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Abstract: Wine lee generation, a by-product of the wine industry, implies economic challenges
for producers in terms of management due to its high organic load and low pH value. Biological
treatment based on controlled anaerobic digestion may emerge as a viable management alternative
given its promising potential for biogas production thanks to the organic content of the substrate.
However, the complex properties of wine lees may lead to microbial activity inhibition and process
kinetics failure. Various solutions have already been explored, including co-digestion with other
substrates, or the application of different pretreatments, to mitigate the effects of the accumulation
of phenolic compounds, volatile fatty acids, antioxidants, or the acidic pH value of the medium.
In this study, laboratory-scale batch reactors were established, adding iron- (magnetite) or carbon
(graphite)-based microparticles to assess their impact on the kinetics of the process. The results
demonstrate a significant improvement of 35% in the potential production of biomethane after four
days of operation with graphite particles and 42% after five days using magnetite particles. Methane
production rates, as determined by the Gompertz model, were 45.38 and 46.54 mL CH4·gVS−1·d−1

for the application of graphite and magnetite microparticles to the medium, respectively, compared to
the value of 33.46 mL CH4·gVS−1·d−1 for the control trial, confirming kinetic process improvements
of 36% and 39%, respectively. Evidences of the acceleration of the methanogenesis phase were
detected along the essays; however, the strong inhibition mediated by the carboxylate accumulation
was not avoided in any of the tested conditions.

Keywords: biogas; graphite; magnetite; microparticle applications; phenolic compounds; waste
to energy

1. Introduction

The sustainable management of agricultural by-products is both an opportunity and
a challenge for the industries within the sector [1,2]. On one hand, there is the potential
to enhance the value of their processes, increasing profitability by reusing these materials
as substrates for bioenergy or biomaterials. On the other hand, addressing this challenge
promotes the minimization of environmental impact, directly contributing to the circular
economy [3,4]. The wine sector, particularly in countries like Chile, Italy, and Spain, serves
as a notable example [5]. Over recent years, the significant increase in overall productivity
has resulted in substantial waste and wastewater generation during wine production [6].
By using different winery types of waste, such as stems, grape pomace, and wine lees,
valuable chemical substances can be extracted, bioenergy produced, and new applications
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developed in agriculture and the environment [7]. Concerning wine lees, these constitute
a semi-solid residue that is recovered from the bottom of wooden barrels after the end
of the fermentation process. They can account for up to 5% of the overall weight of
the processed grapes [8]. However, many times managing these by-products is complex
due to their physicochemical properties, featuring high chemical oxygen demand (COD)
and low pH values. This complexity is the result of the composition of dead yeast cells,
tartrates, proteins, polysaccharides, and other substances produced and settled during
fermentation, often implying an economic cost for the producers that should be invested in
its management [9]. In particular, the high content of digestible matter present in wine lees
is expected to yield a good energy performance through their biological transformation [7].

Anaerobic digestion (AD) is an interesting option to decompose organic waste mate-
rials by the activity of microorganisms in the absence of oxygen. Consequently, organic
materials like wine lees are transformed into a biogas and a digestate, providing bioenergy
and fertilizers [10,11]. However, the process faces limitations because of the high concentra-
tion of complex phenolic substances, inhibitory chemicals, and antioxidants, all of which
adversely affect the kinetics of the process [12]. In this contest, the optimal operational
conditions during anaerobic digestion have not been clearly unraveled. Some previous
studies have explored the inhibitory effects of phenolic compounds using synthetic sub-
strates, identifying concentration limits for the process [13]. Similar investigations have
been conducted regarding the accumulation of volatile fatty acids in the medium, pH
variations, and increases in hydrogen sulfide (H2S) content in the biogas [14–16].

To address these challenges, various strategies have been suggested, including opti-
mizing operational parameters, applying co-digestion, and implementing pretreatments
or using additives. Where Da Ros et al. (2017) [17] blended winery wastewater sludge
and wine lees to enhance methane production, Hungría et al. (2021) [18] assessed the
anaerobic co-digestion of various lees sourced from organic crops. Other authors have
explored pretreatment methods, including fungal and enzymatic approaches [19], electro-
oxidation [9], and microwave or ultrasound treatments [20]. A widely used pretreatment
method for wastewater AD treatment is thermal hydrolysis (liquid hot water or steam
explosion, commonly), which has demonstrated a high efficiency in AD processes by im-
proving the degradability of bio-recalcitrant organic substances [21]. However, the diverse
characteristics of substrates can influence biogas production, as well as the presence of
polyphenols, phytotoxic, and antimicrobial compounds, along with low pH values, compli-
cating waste treatment and disposal. This study introduces an alternative approach to the
anaerobic digestion of wine lees by the application of two diverse types of microparticles
to enhance the kinetics of the process.

The addition of microparticles to anaerobic digestion processes holds the potential
to improve the process by providing larger active sites for the various microorganisms
involved. Additionally, microparticles may serve as crucial mediators, capable of breaking
cell membranes and facilitating direct electron transfer [22,23]. Concerning the substrate,
the introduction of microparticles can accelerate the hydrolysis of organic matter, thereby
enhancing substrate decomposition, increasing biogas production, and reducing the lag
phase [24]. A number of essays have been devoted to demonstrating the efficiency of
the addition of these microparticles to the AD process, consistently yielding positive
results, particularly with substrates such as sewage sludge or livestock waste, as shown
in Table 1. In this study, various discontinuous anaerobic reactors were used considering
wine lees as substrate, which were supplemented with iron-based (magnetite) or carbon-
based (graphite) microparticles, to determine their effect on the improvement of biological
methane potential (BMP). Based on their electric conductivity figures and different natures,
positive outcomes are expected in accordance with the existing literature on this topic.
Concurrently, monitoring encompassed other key process parameters, such as biogas
quality, pH, volatile fatty acids (VFAs), and phenolic compound contents.
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Table 1. Review of the addition of metal-based and carbon-based particles to enhance the anaerobic
digestion process of organic substrates, including the type of particles, biomass type, the content of
particles, and the effect on the biogas production reported by each study.

Type of
Particle Type of Biomass Particle

Content
Biogas Production

Increase Reference

Metal-based particles
Fe3O4 Granular sludge 500 mg·L−1 24% [25]
Fe3O4 Municipal solid waste 50–125 mg·L−1 43–72% [26]
Fe3O4 Poultry litter 15–100 mg·L−1 26–28% [27]
Fe2O3 Cattle manure 20–100 mg·L−1 10–19% [28]
Fe3O4 Wheat straw 100 mg·L−1 51% [29]
Al2O3 Waste activated sludge 50–500 mg·L−1 8–15% [30]

Nickel ferrite Livestock manure 20–130 mg·L−1 18–31% [31]

Carbon-based particles
Biochar Sweet sorghum 5–20 g·L−1 20–25% [32]
Biochar Wine lees 10 g·L−1 18% [9]
Biochar Food waste 1 g·L−1 32% [33]

Graphene Sewage sludge 30 mg·L−1 14% [34]
Graphite Synthetic wastewater 6.5 g·L−1 19% [35]
Graphite Food waste and cow manure 1 g·L−1 49% [36]
Graphite Swine sludge 1–5 g·L−1 2–23% [37]

2. Material and Methods
2.1. Anaerobic Inoculum and Feedstock

Wine lees, as agricultural waste from the wine process, were collected from a winery
placed in Mélida de Peñafiel province (Valladolid, Spain) and were stored at 4 ◦C before
use. Inoculum was sampled in the wastewater treatment plant (WWTP) of Soria (Spain),
specifically from the anaerobic treatment digester tank. The physico-chemical characteris-
tics of substrates in terms of total organic carbon (TOC), total nitrogen (TN), dry matter,
organic matter, pH, chemical oxygen demand (COD), and phenolic compounds content are
presented in Table 2.

Table 2. Characteristics of the substrate and anaerobic sludge used in the bioreactors (TS, VS: total and
volatile solids; CODt: total chemical oxygen demand; TOC: total organic carbon; TN: total nitrogen;
C:N: carbon-nitrogen ratio).

Parameter WWTP Sludge Wine Lees

COD (g·L−1) 19.21 ± 2.06 372.28 ± 3.42
TS (g·kg−1) 16.20 ± 0.12 163.30 ± 0.15
VS (g·kg−1) 11.18 ± 0.12 154.21 ± 0.85
TOC (g·L−1) - 139.45 ± 0.86
TN (g·L−1) - 6.37 ± 0.07
C:N - 21.89 ± 0.26
Phenolic compounds (g·L−1) 0.02 ± 0.00 1.59 ± 0.14
pH 7.2 ± 0.0 3.6 ± 0.1

2.2. Microparticles as Additives

Two types of commercial microparticles were used in the experiments. On one hand,
the iron-based microparticles consisted of magnetite (iron (II–III) oxide) microparticles
(<5 µm), which were supplied by Aldrich Chemistry (St. Louis, MO, USA), specifically
from batch 310069-25 G. On the other hand, the carbon-based microparticles consisted of
99.8% graphite microparticles (<20 µm) supplied by Alfa Aesar (Kandel, Germany), batch
W24B028, specifically. The selected concentration for the experiments was 200 mg L−1,
following the recommendations of other studies [26,38,39].
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2.3. Anaerobic Digestion Tests

AD of the substrates was assessed in batch conditions for 15 days with the working
flow design shown in Figure 1.
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Figure 1. Study proposal for the anaerobic digestion process using wine lees as substrate with and
without the addition of different microparticles.

A BPM methodology (biochemical methanogenic potential) was applied following the
protocol described by Holliger C. et al. (2016) [40] and the experimental conditions set are
explained in Table 3. Serological 120 mL glass bottles were used as anaerobic reactors under
a mesophilic temperature condition of 35 ± 0.5 ◦C that was set in an incubator (GL-Hotcold,
Selecta, Barcelona, Spain). Agitation conditions were performed by an orbital stirring plate
(Rotabit, Selecta, Barcelona, Spain). The ratio of inoculum to substrate was 1.5:1 g of volatile
solids (VS) [41]. Furthermore, 1.5 g of CaCO3·L−1 was introduced as a buffering agent to
prevent pH fluctuations. The reactors were purged with an inert gas (N2, 99.9% purity) to
displace the air from the system and establish an anoxic environment at the beginning of
the essay [42].

Table 3. BMP (biochemical methanogenic potential) experimental conditions.

Parameter Value

Reactor volume (mL) 120
Working volume (mL) 70
Substrate (type) Wine lees
Inoculum (type) WWTP sludge
Inoculum: Substrate ratio 1.5
Temperature (◦C) 35
Agitation (rpm) 100
Type of added microparticles Fe3O4, Graphite
Particle concentration (mg·L−1) 200

The tests were performed in triplicates for each substrate condition, namely, lees
standalone (Lees Control), lees with graphite microparticles (Lees Gr), and lees with
magnetite microparticles (Lees Fe), as well as a blank test incorporating just inoculum to
assess the endogenous production of biogas (blank test). The measurements were adjusted
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by subtracting the endogenous production. Daily biogas production was quantified in
terms of water displacement and the volume was corrected to standard conditions. The
composition of the biogas was measured using gas analysis equipment (Biogas 5000-
GeoTech, Leamington Spa, UK). NaOH 0.1 M was added to adjust the pH to 7.5 at the
beginning of the experiment and the microparticles were subsequently and separately
added into the glass bottles.

2.4. Analytical Procedure

Total solids (TS) and volatile solids (VS) were assessed following the American Public
Health Association’s standard methods for the examination of water and wastewater [43].
The calculation included the drying process of the samples at 105 ◦C for a period of 24 h
and their posterior incineration in a muffle at 550 ◦C for 30 min.

Chemical oxygen demand (COD) was also measured according to the standard meth-
ods for the examination of water and wastewater [43]. Absorbance was measured using a
spectrophotometer (Genesys 10uv, Thermo Spectronic, Waltham, MA, USA) at 600 nm.

Phenolic compound concentration was measured according to the Folin–Ciocalteu
methodology [44]. This approach relies on the interaction between phenolic compounds
and the Folin–Ciocalteu reagent under alkaline conditions, resulting in the development of
a blue coloration. The absorbance of this coloration was subsequently determined at 765 nm
by the spectrophotometer. Lastly, volatile fatty acids (VFAs) were determined in a 5 mL
sample filtered through 0.45 µm of previous centrifugation at 5000 rpm (Centromix, Selecta,
Barcelona, Spain). Subsequently, a second centrifugation was required at 13,000 rpm
(MicroStar 17, VWR, Radnor, PA, USA) and filtration at 0.2 microns was carried out to
subsequently run the samples in a gas chromatograph (7820A Gas chromatograph, Agilent,
Santa Clara, CA, USA).

2.5. Modelling

Experimental biomethane production data were adjusted to the Gompertz mathemati-
cal model [45,46] and first-order models [47] to fit the biogas production of each test and
their anaerobic digestion phases according to Equations (1) and (2):

M (t) = P·exp{−exp[
R·exp

P ·(λ−t)+1]} (1)

M (t) = P·
[
1 − exp{−K ·(t−λ)}

]
(2)

where M (t) is the cumulative methane production (mL CH4·g−1 VS at standard pressure
and temperature conditions), P is the potential methane production (mL CH4·g−1 VS),
R is the maximum methane production rate (mL CH4·g VS−1·day−1), K is the specific
growth rate of microorganisms (day−1), t represents the elapsed time (days), and λ is the
lag phase (days).

The adjustment of the model to the experimental results was carried out using the
least squares procedure [48]. The adjusted coefficient of determination (R2, correlation
coefficient) and the root mean square error (E) were determined by applying Equation (3):

E =

[
1
m
·∑m

t=1

(
dt

Yt

)]1/2
(3)

where m is the data pairs number, Y is the measured production of methane production
(mL·g−1 VS added), and d is the deviation between the predicted and the experimental
methane production results.

2.6. Data Analysis

All trials were carried out in triplicates. Results were processed with Microsoft Excel
(Microsoft 365, MSO version 16.0) to calculate the mean and standard deviation values
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of the results. A model adjustment was performed using the Solver Tool provided by
MS Excel.

3. Results and Discussion
3.1. The Effect of Microparticles on the Production of Biogas

The daily CH4 production is shown in Figure 2. The control trial without particles
yielded 136 mL CH4·g SV−1 at the end of the essay; whereas, the addition of microparticles
increased this value until 166 mL CH4·g SV−1 for Lees Gr and up to 192 mL CH4·g
SV−1 in the case of Lees Fe. CH4 production in the tests was registered during the first
6 days of operation, declining from Day 5 onwards. Daily methane production has been
virtually nonexistent since Day 8 of incubation. The lag phase for all three trials was
minimal addressing production figures without significant differences among the essayed
conditions. The detected values of methane production were in the range of previously
reported studies for these kinds of substrates, which reported values between 100 and
350 mL CH4·g SV−1 using wine lees in batch anaerobic experiments [49–51]. In Table 4,
the biomethane production performance of wine lees as an organic substrate is displayed
in comparison to other agricultural waste substrates of different origins, confirming a
standard yield per unit of volatile solids and adding value to the management of this
wine by-product.
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Figure 2. Time course evolution of daily methane yield in the trials, with and without microparticles
in addition to the anaerobic digestion of wine lees. On the upper-right side is experimental cumulative
methane production.

The positive impact of the microparticles, which resulted in an increase in cumulative
CH4 production of 22.1% and 41.3% in the cases of iron-based (magnetite) and carbon-based
(graphite) microparticles, respectively, at the end of the essay, was clearly related to an
increased methanogenic phase of the anaerobic digestion. This fact was evidenced by the
rapid decrease in VFA concentration that was detected after 5 days of incubation (Figure 3).
Where the control experiment presented a VFA concentration of 23 g·L−1, the concentration
in essays with microparticles was considerably lower: 6.4 and 14.4 g·L−1 in Lees Gr and
Lees Fe experiments, respectively. This acceleration of the carboxylate consumption was
concomitantly detected with a considerably higher value of biogas production, which
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reached the highest values at Day Four, when 53.9 and 47.5 mL of biogas were produced in
Lees Gr and Lee Fe, respectively; whereas, the production of the control experiment was
considerably lower, addressing an average value of 35.1 mL per day (Figure 2). During that
phase of the experiment, the biomethane difference was maximal compared to the control
trial, reaching 35.2% for graphite particles on the fourth day. In the case of iron-based
particles, a 42.3% positive difference was registered on the fifth day. In the case of magnetic
particles, this stimulation of the methanogenic phase of the anaerobic digestion process
might be related to their electronic and physical properties.

Table 4. Review of literature studies investigating the anaerobic digestion of organic substrates’
various biomasses used for biogas production.

Substrate Experimental
Conditions TS (%) VS

(% of TS) T (◦C) Methane Production
(mL CH4 g−1 VS) Reference

Tomato Pomace Batch, 0.5 L 30.1 96.1 40 180 [52]
Apple pomace Batch, 1 L 50.2 95.6 40 157 [53]
Potato peels Batch, 0.075 L 17.7 94.0 35 267 [54]
Olive mill wastewater Batch, 0.06 L 12.0 87.5 37 183 [55]
Bovine manure Batch, 0.4 L 9.8 76.0 37 36 [56]
Pig slurry Batch, 0.25 L 3.7 78.5 35 150 [57]
Wheat straw Batch, 0.4 L 93.5 95.8 37 226 [58]
Rice straw Batch, 0.5 L 88.7 91.9 40 195 [52]
Wine lees Batch, 0.7 L 16.3 94.4 35 192 This study
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The mechanism of direct interspecies electron transfer (DIET), consisting of a syn-
trophic metabolism where free electrons move between cells by shared physical (microbe
to microbe and microbe to electrode) and electrical connections (conductive pili), has
previously been described in biogas production systems [59,60]. Particularly, DIET does
not necessitate reduced electron carriers (redox mediators) like molecular hydrogen [61].
Instead, it relies on oxidizing bacteria that extracellularly release electrons, which are then
transferred to methanogenic archaea with the assistance of electrically conductive materials,
such as iron oxides included in the particles [62,63]. This mechanism allows a reduction in
CO2 to CH4 through direct electron transfer between species [64]. Preliminary experiments
carried out in our lab showed that the addition of a similar quantity of inert deionized sand
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microparticles did not enhance biogas production by improving mixing or any other me-
chanical effect in the anaerobic digestion process, thus confirming the DIET mechanism to
be the most plausible explanation to the herein addressed biogas production improvement
(data not published).

According to previous studies, the presence of magnetite particles proves beneficial in
enhancing hydrogenotrophic methanogenesis. This enhancement occurs as magnetite con-
tributes electrons through iron corrosion, leading to increased hydrogen (H2) production.
The generated H2 subsequently reacts with carbon dioxide (CO2), resulting in elevated
methane production. However, the results herein presented suggested also an enhancement
of the acetoclastic methanogenesis, with considerably lower values of VFAs in the early
steps of the anaerobic digestion when microparticles were added. In addition, Fe3O4 parti-
cles, via Fe2+, contribute to breaking down volatile solids present in the substrate by binding
with the substrate. It increases the substrate’s surface area, which is particularly beneficial
for improving hydrolysis, especially when dealing with substrates with a diameter smaller
than 6 mm. Increases in the hydrolysis phase were not detected in the experiment herein
reported, with small differences in the lag phase according to the modeling applied. The
latency phase detected (λ) was virtually negligible in all experiments, registering at 0.38,
0.49, and 0.53 days for the Control, Lees Gr, and Lees Fe treatments, respectively, when the
Gompertz model was applied (see Section 3.3).

The 200 mg L−1 concentration used for iron microparticles was sufficient to enhance
biogas production without the negative effects of the bioprocess. An over-addition of
microparticles resulted in an excessive iron accumulation that could be potentially toxic in
the medium, leading to the cessation of biogas production by inhibition of the process [38].
An additional advantageous characteristic of iron-based particles is their retrievability after
use, which can be achieved by methods like filtration or magnetic separation. This is partic-
ularly significant as the failure to recover and manage these microparticles can adversely
impact the environment, potentially affecting both aquatic and terrestrial ecosystems, as
well as human health.

Conversely, the introduction of graphite microparticles also resulted in an immediate
rise in the generation of methane and in a higher conversion of VFAs. The significance
of carbon-based microparticles lies in their diverse geometric forms, including graphene,
and carbon nanotubes. These variations offer distinct properties, such as high conductivity,
large surface area to promote chemical reactivity and thermal stability, and the promotion
of microbial colonization, particularly attributable to their extensive specific surface area
available [65]. Similar to iron oxide particles, carbon-based particles were proved to be
valuable in anaerobic digestion processes by facilitating DIET due to their conductivity
figures. Additionally, they offer the advantage of being more cost-effective than other types
of particles [66].

Iron-based microparticles not only addressed a better performance than graphite
microparticles but the addition of magnetite microparticles would additionally be more
practical in a continuous mode anaerobic digestion process because they could be recovered
from the digestate by means of magnet-assisted devices, which are conventionally used in
organic waste management systems [67,68].

3.2. Potential Inhibitors along the Anaerobic Digestion Process

The abrupt reduction in CH4 production, mentioned in Section 3.1, might be linked to
the increase in the content of volatile fatty acids (VFAs). Chiappero et al. [69] observed a sim-
ilar inhibition of the methanogenic phase at VFA concentrations around 21–24 g VFAs·L−1

while working with the anaerobic digestion of wine lees. In contrast, other researchers have
reported lower values, ranging between 6 and 10 g VFAs·L−1, when working with cattle
dung and sewage sludge as substrates [70,71].

VFA concentration was measured on Test Days 0, 5, and 10, as illustrated in Figure 3,
revealing a notable increase in VFA concentration throughout the experiment. This growth
may be attributed to the slower degradation of VFAs by acetogenic and methanogenic
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microorganisms compared to their production by acidogenic microorganisms [72]. In the
trials involving graphite microparticles, a reduced accumulation of VFAs was detected,
particularly during the initial 5 days, as compared to the control test. Between Days 5 to 10,
VFA accumulation was lower in the Lees Fe trials than in the Lees Gr trials, contributing to
producing a higher CH4 yield compared to graphite microparticle addition essays. At the
end of the experiment, all trials exhibited a VFA concentration exceeding 20 g·L−1 by the
10th day of the processes. Although the presence of microparticles promoted a higher con-
version of VFAs to methane, this positive effect was insufficient to circumvent the negative
effects produced by VFA accumulation in the methanogenic stages of AD processes.

Another parameter influenced by the accumulation of VFAs is pH, which, despite
initial pH adjustments and the inclusion of CaCO3 as a buffering agent, stabilizes around 5
at the conclusion of the trials. This pattern is consistent across all three treatments, with
and without microparticles. Similar effects on pH were also noted by other authors [51,69].

The accumulation of phenolic compounds in the medium could be another factor in-
fluencing the inhibition of the process [73,74]. The initial measured value exceeds 0.3 g·L−1

(Figure 4), suggesting a potential mild impact on the process according to [13]. Other stud-
ies have reported that inhibition in anaerobic digestion can occur when the concentration
of phenolic compounds surpasses 0.1–0.6 g·L−1, leading to high system instability and,
consequently, reduced biogas production [9,75,76]. Figure 4 illustrates a decline in the
phenolic compound content in the medium throughout the essay, which, in this instance,
does not appear to be a greater adverse effect than VFA content or pH value. After 10 days
of testing, the reduction in the phenolic compound content in all three treatments, with and
without microparticles, reached about 65%. This reduction may also be attributed to the
substantial dilution of the wine lees substrate in the medium. Although lees hold a phenolic
compound content of 1.59 g·L−1 (Table 1), it decreases to 0.3 g·L−1 after being mixed with
the WWTP sludge at the beginning of the trials. No significant effect of the microparticles’
presence was detected over the phenolic compound concentration (Figure 4).
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Figure 4. Time course evolution of phenolic compound concentration in the BMP experiments, with
and without microparticle application to wine lees’ anaerobic digestion.

Biogas composition obtained along the tests revealed also the presence of inhibitory
phenomena. Two noteworthy outcomes were observed in Figure 5. Firstly, a decline in
methane concentration was detected from Day 10 onwards, which may potentially be
attributed to the inhibition of the process mediated by VFA accumulation, specifically
affecting methanogenic microorganisms, which are known for their sensitivity to such
changes [77,78], and the fact that the methanogenesis stage is slower than the preceding
phases [79]. Secondly, the hydrogen sulfide content experienced a significant increase from
the beginning of the trial, reaching values exceeding 5000 ppm in all three treatments, with
or without microparticles. This accumulation has also been documented as an inhibitory
effect on methanogenic microorganisms [80]. The drastic increase may be attributed to
the fact that lees from winemaking residues contain substantial concentrations of sulfates
formed during the winemaking process. Consequently, the rise in H2S concentration
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may result from the reduction in the sulfates present in the wine lees during anaerobic
digestion [81]. Additionally, the biogas composition in the uninhibited stage averaged
values of 57.2%, 62.8%, and 61.7% of biomethane content for the Lees Control, Lees Gr,
and Lees Fe trials, respectively, corresponding to an expected energy content of 5.7 to
6.3 kW·h·m−3, which corresponds to a calorific value of 4904 to 5421 kcal·m−3 [82].
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Figure 5. Time course evolution of the biogas composition (CH4 and H2S) along BMP experiments,
with and without microparticle addition, from the anaerobic digestion of wine lees. The asterisk
indicates that the H2S measurement has arrived at the maximum value measured by the gas analyzer.

3.3. Modelling

The examination of the kinetics for adjusting biomethane production using the Gom-
pertz and first-order models exhibited satisfactory fits relative to the curves derived from
experimental data, as depicted in Figure 6. For the Lees Control, Lees Gr, and Lees Fe
tests, R2 values for the Gompertz model reached 98.6%, 98.1%, and 98.4%, respectively;
whereas, the corresponding values for the first-order model were 96.5%, 94.9%, and 93.6%,
respectively.

Table 5 illustrates that the latency phase (λ) was insignificant in all experiments,
registering at 0.38, 0.49, and 0.53 days for the Lees Control, Lees Gr, and Lees Fe treatments,
respectively, in the Gompertz model; the values were 0.17, 0.18, and 0.21 days for the
first-order model, respectively, as well. This fact evidenced the absence of a limiting step in
the hydrolysis. This is attributed to the highly biodegradable nature of the substrate that
had been used in these trials when inhibitory conditions had not been generated in the AD
process. Other studies have similarly documented the absence of a lag phase for wine lees’
AD [50,83].

Table 5. Kinetic parameters obtained from Gompertz and first-order equation modeling from the
BMP experiments of the anaerobic digestion of wine lees, adding different microparticles.

Gompertz First Order

P∞ (mL
CH4·gVS−1)

Rm (mL
CH4·gVS−1·d−1) λ (d) R2 P∞ (mL

CH4·gVS−1) K (d−1) λ (d) R2

Lees
Control 136.00 33.46 0.38 98.6% 136.00 0.350 0.17 96.5%

Lees Gr 166.00 45.38 0.49 98.1% 166.00 0.398 0.18 94.9%
Lees Fe 192.00 46.54 0.53 98.4% 192.00 0.401 0.21 93.6%
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Methane production results for Rm (mL CH4·gVS−1·d−1) were 33.46, 45.38, and
46.54 mL CH4·g−1 SV·d−1 for the Lees Control, Lees Gr, and Lees Fe treatments, respec-
tively, for the Gompertz model. Previous research documented by Arenas Sevillano et al. [9]
reported a daily production rate of 27 mL CH4·g−1 SV·d−1; whereas, Da Ros et al. [49]
found a rate of 24 mL CH4·g−1 SV·d−1, similar to the values observed in the control trial
of this study. Once again, the positive effect of the presence of microparticles resulted in
a considerably higher rate of organic matter conversion to methane. Complementarily,
the production kinetics were estimated by the specific growth rate of microorganisms (K)
when the first-order model was applied, resulting in 0.350, 0.398, and 0.401 d−1 for the Lees
Control, Lees Gr, and Lees Fe treatments, respectively. Consequently, the addition of iron
particles contributed to reporting higher values in the indices for both models.

The substantial variation in daily biomethane production rates, ranging from 35%
to 40%, according to the Gompertz model for the respective two distinct particle types,
suggests the potential operational benefits of integrating it into the AD process of wine lees
in an anaerobic reactor. This integration would optimize, on the one hand, the biomethane
production, and, on the other hand, the potential reduction in the hydraulic residence
time (HRT), by accelerating the organic decomposition of the substrate. Consequently, this
acceleration could lead to a smaller digester size, lower HRT, decreased investment costs
for the operator, and, ultimately, a more sustainable process. However, inhibition mediated
by the VFA accumulation and acidification considerably limited the bioprocess, leading to
a poor biogas quality generation holding very low methane concentration, as detected in
the last steps of the digestion process.

4. Conclusions

The addition of iron-based microparticles to the anaerobic digestion (AD) process
of wine lees resulted in a substantial 39.1% increase in biomethane production rates;
whereas, the introduction of graphite microparticles yielded a significant 35.6% increase.
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Nevertheless, inhibiting factors, such as an elevated volatile fatty acid (VFA) content
and low pH values, were identified during the AD process and were not avoided with
the presence of the particles. Additionally, the biogas content of hydrogen sulfide (H2S)
exhibited a rapid increase along the anaerobic digestion process of wine lees, highlighting
a potential area for further investigation and process optimization aiming to mitigate
the impact of the presence of inhibitory substances in the medium on the efficiency of
biomethane production from wine lees. The next steps of research development will
focus on the design and development of a reactor under continuous or semi-continuous
conditions aiming to verify whether the inhibition period mediated by VFAs or phenolic
substances may be overcome by adapting the microorganism to the substrate. This will
complementarily require the design of a magnetic system for a microparticle separation
system that would enable the recovery and reuse of magnetic iron-based materials after
anaerobic digestion.
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