confronted with noisy data or outliers, thereby
compromising result interpretability due to its ensemble nature.

K-nearest neighbor (KNN) offers simplicity and adaptability, making it suitable for
smaller datasets without a training phase. However, KNN’s reliance on relevant features
poses a challenge, as it might be sensitive to redundant or irrelevant inputs. Additionally,
the choice of the k-value significantly impacts performance, and its computational expense
escalates with larger datasets during prediction phases.

Gradient boosting (GBoost) exhibits superior predictive prowess by sequentially
training weak learners, effectively capturing complex data relationships. Yet, GBoost
demands meticulous hyperparameter tuning and can overfit with excessive iterations. Its
complexity can hinder interpretability while requiring substantial computational resources
for optimization, posing challenges in real-time applications.

3.8. Significance of the Research Study

Rock burst and its intensity depends upon the brittleness of elastic strain energy. A
higher elastic strain energy contributes greatly to rock bursts. The literature revealed
various methods that were adopted for rock burst relieving, i.e., rock drilling, blasting,
and water injection. Water content is one of the most reliable and successful methods that
are used to reduce brittleness and, ultimately, rock burst. Water significantly influences
the mechanical properties of sandstone through multiple mechanisms. It alters the rock’s
porosity and permeability by infiltrating pores, potentially changing its volume, density,
and compressibility. Additionally, water weakens intergranular bonds and cements within
the rock, especially those composed of minerals like clay or calcite, reducing cohesive forces
between grains and compromising overall strength. Pore fluid pressure induced by water
acts as a lubricant between grains, modifying stress distribution and potentially impacting
the rock’s strength and deformation behavior. Moreover, water serves as a primary agent of
physical weathering, initiating processes like freeze–thaw cycles that lead to microfractures
and the eventual breakdown of sandstone. Chemically, water can induce the dissolution of
certain minerals in the rock, altering its composition and further affecting its mechanical
properties. Understanding these complex interactions between water and sandstone is
pivotal for comprehending how moisture content directly influences the rock’s mechanical
behavior, encompassing its strength, deformability, and susceptibility to weathering and
degradation [79].

Previously, brittleness was determined by different authors in different ways. In the
stress–strain curve, the most successful index used widely is the ratio of strength and
strain at the ultimate strength point [23]. This ratio is successful in dry conditions but
it is not reliable in dry conditions. In water content conditions, the loading stages affect
and ultimately reduce the crack initiation and dilatancy point (crack damage) stress. This
also reduces the rock brittleness and, eventually, the rock burst intensity. Therefore, it
is essential to consider a brittleness index that considers the ratio of dilatancy and crack
initiation stress.

In situ stress is an essential characteristic that may lead to rock slack, rock bursts, and
rock deformation, which are critical in applications of rock mechanics and underground
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engineering construction [84]. It is possible to evaluate the in situ stresses through field
measurements or numerical modeling simulations. Several methods, such as hydraulic
fracturing, stress relief, flat jacking, borehole breakout, drilling-induced tensile fracture,
acoustic emission, strain recover, differential strain curve analysis, and geophysical meth-
ods, have been developed in order to determine in situ stresses in a variety of geological
conditions at a particular location [84]. These methods can be used to determine in situ
stresses. In borehole projects, the methods of hydraulic fracturing and stress relief with
over-coring are the most common approaches that are used for in situ stress measurement.
Rocks that surround deeply underground tunnels may be significantly damaged or de-
formed due to the presence of in situ stress, which can have a substantial influence. It not
only impacts the steadiness of the rock masses that surround the tunnel but it also functions
as a load that can potentially cause deformation and damage to the tunnel itself. As a result,
determining the regional in situ stress characteristics is required in order to conduct an
analysis of the rock mass stability in the surrounding area, construct underground projects,
and make judgments based on scientific evidence [85].

The previously mentioned methods are intact methods of in situ stress. These methods
sometimes give errors and lead to misleading results. This error is due to disturbance
caused by blasting or machine vibration onsite. To avoid this error, a new instrument is
introduced that is known as infrared radiation technology. The benefit of this technology is
non-contact and reliable results under mechanical vibration. The infrared radiation (IR)
technology is under a trial version and extends from the laboratory to real-time monitoring
on the field side.

This paper introduces a novel stress–strain-curve-dependent brittleness index concept.
By employing AI techniques that utilize the IR index (VIRT data as input), it is possible to
predict the stress–strain curve. These data allow for an estimation of brittleness that exhibits
a strong correlation (over 95%) with stress–strain curves obtained through laboratory
testing [50]. Practically, the applications of this study are as follows: (1) Predictive Analysis:
Engineers and researchers in fields related to rock engineering can utilize this approach
to forecast stress–strain behavior without extensive laboratory testing. This predictive
capability enables better planning and design of structures. (2) Risk Assessment: In
industries involving mining, underground construction, or infrastructure development
in rock, the ability to estimate brittleness through predictive models allows for proactive
risk assessment. It helps in identifying potential failure points or weaknesses in materials,
thereby enhancing safety measures. (3) Efficient Resource Utilization: The predictive
nature of the model aids in optimizing resources by reducing the need for expensive and
time-consuming laboratory experiments. This efficiency translates into cost savings and
faster decision-making processes. (4) Structural Design: Engineers can use this approach in
designing materials and structures that require specific brittleness characteristics, tailoring
them for optimal performance under varying conditions. (5) Real-time Monitoring: If
integrated into monitoring systems, these predictive models could offer real-time insights
into material behavior. This application is particularly useful in scenarios where the
continuous monitoring of structural integrity is crucial [17,86–89].

This study, conducted on sandstone with varying water content, formulated a brittle-
ness index tailored to this specific condition. In the future, research will extend to different
kinds of rocks, e.g., silt, granite, marble, mudstone, etc., subjected to different loading
conditions, varying water content, high temperature, and freeze–thaw cycles. Potential
avenues for future exploration include refining predictive models for enhanced accuracy,
investigating long-term material behavior prediction, developing real-time monitoring
systems, incorporating environmental factors into brittleness assessment, validating and
standardizing the developed methodologies, fostering interdisciplinary collaborations, and
exploring new measurement techniques. Addressing these research paths aims to advance
material characterization, predictive modeling, and structural safety while broadening the
applicability of these findings across different materials and conditions.
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4. Conclusions

This research study examined the impact of varying water content on sandstone
when subjected to uniaxial loading while incorporating infrared (IR) technology. The
study assessed how water content influenced the brittleness of the rock and introduced
a novel brittleness index tailored for situations where high stress and water interaction
are prevalent, such as in deep underground coal mining. This newly proposed index
underwent a comparison with existing brittleness indices, and it was further predicted
using various AI algorithms. The key findings of this study are as follows:

1. Water content significantly influences the mechanical properties and brittleness of
rocks. Studies indicate that, upon exposure to water, rocks experience a 41% reduction
in brittleness, which lowers the likelihood of rock burst incidents. However, this
interaction also compromises rock strength, increasing the risk of rock failure due to
decreased overall strength.

2. The brittleness indices such as B1, B2, and B4 show a positive linear exponential
correlation, whereas B2 shows a poor negative linear exponential correlation with
crack initiation, elastic modulus, and crack damage stress. The proposed brittleness
index BIDP has a high linear correlation (R2 > 0.88) with B1, B2, and B4 and a poor
negative linear correlation (R2 > 0.88) with B2. Therefore, the proposed index has
high significance.

3. The proposed brittleness considered elastic modulus, crack initiation, crack damage,
and peak stress under different water contents, which truly reflected the brittleness
intensity. The intensity decreases linearly exponentially (R2 > 0.90) in the presence of
water content.

4. During the peak stress phase, the rate of IRV rises in the presence of water but declines
when the rock’s brittleness decreases. This implies that water presence impacts the
IRV rate, while the rock’s brittleness affects its overall performance.

5. To predict the proposed index, three different models, namely XGBoost, RF, and
KNN, were utilized. By comparing their performance, it was found that both RF and
XGBoost exhibit high prediction accuracy. Specifically, the RF model achieved an
impressive R2 value of 0.999, along with low values for RMSE (0.383), MSE (0.007),
and MAE (0.002). Therefore, the RF model is recommended to be used effectively in
the prediction of rock brittleness.

6. These research findings establish a solid theoretical foundation for evaluating rock
brittleness and predicting rock burst susceptibility. The incorporation of water con-
ditions and the proposed index offer valuable insights for effectively assessing and
mitigating the risks associated with rock burst incidents. These findings open up
new avenues for further discussions and exploration in this field, paving the way for
innovative approaches to rock burst prevention and management.
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