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Abstract: Eutrophication is prevalent in urban lakes; however, a knowledge gap exists regarding
eutrophication influences on carbon dynamics in these ecosystems. In the present study, we inves-
tigated the carbon dioxide (CO,) and methane (CHy4) concentration and diffusion fluxes in Lake
Tangxun (the largest shallow Chinese urban lake) in the autumn and winter of 2022 and spring and
summer of 2023. We found that Lake Tangxun served as a source of GHGs, with average emission
rates of 5.52 + 12.16 mmol CO, m~2d-! and 0.83 &+ 2.81 mmol CHy m~2d-1, respectively. The
partial pressure of dissolved CO; (pCO;) (averaging 1321.39 £ 1614.63 patm) and dissolved CHy
(dCHy) (averaging 4.29 + 13.71 umol L~!) exceeded saturation levels. Seasonal variability was
observed in the pCO, and dCH,4 as well as CHy fluxes, while the CO, flux remained constant. The
mean pCO, and dCHy, as well as carbon emissions, were generally higher in summer and spring.
pCO, and dCH} levels were significantly related to total nitrogen (TN), total phosphorus (TP), and
ammonium-nitrogen (N-NH;*), and N-NH4" was a main influencing factor of pCO, and dCHy in
urban eutrophic lakes. The positive relationships of pCO,, dCH4 and trophic state index highlighted
that eutrophication could elevate CO, and CH, emissions from the lake. This study highlights the
fact that eutrophication can significantly increase carbon emissions in shallow urban lakes and that
urban lakes are substantial contributors to the global carbon budget.
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1. Introduction

Lakes are an important component of inland water ecosystems and also hotspots of
greenhouse gas (GHG), i.e., CO, and CHy, release due to their high productivity and the
exchange of material, energy, and information with terrestrial ecosystems [1-5]. Lacustrine
CO, emission range from 0.11-0.57 Pg C yr’1 [1,2,6,7]; likewise, lacustrine CH4 evasion
estimates vary even more widely, from 6 to 185 Tg CHy yr’1 [8-11]. These research efforts
underscore lakes as focal points for global carbon and CH, budgets, urging the need for
meticulous investigation of lakes as a significant carbon source.

Urban lakes (normally with a mean depth of less than 3 m) are commonly shal-
low [12,13] and are indispensable components of landscape features and urban living
environments [14,15]. Urban lakes have a vulnerability to a host of anthropogenic and
environmental pressures and possess a poor capacity for self-purification [16]. Human ac-
tivities, for instance, discharges of wastewater, can enhance loadings of organic carbon and
nutrients in urban lakes, which can stimulate mineralization and thus promote methano-
genesis [17]. Conversely, a surfeit of nutrients also enhances primary production, thereby
increasing a lake’s carbon sequestration capacity, and thus concurrently curtailing CO,
emissions [18,19]. Beyond nutrients, environmental factors such as wind and temperature
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also clearly affect urban lakes. Wind-induced turbulence, for instance, can reduce stratifi-
cation and mitigate hypoxic conditions, thereby augmenting benthic oxygen availability
and restraining CHy production, resulting in reduced CHy4 emissions and increasing CO,
emissions [20,21]. Temperature, however, plays a multifaceted role, fostering primary
production, which in turn can reduce CO; production [18,19]. However, studies exploring
the characteristics and influencing factors of GHG emissions from urban lakes remain
relatively scarce in the literature [22-24].

Eutrophication occurs widely in lakes and exerts a pivotal role in regulating GHG
emissions from lakes [19,25,26]. It is worth noting that anthropogenic eutrophication is a
predominant driver of lake eutrophication [27]. Studies have shown that eutrophic lakes
can substantially enhance CHy4 production and emission [28,29]; however, the findings
regarding CO, production and emission in eutrophic lakes are divergent. Some studies
have demonstrated CO, emissions from eutrophic lakes to the atmosphere [25], yet oth-
ers have reported a decrease in CO, emissions [19] or even a net CO, uptake from the
atmosphere [30]. Notwithstanding the efforts made, the intricate web of CO, and CHy pro-
duction and emission in response to lake eutrophication remains enigmatic and warrants
further investigation. This knowledge gap represents the exigency for in-depth study to
disentangle the nuances governing carbon in eutrophic lakes. As such, carbon exchange at
the air-water interface, especially in eutrophic urban lakes, is an urgent imperative.

In the study, we used Lake Tangxun, the largest shallow urban lake located in a
subtropical region, as an example to delve into the GHG dynamics of a eutrophic lake. The
overarching objectives of our research endeavors were to (1) unravel the seasonal variation
and driving factors in both the concentrations and fluxes of CO, and CHy; (2) elucidate
the profound effects of eutrophication on GHG dynamics in a shallow urban lake. We
tested the hypotheses that (1) key drivers of seasonal fluctuations in GHGs concentrations
and fluxes are variable, and (2) eutrophication considerably shapes the behavior of CO,
and CHy in this specific lake ecosystem. The study aims to enhance our comprehension of
GHG emissions in eutrophic shallow urban lakes, shedding light on informing effective
mitigation strategy and management practice of lake carbon evasion, particularly within
the context of escalating urbanization and its associated environmental challenges.

2. Materials and Methods
2.1. Study Area

Lake Tangxun (30°22'-30°30" N, 114°15'-114°35' E) is the largest Chinese urban lake.
It lies in Wuhan, Hubei Province. Lake Tangxun includes an inner lake in the east, making
up 33% of the total area, and an outer lake in the west (Figure 1). The water surface
area and average depth of Lake Tangxun are 47.6 km? and 1.85 m, respectively [31,32].
Situated within a subtropical climatic zone, the lake is ice-free during winter months. The
annual mean temperature and precipitation in the area are 18.3 °C (ranged —6-38 °C) and
1057.3 mm, respectively (Figure S1). The development of industry in the catchment area is a
trajectory representing the onset of eutrophication in 1996 [31]. This evolution underscores
the intricate interplay between urbanization environmental shifts, rendering Lake Tangxun
a compelling natural laboratory for understanding eutrophication and its implications.
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Figure 1. Locations and study sites of the Lake Tangxun (a-c). Numbers 1-20 are sampling sites.

2.2. Sample Collection and Measurements

Field sampling and surveys of Lake Tangxun were diligently executed in October 2022
and February, April, and June 2023. These temporal selections align with autumn, winter,
spring, and summer, respectively. Twenty strategically designated sampling sites were
meticulously selected in Lake Tangxun (Figure 1). This ensures the representativeness of
our data collection. Site 1 is an aquaculture pond. Sites 2-3, 9-12, 15-18, and 20 are located
near the sewage outlet; meanwhile, sites 9, 12, and 16 are the non-point source pollution
catchments, and site 15 is in a village. Sites 4-8 and 19 are in Wetland Park. Sites 13 and 14
are campsites; additionally, site 14 also exists within a small amount of cropland. There is
no seasonal variation in wastewater discharge, while rainfall runoff experiences seasonal
variations [33]. It is noteworthy that no extreme hydrometeorological events were recorded
during each sampling campaign, and the sampling as a whole represented the prevailing
climatic and hydrological conditions in the region.

A Multi-Parameter Meter (Thermo Fisher Eutech, Singapore) was used to record the
in situ surface water temperature (Tw), pH, electrical conductivity (EC) and dissolved
oxygen (DO), with accuracies of £0.5 °C, £0.002 pH units, +1.0% and £2.0%, respectively.
A TES-1341 hot-wire anemometer (TES Corp., Taiwan, China) meter was used to record
ambient temperature (T,) and wind speed (U) about 1 m above overlying water, and a
pressure probe recorded air pressure. Water samples (0.1-0.3 m beneath water surface)
were gathered using a 2.5 L plexiglass hydrophore. Subsequently, water samples were
filtered with pre-burnt glass fiber filter (0.7 um pore size, Whatman, Maidstone, UK), and
the filter membranes were used to measure chlorophyll a (Chl-a) via acetone extraction.
Transparency (SD) was measured with a Secchi disk. All samples were placed in ice boxes
in field and promptly preserved in refrigerators or subjected to freezing after reaching
the lab.

Ultraviolet spectrophotometry (UV-8000, Shanghai Yuanxi Instrument Co., Ltd., Shang-
hai, China) can be applied to measure nutrient concentrations, including total nitrogen (TN),
total phosphorus (TP), ammonium-nitrogen (N-NH,*), and nitrate-nitrogen (N-NO3z ™)
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(https:/ /www.sac.gov.cn//, accessed on 1 November 2022). A TOC analyzer (Shimadzu,
TOC-L, Kyoto, Japan) was used to analyze dissolved organic carbon (DOC).

The well-established headspace equilibrium method can directly measure CO, and
CH,4 concentrations [34-36]. Seventy-mL water samples (0.1 m beneath water surface) were
extracted via a 100 mL gas-tight syringe; subsequently a 30 mL volume of ambient atmo-
sphere was extracted for equilibrating. The syringe was vigorously shaken to accelerate
equilibrium. The resulting headspace gas samples were collected in a vacuum aluminum
foil airbag (Delin Gas Packing Co., Ltd., Dalian, China). Meanwhile, ambient air was
extracted at the overlying water. Gas samplings ware analyzed with a gas chromatograph
(Shimadzu, GC-2014, Kyoto, Japan). CO, and CHy4 concentrations were computed by
Henry’s law as follows [36]:

pCOZ = CG X R xT+ Vg/Vw X (Cg-C — Ca—C) X Ky.c (1)
dCH4 = Cg-M X Kygm + Vg/VW X (Cg-M — Ca-M) (2)

In Kp.c = —58.0931 + 90.5069 x (100/T) + 22.2940 x In (T/100) 3)
Kpnm = B/22.356 ()

In B = —68.8862 + 101.4956 x (100/T) + 28.7314 x In (T/100) ®)

where pCO; is partial pressure of dissolved CO, (natm); dCHy is dissolved CH4 (umol L1y
Cgm (or Cgc) is the CHy (or COy) concentration of gas samples (pumol L~1); T is measured
Tw (K); Ris prevalent gas constant (0.082057 L atm mol ! K=1); Kipm (or Kppo) is Henry
solubility constant (mol L~! atm™1) of CHy (or CO»); Vg is the air volume and Vy, is the
water volume in balance (mL); C,v (or Cyc) is atmospheric concentration of CHy (or CO;)
(umol L™1).

Theoretical diffusion model was used to calculate the gas diffusive fluxes (F, mmol
m~—2 d1) as follows [37,38]:

F=k x (Cy — Ca) (6)
k = kepo % (Sc/600)™™ ?)

S.(CO,) =1911.1 — 118.11 X t + 3.4527 x > — 0.04132 x 13 8)
So(CHy4) = 1897.8 — 114.28 x t +3.2902 x #* — 0.039061 x 3 ©9)

where k is the gas piston coefficient (cm h™1); (Cy — C,) is concentration gradient (umol L™1). S,
is the Schmidt number regulated by water temperature (t, °C), the exponent n is a constant
determined by measured wand speed, kg is calculated using an empirical formula [39].

To elucidate the trophic status of Lake Tangxun and its effect on GHG dynamics, four
major parameters were applied to calculate the trophic state index (TSI). TSI is calculated
as follows [18]:

TSI = 0.219TSI(TN) + 0.230TSI(TP) + 0.326TSI(Chl-a) + 0.225TSI(SDD) (10)
TSI(TN) = 10 x (5.453 + 1.694 x InTN) (11)

TSI(TP) = 10 x (9.436 + 1.624 x InTP) (12)

TSI(Chl-a) = 10 x (2.5 + 1.086 x InChl-a) (13)

TSI(SDD) = 10 x (5.118 — 1.94 x InSD) (14)

where TSI values of 30-50, 50-60, 60-70 and >70 represent mesotrophic, eutrophic, moder-
ately eutrophic and highly eutrophic, respectively.
2.3. Statistical Analyses

The substantial portion of the data were non-normal. The significant differences
of the GHG concentrations and emissions, environmental parameters amongst seasons
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were examined via Kruskal-Wallis test. A significance probability of p < 0.05 was used.
Non-normal data are logarithmically transformed when necessary. Pearson’s correlation
could explore relationships of gas concentration and physiochemical factors. IBM SPSS
statistics 26 and Origin 2021 were used for statistical analyses. Origin 2021 was used for
drawing figures.

3. Results
3.1. Environment Factors

Lake Tangxun showed substantial seasonal differences in physicochemical and bio-
logical properties (Figure 2). There were statistical differences in Ty, transparency, DO,
EC, Chl-a, DOC, and N-NO3 ™~ concentrations among seasons (p < 0.001); nevertheless, no
statistical differences existed in U, pH, N-NH4", TN or TP across seasons. The average
Tw in winter (11.77 £ 1.53 °C) was significantly lower than in spring (26.28 £ 2.04 °C),
summer (27.01 £ 1.55 °C), and autumn (21.04 £ 1.20 °C) (Figure 2a). The highest and
lowest average of U and SD appeared in winter (1.33 - 1.45 m s ! and 0.63 4- 0.22 m) and
summer (0.76 = 0.93 m s~! and 0.35 4 0.16 m), respectively (Figure 2b,c).
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Figure 2. Seasonal variations of water quality in Lake Tangxun. (a) Tw; (b) U; (c) SD; (d) pH; (e) DO;
(f) EC; (g) Chl-a; (h) DOC; (i) N-NH4*; (j) N-NO3 ~; (k) TN; (1) TP. Letters a, b and ¢ denote significant
differences among seasons.

The average pH value was slightly higher in autumn (8.14 £ 0.59) compared to the
other seasons (Figure 2d). The DO concentrations and EC values firstly decreased and then
increased (Figure 2e,f). They both were highest in winter (9.90 + 1.45 mg L~! for DO and
522.60 4= 109.51 uS cm ™! for EC, respectively) and lowest in summer (6.21 &+ 2.27 mg L1
for DO and 394.00 4 75.13 uS cm ! for EC, respectively). Inversely, the highest average
Chl-a concentrations appeared in summer (125.81 + 103.13 pg L~!) and lowest appeared
winter (27.78 £ 16.72 ug L1 (Figure 2g), respectively.

The mean concentrations of DOC, N-NH,*, TN, and TP first increased and then de-
creased (Figure 2h,ik1). The highest DOC (5.64 & 0.93 mg L), N-NH,* (247 £ 5.62 mg L),
TN (4.25 £ 5.75mg L~!) and TP (0.31 & 0.58 mg L~!) were found in autumn but were
lowest in spring (4.11 + 0.99 mg L™, 1.44 4+ 1.90 mg L™}, 3.15 + 2.56 mg L~! and
0.20 4+ 0.14 mg L1, respectively). The highest average N-NO;~ concentration was in
winter (0.87 & 0.64 mg L~!) and lowest in summer (0.35 + 0.38 mg L1 (Figure 2j).

The TSI of Lake Tangxun showed a statistically significant difference among seasons
(p < 0.01). The average TSI (67.68 * 8.25) was less than 70, illustrating that the Lake Tangxun
was a medial eutrophic lake overall (Figure 3). The pronounced seasonality in the TSI
unveiled a highest value during the summer season (averaging 72.04 & 6.77), but the lowest
during the winter season (averaging 63.06 = 6.91). Lake Tangxun was hypereutrophic in
the summer, while it transitioned to a state of moderate eutrophication in the other seasons.
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Figure 3. TSI seasonal variations in Lake Tangxun (non-parametric Kruskal-Wallis method). The
trophic status was distinguished using green dotted lines and the red line represents the TSI mean.
Letters a, b denote significant differences among seasons.

3.2. pCO;, and CO; Flux

The mean pCO, is 1321.39 £ 1614.63 patm (range: 86-10,968 patm). Of the measured
pCO, data, 85% exceeded the atmospheric CO; average (526 patm). The average pCO, in
spring (1621.50 £ 1387.83 patm) and summer (2217.91 £ 2641.93 patm) was significantly
higher than that in autumn (647.71 & 172.21 patm) and in winter (798.45 + 444.68 patm)
(p < 0.05) (Figure 4a).
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Figure 4. Seasonal variations in dissolved GHGs concentrations and diffusion fluxes in Lake Tangxun;
(a,b) pCO, and FCO, among seasons; (c¢,d) ACH4 and FCH, among seasons. Letters a, b and c denote

significant differences among seasons.
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The mean CO, flux is 5.52 4 12.16 mmol m 2 d~! (range: —15.83 — 67.30 mmol m—2
d~1). There was no significant difference amongst seasons (Figure 4b). The average
CO, flux followed a decline trend as follows: spring (9.36 4 13.10 mmol m~2 d~!) >
summer (6.49 + 16.88 mmol m—2 d~!) > winter (4.39 + 10.17 mmol m~2 d~!) > autumn
(1.85 + 4.81 mmol m~2d~1).

There were significant negative relationships of pCO, with pH, DO and Chl-a
(Figure 5a—c). Additionally, pCO, had a strong positively relationship with N-NH,",
TN, TP, and TSI (Figure 5d,f and Figure 6a).
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p values are shown.
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3.3. dCHy and CHy Flux

The overall ACH, changed between 0.01 and 102.00 umol L' (mean: 4.29 + 13.71 umol L™1).
The mean value of atmospheric CHy concentration was 0.12 £ 0.01 pmol L1, illustrating
oversaturation of CH in Lake Tangxun. The mean ACHy in autumn (0.83 & 2.90 umol L™1)
was lower than that in other seasons (spring: 5.74 + 11.01 umol L~!, summer: 6.25 & 22.58
umol L~! and winter: 4.33 4 11.10 pmol L) (p < 0.001) (Figure 4c).

The overall CH,4 fluxes ranged between 5.48 x 107% and 20.42 mmol m~2 d~!, with
a grand average of 0.83 & 2.81 mmol m~2 d~!. The average CHy flux followed a decline
trend as follows: spring (1.51 + 3.06 mmol m~2 d~!) was slightly higher than summer
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(1.21 4 4.53 mmol m 2 d~!) and winter (0.46 + 1.30 mmol m~2 d'), and significantly
higher than autumn (0.13 £ 0.25 mmol m~—2d~1) (p <0.05) (Figure 4d).

dCHy exhibited significantly negative correlations with pH and DO (Figure 7a,b),
while showed significantly positive correlations with N-NH4", TN and TP (Figure 7c—e).
dCHy also revealed a significantly positive correlations with pCO, (Figure 7f) and TSI
(Figure 6b).
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Figure 7. Linear regression of dCHy with (a) pH; (b) DO; (c) N-NH4*; (d) TN; (e)TP; (f) pCO,. RZ and
p values are shown.

4. Discussion
4.1. Seasonal and Spatial Shifts of CO, and CHy

We found clearly seasonal variations in pCO, with significantly higher average pCO; in
spring and summer in Lake Tangxun (p < 0.05; Figure 4). This was attributable to the higher
temperature and suitable precipitation in the two seasons (Figure S1). Higher temperature
can increase in-site microorganism metabolism, and high temperature and precipitation
promote heterotrophic respiration in the littoral soils; thus the surrounding soils have a
higher CO, content, thereby transporting more CO; to lakes via runoff [34,40-42]. This
was supported by the positive correlations of pCO, with T, (p < 0.01) and precipitation
(p < 0.01) (Figure S2).

Moreover, nutrient variables can favor in-stream respiration of DOC and photosyn-
thetic up-taking of COy; this process can be responsible for the positive relationships
between pCO, and nutrient elements of TN, TP and N-NH4*, and the negative relationship
between pCO, and Chl-a (Figure 5) [15,43].

The much lower dCH, observed in autumn (Figure 4c) was contrary to previous
studies [19,44,45]. The authors ascribed this seasonal pattern to the synthetic effect of
temperature and organic carbon availability [19,45,46]. Warmer temperatures can promote
methanogenesis by affecting microbial metabolism [47], which can be confirmed by the
remarked relationship between Ty, and dCHy4 (Table S2). This can be ascribed to the
faster decomposition rate of organic matter and consumption of dissolved oxygen at
high temperatures, creating favorable conditions for methanogenesis, whilst frequent rain
events in spring and summer (Figure S1) could potentially transport soil CHy into lakes
and promote CHy diffusion from bottom to surface in lakes [48,49]. Moreover, although
the highest mean DOC concentration occurred in autumn, internal respiration of organic
carbon in autumn was lower than in winter, which can be confirmed by the correlation of
DOC and dCHy (Table S2), resulting in 4CH, in winter higher than that in autumn. We need
to stress that seasonal variation of CH; dynamics was relatively complex in urban lakes.

We found that some points are significantly deviated from the average values
(Figure 4), suggesting huge variability of data. The deviated values of pCO,, dCHy, CO;,
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and CHy diffusion fluxes are highly related to the environment characteristics of sam-
pling points. The pCO, and dCH,4 were highly related to N-NH;*, N-NO3~, and Chl-a
(Table 1). The sites with deviated values of pCO, and dCH4 exhibited higher N-NH,*;
for instance, the highest concentrations of N-NH;" and gases simultaneously occurred at
site 20 (Table S1). CO, and CH, diffusion fluxes were not dependent on pCO, and dCHy4
but closely related to U (Figure S3). Random measures of wind speed could lead to CO, and
CHy diffusion fluxes deviated from the average values at those sites with high wind speed.

Table 1. Stepwise regression with pCO, and dCH; and ambient conditions in Lake Tangxun. R? is
adjust R2.

C02 CH4

Multiple regression pCO, =2.61 + 0.29N-NH,* — dCHy =2.00 + 0.41N-NH,* — 0.89N-NO;~ —
0.23N-NO3~ — 0.36Chl-a + 0.72Ty, 0.66Chl-a — 2.85DOC + 1.40TN

R? 0.44 0.59

p <0.001 <0.001

Part R? 0.27 ***,0.05 *, 0.07 **, 0.05 ** 0.40 *, 0.07 ***, 0.06 ***, 0.02 **, 0.04 **

Note: *, ** and *** represent p < 0.05, p < 0.01 and p < 0.001.

4.2. pCO, Control Factors

In-stream biogeochemical processes mainly control lake pCO, [50]. Chl-a can be a
proxy of lacustrine primary productivity; thus, increasing Chl-a concentration can promote
photosynthesis [29,30,34]. This photosynthetic process produces DO but consumes CO,,
thereby resulting in the significant negative relationships of pCO, with Chl-a (Figure 5c), DO
(Figure 5b), and pH (Figure 5a). Previous studies support the reciprocal relationships [26,51].

Nutrient loading can influence lake photosynthesis and bacterial respiration, thereby
regulating pCO, in lakes [18,19]. For example, nutrients can favor both photosynthesis and
in-site respiration of carbon. The decay of algae can add organic matter to the sediment and
stimulate endogenous respiration in lakes [34]. In our studied lakes, lake-dissolved CO; is
over-saturated, suggesting that the studied lakes are heterotrophic, thereby leading to the
relationships of pCO, with N-NH4*, TN, and TP (Figure 5d—f). The stepwise regression
analysis model showed that N-NH;* was a good predictor for estimating pCO, in Lake
Tangxun (Table 1). N-NH4™ is a good proxy for sewage loads in the lakes [14], implying the
urban sewage contribution of high pCOs,.

We found that pCO, increased as eutrophication status increased (Figure 6a). The effect
of eutrophication on CO; was closely bound up the interaction of CO, consumption and
production [26,52]. Previous studies have found algae blooms enabled the lake to absorb
CO; from the atmosphere [53,54]. We, however, observed an atmospheric CO, source of
the studied lake even in the summer season, with much higher Chl-a concentration. This
implied the importance of respiration rather than photosynthesis in the eutrophic Lake
Tangxun [55,56]. Thus, Lake Tangxun, a net CO; source, is characterized by a heterotrophic
nature, supporting the positive associations between pCO, and nutrient species (Figure 5).

4.3. dCH, Control Factors

Geochemical controls of CH4 dynamics in aquatic ecosystems are complicated [37,57].
First, CHs production and consumption are controlled by methanogenic and aerobic
methane-oxidizing bacteria [37,58,59]. They are also affected by algae decay in eutrophic
lakes [46,60,61]. Previous studies have also showed that algal blooms have a catalytic effect
on CH4 dynamics [53,62]. Second, variations in microenvironmental factors such as pH
and DO can affect CHy production and consumption [45,63]. CHy is easily oxidized to
carbon dioxide; thus, low DO concentration can decrease CH, oxidation and increase CHy
production [64,65]. These processes led to the negative correlation between dCH, and DO
(Figure 7b). The positive correlation between dCH4 and pCO; (Figure 7f) can support CHy
oxidation to CO,, further evidencing the association between dCH, and DO. Similar results
from lakes in Northeastern China and Lake Kivu in East Africa support our findings [66,67].
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It was interesting that we also found a significantly negative correlation between ACH, and
pH (Figure 7a). This can be explained by the pH range of 7 to 9 in Lake Tangxun. Prior
studies showed that pH ranging between 6 and 8 is the most favorable for methanogenesis,
and CHy concentrations decline as pH values drop out of the optimal range [63]. For
instance, AdCH4 was minimal in autumn (Figure 4c) when an average pH (8.14 & 0.59) was
outside the optimal range for CHy4 production (Figure 2d,h).

The content, availability, and redox conditions of organic carbon are the pivotal factors
affecting CH, dynamics [46]. In this study, multiple nutrients (N-NH4*, TN and TP)
regulated the dCHy in Lake Tangxun (Figure 7c—e). The input of nutrients can be used as
the basic substrate in methanogenesis [19,46]. Meanwhile, nitrogen input also promoted
CH,4 production by providing sufficient substrate for the methanogens’ growth [57,68].
N-NH4* was also a good proxy for estimating dCH, in Lake Tangxun (Table 1). It proved
ammonia nitrogen can prevent CHy oxidation [69], as reflected by the correlation between
N-NH;* and dCHy (Figure 7c).

Consistent with pCO,, eutrophication increased dCHy, as suggested by the signifi-
cantly positive correlation between TSI and dCH, (Figure 6b). Several studies supported
our findings [19,29,62]. Eutrophic lakes provided most labile organic matter that can be
promptly converted to CHy precursors [28], as reflected by the positive correlation be-
tween dCH,4 and nutrients (Figure 7c—e). Beaulieu and DelSontro [62] also found enhanced
eutrophication of lentic waters could substantially increase CH4 emission. Meanwhile,
shallow eutrophic lakes are suitable for submerged vegetation, which can also provide
substrates to promote CHy production [70]. Moreover, Sepulveda-Jauregui and Hoyos-
Santillan [71] found that eutrophic lakes had higher temperature sensitivity, resulting in
higher CH4 emission. In Lake Tangxun, in summer, the TSI and temperature were the
highest, and dCHy was the highest (Figures 3 and 4c). In winter, although there was slightly
higher DOC concentration than in spring and summer, the trophic status and temperature
was the lowest, leading to relatively lower dCHj.

4.4. Implications of CO, and CHy Flux

Urban lakes had notable spatial-temporal heterogeneity of CO; flux, and acted as a
considerable atmospheric CO, source (Table 2). CO; flux (averaging 5.52 mmol m—2d1)
in this study was lower than in other studies (averaging 20.80 mmol m~2d1) (Table 2).
Sydney’s severe eutrophic urban lake showed the peaking flux of CO; [72]. What is
noteworthy is that CO, emissions were not only subject to lake nutrient loadings, but also
controlled by seasonal variation of ambient conditions, as exhibited in recent studies in
subtropic urban eutrophic lakes [54,73]. Sun et al. [19] and Zhang et al. [54] found eutrophic
lakes converted to be CO; sinks in summer due to higher primary productivity, which was
different from our results in Lake Tangxun. This implied that seasonal sampling can lead
to large uncertainty of lake CO, emission.

Urban lakes in subtropical zones showed higher CH, fluxes than those in boreal zones
(Table 2). This was likely due to the rate of methanogenesis and substrate production in-
crease with a warmer temperature [74-76]. Furthermore, inputs of sewage also contributed
to higher CHy fluxes in urban lakes, such as the severely polluted Lake Bellandur [22].
Besides the study lake ecosystem, other aquatic ecosystems in urban areas also showed
higher CHy fluxes [5,36,77]. Rosentreter, Borges [11] also demonstrated that CH4 emissions
are likely to increase because of eutrophication and urbanization based on a metadata
analysis of CHj fluxes in all major aquatic ecosystems. We suggest that more field measures
should be conducted, to better understand CH, dynamics in lakes.

The eutrophication effect of GHG emissions in the urban lakes was not fully under-
stood. Our results provided new understanding into seasonal fluctuations of CO, and CHy
diffusive fluxes in a middle eutrophic urban lake. We highlighted that eutrophication could
significantly promote CO; and CHy from lake into atmosphere. This is particularly evident
in the eutrophic lakes of the Yangtze Basin, as supported by increasing lake CO, and CHy
emissions as the trophic state increase [15,57]. Hence, the management (e.g., retreatment
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of wastewater) and ecological restoration (e.g., sediment dredging) measures of lakes are
necessary in highly urban-dominated regions, which could not only decrease lacustrine
carbon emission in urban lakes, but also improve water quality, further contributing to the
goal of carbon neutrality.

Table 2. CO, and CH, diffusive fluxes in others urban lakes in different climate zones.

FCO,

FCH,4

Lake City Climate Zone Sampling Time (mmol m-2 d-1) (mmol m-2 d-1) Source
Lake Vesijdrvi Finland Boreal May—October 2018 12.4 +2.38 0.24 £ 0.06 [24]
April-May and
Lake Obersee, et al. Berlin Temperate July—October 2016, 2.19 [76]
February-March 2017
Sydney’s largest
urban lake Sydeney Temperate June and July 2019 113 + 81 03+0.1 [72]
Lake Lyng Silkeborg Temperate September—October 2021 22.05 1.68 [78]
Lake SCH and YYT Beijing Temperate July 2018-November 2019  —0.2 +13.0 0.7+ 0.6 [79]
. . . 2000-2015 25.0 £ 13.64 [14]
Lake Wuli Wuxi Subtropic 2002-2017 2112 + 19.60 [15]
. April 2003-March 2004 7.7 1.6 [45]
Lake Donghu Wuhan Subtropic 2002-2017 16.42 + 20.39 [15]
October-December 2021,
Lake Nanhu, et al. Wuhan Subtropic February-March and 3.65 1.32 £ 4.11 [54,57]
May-June 2022
. October 2022, February, .
Lake Tangxun Wuhan Subtropic April and June 2023 552 +12.16 0.83 +2.81 This study
. . Summer 2018 11.65 +3.42
Lake Bhalswa Dehli Tropic Winter 2017 6.33 +2.23 [80]
Lake Bellandur Bangalore Tropic June 2018-February 2020  5.81 3.6 [22]
Lake Jakkur Bangalore Tropic June 2018-February 2020 45 1.48 [22]

5. Conclusions

The study investigated the seasonal dynamics and potential control factors of dis-
solved CO; and CHy in the largest Chinese urban Lake. Our results illustrated that Lake
Tangxun was atmospheric greenhouse gases (GHGs) source. CO, and CHy concentrations
and thus diffusion fluxes significantly increased as trophic status index increased. We
further found that N-NH;* was a predictor of pCO, and dCH4. More studies should
be conducted to accurately quantify carbon emission in eutrophic lakes, particularly in
urban areas that are intensively affected by human activities. The study highlighted the
importance of eutrophic control for restoration of water environment and reducing CO,
and CHy emissions. Meanwhile, this study also stressed that urban lakes, which are heavily
influenced by human activities, exhibited more complex seasonal dynamics in CO, and
CH, fluxes. Therefore, urban lakes should be considered an important component of
carbon budgets.
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