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Abstract: Droughts are becoming more frequent in the karst region of southwest China due to cli-
mate change, and accurate monitoring of karst agricultural droughts is crucial. To this end, in this
study, based on random forest (RF) and support vector regression (SVR) algorithms, the monthly
precipitation, monthly potential evapotranspiration, monthly normalised difference vegetation Index
(NDVI), elevation, and karst development intensity from January to December 2001–2020 were
used as independent variables, and the standardised soil moisture index (SSI) calculated by GLDAS
soil moisture was used as the dependent variable to construct karst agricultural drought monitor-
ing models at different timescales, using Guizhou Province as an example. The performance of
the models constructed by the two algorithms was also evaluated using root mean square error
(RMSE), coefficient of determination (R2), and correlation analysis, and the spatial and temporal evo-
lution trends of karst agricultural drought at different timescales were analysed based on the model
with better performance. The prediction of karst agricultural drought from January to December
2021–2025 was based on the seasonal difference autoregressive moving average (SARIMA) model
and the analysis of change trends was performed using the Bayesian estimator of abrupt change,
seasonal change, and trend (RBEAST). The results showed that (1) the drought model constructed by
the RF regression algorithm performed better than the SVR algorithm at 1-, 3-, 6-, 9-, and 12-month
timescales and was superior for monitoring karst agricultural drought. (2) The model showed that
the overall trend of agricultural drought at different timescales was alleviated; 2010, 2011, and 2012
were typical drought years. At the same time, most regions showed a trend of drought mitigation,
whereas a few regions (Bijie City, Liupanshui City, and Qianxinan Prefecture) showed a trend of
aggravation. (3) The study predicted an overall high west–east distribution of drought intensity
by 2021–2025. The 1- and 3-month timescales showed a trend of agricultural drought mitigation,
and the 6-, 9-, and 12-month timescales showed a trend of aggravation; in 2021, 2022, and 2024, the
abrupt change rates of autumn and winter droughts were higher. The results can provide a reference
basis for the monitoring of agricultural drought in karst agriculture and the formulation of drought
prevention and anti-drought measures.

Keywords: karst agricultural drought; monitoring models; random forests; support vector regression;
mutation probabilities

1. Introduction

Drought is one of the most devastating natural disasters, affecting hydrology, meteo-
rology, ecology, and society, and causing significant damage [1]. Droughts can be divided
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into four categories [2]: meteorological drought, which occurs due to insufficient precip-
itation; agricultural drought, which occurs due to insufficient soil moisture and affects
vegetation growth; hydrological drought, which occurs due to water shortage in rivers; and
socio-economic drought, which occurs due to its impact on human life and regional devel-
opment [3]. The complex interactions between vegetation and climate [4] make agricultural
droughts more difficult to understand than other droughts, and because agriculture is a
matter of national food security and is vulnerable to climate constraints [5], it is crucial to
study agricultural droughts.

Many scholars have proposed many drought indices to characterise agricultural
drought conditions based on station and remote sensing observation data, such as the
Palmer drought severity index (PDSI) [6], the vegetation conditional index (VCI) [7], the
temperature condition index (TCI) [8], the soil moisture condition index (SMCI) [9], etc.
However, the formation mechanism of agricultural drought is complex [10], and it is
difficult to accurately reflect drought conditions using a single drought index. Therefore,
many scholars have combined remote sensing data with climatic factors affecting vegetation
and other relevant environmental variables to construct an integrated drought model [11].
Sun Li et al. proposed the integrated monitoring drought index by linearly weighting the
temperature vegetation drought index (TVDI) and the anomaly percentage of precipitation
index and applying this to make the new index more stable than the TVDI [12]. Rhee
proposed a scaled drought condition index by linearly combining NDVI, land surface
temperature, and TRMM data [13]. These studies primarily constructed models based on
linear weighting, and the drought-causing factors considered were limited. In recent years,
scholars have attempted to construct drought models by considering multiple drought-
causing factors, using methods such as machine learning. Brown et al. [14] considered
vegetation anomalies, precipitation anomalies, and ecological environment parameters to
construct a vegetation drought response index (VegDRI) using categorical regression trees.
Based on VegDRI, Wu Jiaojiao et al. [15] proposed the integrated surface drought index
with PDSI as the dependent variable for 14 factors characterising vegetation growth status,
environmental water supply status, and soil conditions, and showed that it had greater
advantages in agricultural drought monitoring. The synthesised drought index proposed
by Du Lingtong et al. [16] achieved good results in drought monitoring at both regional and
local scales. Sheng Runping et al. [17] constructed a remote-sensing drought-monitoring
model based on multi-source remote-sensing data using a random forest (RF) algorithm
and achieved good results in practical monitoring. The construction of integrated models
to characterise agricultural droughts has become a trend.

In recent years, droughts in the southwestern karst region of Guizhou have become
more frequent in the context of climate change [18] and have had an extremely severe
impact on the region [19]. Many researchers have constructed comprehensive drought
models to monitor drought; however, no studies, to our knowledge, have constructed
agricultural drought models for karst regions. Therefore, this study used Guizhou Province
as an example. We considered the precipitation, evapotranspiration, NDVI, elevation, and
karst development intensity [20] and used machine learning algorithms (RF and SVR) to
construct karst agricultural drought monitoring models at different timescales. This study
also compared the performance of the two models, and the model with better performance
was selected as the karst agricultural drought monitoring model. Based on this, Sen trend
analysis and MK mutation tests were applied to explore the characteristics of the spatial
and temporal distribution of agricultural drought in karst areas at different timescales. The
SARIMA model was used to predict the drought situation for the next 5 years, while the
RBEAST model was used to analyse the change trend of agricultural drought in karst areas
for the next 5 years to provide a scientific basis for agricultural drought monitoring and
drought mitigation.
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2. Study Area

Guizhou Province is located in southwestern China (Figure 1), on the eastern slope of
the Yunnan-Guizhou Plateau (103◦36′–109◦35′ E, 24◦37′–29◦13′ N), with a province area of
about 1.76× 105 km2 and karst areas accounting for about 73.8% of the province’s area. The
landform types are mainly plateaus, mountains, hills, and basins, and it is the most widely
distributed karst landform in the world [21]. There is a high river density in the territory,
with a total length of 11,270 km, and the Wumeng Mountain Miaoling watershed belongs to
the Yangtze River and Pearl River basins. The climate type is a subtropical humid monsoon
climate [22], with an average annual temperature of 14–16 ◦C in most areas and an annual
precipitation of 1100–1400 mm. However, there is uneven spatial and temporal distribution,
with 75% of precipitation concentrated between April and September and a spatial trend
decreasing from east to northwest, which leads to a more common drought phenomenon.
The average elevation is 1100 m, with the terrain being high in the west and low in the east,
sloping from the centre to the north, east, and south, and the overall frequency of droughts
shows a similar distribution pattern. Drought was significantly aggravated by the El Niño
phenomenon in 2011; in particular, karst development was intense, surface water storage
capacity was weak, and soil erosion was extensive, affecting agricultural production.

Water 2023, 15, x FOR PEER REVIEW 3 of 21 
 

 

2. Study Area 

Guizhou Province is located in southwestern China (Figure 1), on the eastern slope 

of the Yunnan-Guizhou Plateau (103°36′–109°35′ E, 24°37′–29°13′ N), with a province area 

of about 1.76 × 105 km2 and karst areas accounting for about 73.8% of the province’s area. 

The landform types are mainly plateaus, mountains, hills, and basins, and it is the most 

widely distributed karst landform in the world [21]. There is a high river density in the 

territory, with a total length of 11,270 km, and the Wumeng Mountain Miaoling watershed 

belongs to the Yangtze River and Pearl River basins. The climate type is a subtropical hu-

mid monsoon climate [22], with an average annual temperature of 14–16 °C in most areas 

and an annual precipitation of 1100–1400 mm. However, there is uneven spatial and tem-

poral distribution, with 75% of precipitation concentrated between April and September 

and a spatial trend decreasing from east to northwest, which leads to a more common 

drought phenomenon. The average elevation is 1100 m, with the terrain being high in the 

west and low in the east, sloping from the centre to the north, east, and south, and the 

overall frequency of droughts shows a similar distribution pattern. Drought was signifi-

cantly aggravated by the El Niño phenomenon in 2011; in particular, karst development 

was intense, surface water storage capacity was weak, and soil erosion was extensive, af-

fecting agricultural production. 

 

Figure 1. Location map of the study area in Guizhou Province, China. (a) The location of Guizhou 

Province in China; (b) elevation and the meteorological stations and main water systems in Guizhou 

Province; (c) karst development zoning in Guizhou Province. 

3. Materials and Methods 

3.1. Data Source and Pre-Processing 

The data period of this study was January–December 2001–2020, and the projections 

were all unified as WGS-1984-UTM-zone-48N. The soil moisture data were obtained from 

the Global Land Data Assimilation System (https://ldas.gsfc.nasa.gov/gldas/#,accessed on 

1 September 2021). The 0–10 cm data in kg/m3 from ‘GLDAS-NOAH025-M-2.1’ were ob-

tained from the NDVI of the LAADS DACC Data Centre (https://lad-

sweb.modaps.eosdis.nasa.gov, accessed on 1 September 2021). The precipitation and po-

tential evapotranspiration data were obtained from the National Earth System Science 

Figure 1. Location map of the study area in Guizhou Province, China. (a) The location of Guizhou
Province in China; (b) elevation and the meteorological stations and main water systems in Guizhou
Province; (c) karst development zoning in Guizhou Province.

3. Materials and Methods
3.1. Data Source and Pre-Processing

The data period of this study was January–December 2001–2020, and the projections
were all unified as WGS-1984-UTM-zone-48N. The soil moisture data were obtained from
the Global Land Data Assimilation System (https://ldas.gsfc.nasa.gov/gldas/#, accessed
on 1 September 2021). The 0–10 cm data in kg/m3 from ‘GLDAS-NOAH025-M-2.1’ were
obtained from the NDVI of the LAADS DACC Data Centre (https://ladsweb.modaps.
eosdis.nasa.gov, accessed on 1 September 2021). The precipitation and potential evapo-
transpiration data were obtained from the National Earth System Science Data Sharing
Service Platform (http://www.geodata.cn, accessed on 1 September 2021). The elevations
were obtained from the Data Centre for Resource and Environmental Sciences at the Chi-

https://ldas.gsfc.nasa.gov/gldas/#
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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nese Academy of Sciences (http://www.resdc.cn, accessed on 1 September 2021). The
karst development intensity zoning was derived from the karst development intensity
map of Guizhou Province in ‘The Hydrogeology of Guizhou Province’, which was then
digitised and divided into non-karst, weakly developed, moderately developed, more
strongly developed, and strongly developed zones. The NDVI, precipitation, and potential
evapotranspiration were used to reflect their respective anomalies using a standardised
method [23] (spatial resolution: 1 km, temporal resolution: 1 month) and were then ex-
tracted for subsequent studies based on 84 meteorological stations in Guizhou Province.

3.2. Research Methodology

In this study, using monthly precipitation anomalies (PreA), monthly potential evapo-
transpiration anomalies (PetA), monthly NDVI anomalies (NDVIA), and elevation (DEM)
karst development intensity as independent variables and SSI as dependent variables, a
karst agricultural drought model was constructed using RF and SVR. the model perfor-
mance was assessed by RMSE, R2, and standard deviation, and the correlation coefficients
between the model and SPI were also analysed to select the model with better perfor-
mance for monitoring karst agricultural drought. Based on this, the characteristics of karst
agricultural drought were explored. The flow chart of this study is shown in Figure 2.

Water 2023, 15, x FOR PEER REVIEW 4 of 21 
 

 

Data Sharing Service Platform (http://www.geodata.cn, , accessed on 1 September 2021). 

The elevations were obtained from the Data Centre for Resource and Environmental Sci-

ences at the Chinese Academy of Sciences (http://www.resdc.cn, , accessed on 1 September 

2021). The karst development intensity zoning was derived from the karst development 

intensity map of Guizhou Province in ‘The Hydrogeology of Guizhou Province’, which 

was then digitised and divided into non-karst, weakly developed, moderately developed, 

more strongly developed, and strongly developed zones. The NDVI, precipitation, and 

potential evapotranspiration were used to reflect their respective anomalies using a stand-

ardised method [23] (spatial resolution: 1 km, temporal resolution: 1 month) and were 

then extracted for subsequent studies based on 84 meteorological stations in Guizhou 

Province. 

3.2. Research Methodology 

In this study, using monthly precipitation anomalies (PreA), monthly potential evap-

otranspiration anomalies (PetA), monthly NDVI anomalies (NDVIA), and elevation 

(DEM) karst development intensity as independent variables and SSI as dependent vari-

ables, a karst agricultural drought model was constructed using RF and SVR. the model 

performance was assessed by RMSE, R2, and standard deviation, and the correlation coef-

ficients between the model and SPI were also analysed to select the model with better 

performance for monitoring karst agricultural drought. Based on this, the characteristics 

of karst agricultural drought were explored. The flow chart of this study is shown in Fig-

ure 2. 

 

Figure 2. The flow chart of this study. Figure 2. The flow chart of this study.

http://www.resdc.cn


Water 2023, 15, 1795 5 of 21

3.2.1. Drought Identification

Standardised indices are simple to calculate and can characterise the severity of
drought at different timescales [24]; therefore, the standardised precipitation index (SPI)
and standardised soil index (SSI) were chosen to identify drought in this study. Both were
calculated similarly, and the main calculation procedure was as follows:

The monthly precipitation (P) or monthly soil moisture (S) series was fitted using the
following probabilistic statistical distributions:

SPI|SSI = Φ− 1(F(Dkn)) (1)

where Φ− 1(F(x)) is the standard normal inverse transform and Dkn is P or S and denotes
the accumulation of P or S on different timescales, and is calculated as:

Dkn =
k−1

∑
i=0

(Pn−i|Sn−i ), n ≥ k (2)

where n is the number of months calculated, k is the cumulative timescale, and k = 1, 3, 6,
9, and 12 for a total of five timescales.

Gamma distribution is often used to fit the P or S series:

g(x) =
1

βΓ(α)
xα−1e

−1
β

(3)

where Γ(α) is the gamma function, x is cumulative P or S, and α and β are the shape and
scale parameters, respectively, of the gamma function estimated by the great likelihood
method. The detailed calculation method has been described in previous studies, and the
SPI and SSI were graded according to the national drought rating criteria for the degree of
drought (Table 1).

Table 1. Classification of SSI and SPI drought levels.

SPI|SSI Drought Level

−0.5 ≤ SPI|SSI Normal
−1.0 ≤ SPI|SSI < −0.5 Light
−1.5 ≤ SPI|SSI < −1.0 Moderate
−2.0 ≤ SPI|SSI < −1.5 Severe

SPI|SSI < −2.0 Extreme

3.2.2. Karst Agricultural Drought Model Construction

(1) Model construction

Agricultural drought is a phenomenon in which prolonged abnormal precipitation
results in a shortage of soil moisture to meet the normal growth requirements of vege-
tation. This is accompanied by a constant loss of water from vegetation transpiration,
which, in turn, causes stress on vegetation growth and economic losses [25]. Therefore, the
agricultural drought process not only involves factors such as atmospheric precipitation,
vegetation growth state, and soil moisture, but also has a relationship with evapotranspira-
tion, which affects precipitation patterns and the spatial distribution of human activities,
in addition to the intensity of karst development affecting soil water retention and water
storage capacity [20]. Drought-causing factors have complex coupling relationships [26],
thus, in this study, monthly SSI (SSI-1, SSI-3, SSI-6, SSI-9, and SSI-12) at different timescales
was used as the dependent variable; monthly PreA, monthly PetA, monthly NDVIA, DEM,
and karst development were used as independent variables; and a semi-empirical and
semi-mechanical agricultural drought monitoring model was constructed using RF and
SVR regression algorithms to simultaneously evaluate the performance of both models.
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(2) RF model construction

The RF algorithm is an integrated machine learning algorithm based on decision trees
that can effectively avoid the decision tree overfitting problem [27], including classification
and regression algorithms [28]. It generates ntree new sample sets by randomly selecting
samples from the dataset with put-back, and each sample set constructs a regression tree.
The regression tree grows branches by randomly selecting mtry independent variables
from the independent variables at each node. All the regression trees formed an RF, and the
prediction was the mean of the results of each regression tree. This study constructed an RF
karst agricultural drought monitoring model in the form of RF-CDI = (PreA, PetA, NDVIA,
DEM, and Karst development) for different monthly timescales (January–December) based
on the R platform random forest package. ntree and mtry are two important parameters
for constructing an RF agricultural drought monitoring model. Two important parameters
for the model, ntrees, were determined with a minimum mean square error (MSE) (upper
limit of 2000) (Table 2), and mtry was fixed at five (i.e., all five independent variables were
involved in the branch growth of each tree). The detailed RF algorithm has been described
in previous studies [27].

Table 2. Constructing RF model ntree parameters.

January February March April May June July August September October November December

RF-CDI1 1505 1802 538 280 1700 2000 1887 378 165 578 345 819
RF-CDI3 473 294 679 1888 374 1993 1499 1701 180 1056 1271 806
RF-CDI6 533 1449 1983 995 1963 1967 673 944 1048 1916 1962 533
RF-CDI9 334 1990 1475 1410 1797 1411 1809 1980 324 1194 1988 245

RF-CDI12 308 1349 1656 669 1656 1092 822 822 837 1092 1994 241

(3) SVR model construction

SVR is a supervised machine learning algorithm [29] for classification and regression
that constructs a hyperplane or a set of hyperplanes in a high-dimensional space [30], which
is advantageous for solving nonlinear problems and can overcome the shortcomings of
neural networks in dealing with nonlinear problems. To minimise the hyperplane distance
from all the samples to the constructed hyperplane, regression problems are based on
different kernel functions that map low-dimensional samples to higher dimensions to make
them linearly separable [31]. In this study, based on the SVR regression algorithm, a radial
basis kernel function (radial) was used to construct the model, and the kernel coefficient
gamma and penalty coefficient cost had a great impact on the accuracy of the model [32],
thus, cross-validation was used to determine the optimal parameters that fitted the samples
(Table 3). Finally, this study constructed an SVR karst agricultural drought monitoring
model in the form of SVR-CDI = (PreA, PetA, NDVIA, DEM, and Karst development) for
different monthly timescales (January–December) based on the R platform e1071 package.
The detailed algorithm has been described in previous studies.

Table 3. Constructing SVR model ntree parameters.

January February March April May June July August September October November December

SVR-CDI1 gamma 2 1 1 2 1 1 0.1 0.1 1 1 1 1
cost 3 2 2 2 1 2 1 4 2 1 1 1

SVR-CDI3 gamma 3 3 3 2 2 2 0.1 1 4 1 4 1
cost 1 2 2 2 3 1 1 4 2 1 2 1

SVR-CDI6 gamma 3 2 2 1 3 2 0.1 0.1 4 1 3 4
cost 2 2 2 1 2 1 1 4 2 2 2 4

SVR-CDI9 gamma 4 2 2 3 4 2 0.1 0.1 3 1 2 4
cost 2 2 2 2 3 2 1 4 2 2 3 4

SVR-CDI12 gamma 3 2 3 3 4 2 1 0.1 1 1 0.1 4
cost 2 3 2 2 2 3 0.1 3 2 2 4 4
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(4) Evaluation model method

The coefficient of determination (R2), root MSE (RMSE), and correlation coefficient
R (Pearson, Kendall, and Spearman) were used to evaluate the performances of the two
models, from which the most suitable model for agricultural drought monitoring in karst
areas was determined. The higher the R2 and R and the smaller the RMSE, the better
the performance of the model, indicating that it was more suitable for karst agricultural
drought monitoring.

3.2.3. Drought Prediction

The integrated autoregressive moving average (ARIMA) model [33] is a commonly
used time-series forecasting method with high forecasting accuracy for the short-term fore-
casting of nonstationary time series [34], usually denoted as ARIMA (p,d,q), with specific
model references provided in previous studies [35]. The seasonal difference autoregressive
moving average (SARIMA) model, usually denoted as SARIMA (p,d,q) (P,D,Q), is used for
time-series problems with seasonality, where (p,d,q) is the non-seasonal component (i.e.,
the ARIMA model) and (P,D,Q) is the seasonal component, reflecting the cyclical nature of
the time series [36]. The model is expressed by Equation (4):

∅p(L)Ap(Ls)∆d∆s
Dyt = Θq(L)BQ(Ls)ut (4)

where yt is the drought intensity at time point t of the time series simulated by the agri-
cultural drought model at each timescale; p, d, and q are the non-seasonal autoregressive
order, number of differences in the transformation of the non-seasonal time series into
a smooth time series, and non-seasonal moving average order, respectively; P, D, and Q
are the seasonal autoregressive, differential, and moving average orders, respectively; s is
the length of the seasonal cycle; ∅ and A are the parameters of the p-order autoregressive
term and the seasonal autoregressive term, respectively; ∆d and ∆s

D are the differential
operator and seasonal differential operator, respectively; Θ and B are the q order moving
average term parameters and the Q order seasonal cycle moving average term parame-
ters, respectively; L is the lag operator; and ut is the noise component of the stochastic
model [37].

This study predicted the drought intensity for January–December 2021–2025 at differ-
ent timescales based on sites using the SARIMA model, and the construction process was
as follows: first, the augmented Dickey–Fuller test was used to identify the smoothness of
each time series, and the trend difference and seasonal difference were used to convert the
non-smooth data into smooth data. Then, the optimal parameter sets and model structures
for p, q, P, and Q were selected based on the autocorrelation function (ACF) and partial
ACF of the above smooth time series, combined with the Akaike information criterion [38].

3.2.4. Other Methods

(1) The Theil–Sen median (Sen) trend analysis [39], a nonparametric trend degree
method, was used to calculate the trend of change in karst agricultural drought for different
timescales from 2001 to 2020, and the significance of the trend was tested using the Mann–
Kendall statistical test. The advantage of Sen trend analysis is that the sample does not
need to obey a certain distribution [40], which can reduce the interference of outliers using
the following equation:

β = Median
(

xj − xi

j− i

)
, j > i (5)

where β is the drought trend and xi and xj are the drought intensities corresponding to i
and j at a specific time in the study area. If β > 0, the agricultural drought tended to be
alleviated, and if β < 0, it tended to be aggravated. A 0.01 significance level determined by
the Mann–Kendall test indicated a highly significant change in drought, 0.05 indicated a
significant change in drought, and 0.1 indicated a slightly significant change in drought.
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(2) RBEAST is a traditional Bayesian algorithm that uses prior information to infer the
model structure [41] and it can be used to detect seasonality, trends, mutation points, and
mutation probabilities in a time series. It does not rely on a single model to decompose the
time series, but is based on an integrated algorithm that combines many weak models into
a stronger model while treating all the noise as random [42]. This study analysed the trend
of karst agricultural drought at different timescales from January–December 2021–2025
based on the RBEAST model using the following model expressions:

Y(t) = T(θt) + S(θs) + ε (6)

where Y(t) is the time series; T and S are the trend and seasonal terms, respectively; θt and
θs are the number of change points in the trend term and the location of change points
in the seasonal term, respectively; and ε is a Gaussian random error term N (0, δ2) with
unknown variance (δ2). The specific calculation method has been described in previous
studies [43].

4. Results and Analysis
4.1. Performance Evaluation of the Karst Agricultural Drought Monitoring Model
4.1.1. Model Validation and Evaluation

A total of 60 drought models were constructed for 1-, 3-, 6-, 9-, and 12-month timescales
using RF and SVR algorithms to model the January–December Pearson correlation coeffi-
cients, RMSE, ratio of standard deviations, and R2 (Figures 3 and 4), which were calculated
for the dependent variable (SSI) and model fit values (RF-CDI and SVR-CDI) to com-
pare the performance of the two types of agricultural drought models. In terms of the
correlation coefficients, those with a total of 60 RF-CDI simulations with SSI values for
different timescales from January to December ranged from 0.750 to 0.990, and were mainly
concentrated above 0.9, with 50 models having correlation coefficients of >0.950 with SSI
values, while the correlation coefficients of the all SVR-CDI fit with SSI values ranged from
0.380 to 0.950 with a wide range of fluctuations. The correlations of the January–December
models for each timescale of the two algorithms passed the 0.01 significance test, and
the simulation results of RF-CDI were superior. On a 1-month timescale, for example,
the correlation coefficients of the RF-CDI 12-month model were all higher than those of
the SVR-CDI model. In addition, the correlation of the RF-CDI was similar to that of the
1-month timescale for each month model for all timescales, except for the 9- (0.758) and
12-month timescales (0.788), where the correlation of the 5-month model was lower than
that of the SVR-CDI (9:0.954, 12:0.938), and the correlation coefficient of the RF-CDI was
higher than that of the SVR-CDI. In terms of the ratio of standard deviation, RF-CDI was
concentrated in the range of 0.3 to 0.4, while SVR-CDI was concentrated in the range of
0.4 to 0.5 but fluctuated more. The RF-CDI simulation performed better. In terms of
the RMSE between the simulation results and the SSI values, the RF-CDI remained at
0.190–0.290 for each timescale, except for July, when the RMSE was higher (>0.3), and other
months when the RMSE was higher (>0.7). Again, the RF-CDI simulation was superior.
The R2 value of the July model was lower than that of the other months at the same scale
for both RF-CDI and SVR-CDI (Figure 4). The R2 value was like to that of the RMSE pattern,
and the RF-CDI R2 value was always maintained at a high level (R2 > 0.900), except for July,
whereas that of SVR-CDI fluctuated more, and both were lower than that of the RF-CDI. In
conclusion, the performance of the karst agricultural drought model constructed based on
the RF algorithm was better, and it could better monitor karst agricultural drought.
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4.1.2. Correlation Metric of RF-CDI, SVR-CDI, and SPI

In this study, the SPI was used to further evaluate the performance of RF-CDI (model
constructed by RF) and SVR-CDI (model constructed by support vector institutions). Cor-
relation analysis (Pearson, Kendall, and Spearman) was performed between RF-CDI and
SVR-CDI and SPI at different timescales, and the results are shown in Figure 5 for the
Pearson correlation analysis (pRF-CDI and pSVR-CDI). The correlation coefficient of SIP-9
with RF-CDI on a 1-month timescale (pRF-CDI-1), for example, was 0.547, while that of the
corresponding SVR-CDI was 0.435. In addition, the correlation coefficient of pRF-CDI-12
with SPI-1 was smaller (0.162), and that with pSVR-CDI-12 was even smaller (0.159). The
Pearson correlation coefficients of RF-CDI with SPI at different timescales were both higher
than those of SVR-CDI with SPI at the corresponding timescales, and both passed the
significance test at p < 0.01. For the Kendall correlation analysis, the pattern of correlation
coefficients was similar to that of the Pearson correlation analysis, with all timescales pass-
ing the significance test of p < 0.01, except for the correlation coefficients between RF-CDI
and SPI-1 at the 6-, 9-, and 12-month timescales, which passed the significance test of
p < 0.1. The patterns of the Spearman correlation analysis and Pearson correlation analysis
were similar (Figure 5). This further indicated that RF-CDI is superior for monitoring
agricultural droughts in karst areas.

Water 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

4.1.2. Correlation Metric of RF-CDI, SVR-CDI, and SPI 

In this study, the SPI was used to further evaluate the performance of RF-CDI (model 

constructed by RF) and SVR-CDI (model constructed by support vector institutions). Cor-

relation analysis (Pearson, Kendall, and Spearman) was performed between RF-CDI and 

SVR-CDI and SPI at different timescales, and the results are shown in Figure 5 for the 

Pearson correlation analysis (pRF-CDI and pSVR-CDI). The correlation coefficient of SIP-

9 with RF-CDI on a 1-month timescale (pRF-CDI-1), for example, was 0.547, while that of 

the corresponding SVR-CDI was 0.435. In addition, the correlation coefficient of pRF-CDI-

12 with SPI-1 was smaller (0.162), and that with pSVR-CDI-12 was even smaller (0.159). 

The Pearson correlation coefficients of RF-CDI with SPI at different timescales were both 

higher than those of SVR-CDI with SPI at the corresponding timescales, and both passed 

the significance test at p < 0.01. For the Kendall correlation analysis, the pattern of correla-

tion coefficients was similar to that of the Pearson correlation analysis, with all timescales 

passing the significance test of p < 0.01, except for the correlation coefficients between RF-

CDI and SPI-1 at the 6-, 9-, and 12-month timescales, which passed the significance test of 

p < 0.1. The patterns of the Spearman correlation analysis and Pearson correlation analysis 

were similar (Figure 5). This further indicated that RF-CDI is superior for monitoring ag-

ricultural droughts in karst areas. 

 

Figure 5. Correlation between model and SPI. Note: p in pRF-CDI-1 is the Pearson correlation coef-

ficient, RF is the random forest, and 1 is the time scale; refer to this expression for other correlation 

coefficients; *** represents passing a significance test of 0.01, ** passing a significance test of 0.05, * 

passing a significance test of 0.1. 

4.2. Analysis of Karst Agricultural Drought Change Characteristics 

4.2.1. Time-Varying Characteristics 

This study characterised karst agricultural drought based on RF-CDI for different 

timescales (1, 3, 6, 9, and 12 months) in Guizhou Province from 2001 to 2020 and analysed 

Figure 5. Correlation between model and SPI. Note: p in pRF-CDI-1 is the Pearson correlation
coefficient, RF is the random forest, and 1 is the time scale; refer to this expression for other correlation
coefficients; *** represents passing a significance test of 0.01, ** passing a significance test of 0.05,
* passing a significance test of 0.1.



Water 2023, 15, 1795 11 of 21

4.2. Analysis of Karst Agricultural Drought Change Characteristics
4.2.1. Time-Varying Characteristics

This study characterised karst agricultural drought based on RF-CDI for different
timescales (1, 3, 6, 9, and 12 months) in Guizhou Province from 2001 to 2020 and anal-
ysed the temporal variation characteristics (Figure 6). Figure 6 shows that droughts on
different timescales have different oscillation frequencies and exhibit different dynamic
characteristics. For the 1-month timescale (RF-CDI-1), the drought characteristic values
showed a fluctuating upward trend (tilt rate: 0.014/10 m), indicating an overall weakening
trend of the drought intensity, with an average of −0.044. Taking 2011 as a typical year,
the drought level in April, July, August, and September was extremely high, with severe
drought in May (−1.737). March 2010 showed an exceptional drought level, and February
of the same year showed severe drought. RF-CDI-3 (0.020/10 m) fluctuated in a similar
trend to RF-CDI-1, and the intensity of drought tended to weaken. Similarly, 2011 and
2010 were typical drought years, with an exceptional drought in the summer and autumn
of 2011, and severe drought in May, June, and November. February, March, and April
2010 experienced more severe drought. RF-CDI-6 also showed a fluctuating upward trend
(0.023/10 m), and unlike the 3-month timescale, the drought that occurred in 2011 was
more severe, with five of the six months experiencing the extreme drought occurred in
2011, affecting the summer, autumn, and winter (August, September, October, November,
and December).

The same was true for the spring (March, April, and May) drought in 2010, during
which the drought intensity in March reached −2.025, indicating that it was an extreme
drought. RF-CDI-9 showed a greater fluctuation trend than the previous three timescales,
but the overall trend was also upward (0.025/10 m), including during the severe drought
in 2010 and 2011. The drought in February, March, and April 2012 was also severe, with the
different months showing extreme drought, severe drought, and severe drought, respec-
tively. RF-CDI-12 had a fluctuation trend similar to that of RF-CDI-9 (0.025/10 m). Drought
was severe in the winter of 2011 and in the first half of 2012.

4.2.2. Spatial Variation Characteristics

To further explore the characteristics of karst agricultural drought change, this study
analysed the change trend of monthly RF-CDI at different timescales from 2001 to 2020
using the Theil–Sen Median method and tested the significance of the change trend using
the Mann–Kendall statistical test (Figure 7). The area with a positive slope of change of
RF-CDI-1 accounted for approximately 95.506% of the total area (Figure 7a), indicating that
the change trend of agricultural drought in Guizhou Province was mainly alleviated with
a maximum value of 0.031/10 m, but 30.952% of the stations did not show a significant
increase (did not pass the significance test) and were mainly distributed in the southwest
region of the study area (Bijie City, Liupanshui City, and Qianxinan Prefecture). In addition,
25% of the stations had a highly significant upward trend, mainly in the Middle Eastern
region (Meitan, Guiding, Majiang, Rongjiang, etc.), and 23.910% and 19.048% of the stations
had significant and slightly significant upward trends, respectively. Among the 84 stations
in the province, only one station in Panxian showed a decreasing trend, but did not pass
the significance test. The spatial distributions of the RF-CDI-3 and RF-CDI-1 change trends
were similar (Figure 7b), with the province’s agricultural drought change trends dominated
by mitigation (94.382%), and with sites that did not pass significance concentrated in
the southwest region, but with a maximum value of up to 0.040/10 m. Compared to the
previous two timescales, the number of significant sites in RF-CDI-6 (83.333%) has increased
(Figure 7). The trend of RF-CDI-9 was similar to that of RF-CDI-6, with the exception of
the northeastern station of Songtao, which had a non-significant increase. The number of
stations that did not pass the significance test (10) was significantly reduced compared with
other timescales, and most of them were highly significant (57). In conclusion, the overall
trend of karst agricultural drought at different timescales from 2001 to 2020 was alleviated.
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4.3. Karst Agricultural Drought Forecast for the Next 5 Years
4.3.1. Spatial Distribution Characteristics of Karst Agricultural Drought in the Next 5 Years

In this study, the SARIMA model was used to predict agricultural droughts at different
timescales from January to December 2021–2025, and since August is prone to drought, the
spatial distribution of agricultural droughts in karst from August 2021–2025 was plotted
(Figure 8) and analysed. For the 1-month timescale, the spatial distribution pattern of
August drought in Guizhou Province over the next 5 years is similar, and the overall
drought characteristic values are low in the southwest and high in the east, implying that
the drought in the southwest region of the study area is more severe than in other regions
during the same period. However, the most severely affected region is northeast of Tongren
(Yanhe, Yinjiang, and Songtao), and the most severe drought occurs in August 2021 as a
light drought (−0.563). The 3-month timescale has a similar spatial distribution pattern as
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the 1-month timescale: the drought intensity is higher in the west and lower in the east, but
there is a local drought centre. The lowest drought characteristic value in August 2021 was
−0.748 (Weining), and the drought intensity was more severe than the 1-month timescale in
the same period; however, there were no drought areas in the following 4 years. Compared
with the first two timescales, the 6-month timescale showed an overall west-high east-low
distribution of drought intensity, but the local drought was more severe. The 9-month
timescale was the most severe timescale of local drought, except for the severe drought
in Weining, and the intensity of drought in Songtao reached −1.569 (severe drought) in
August 2021. The following 4 years were similar to the 6-month timescale, with moderate
drought. The 12-month timescale was similar to the 9-month timescale; however, the local
drought (Guiyang) was relieved, and no drought occurred in the study area in August 2021.
In summary, the spatial distribution of agricultural drought at different timescales over the
next 5 years was variable, but the drought intensity as a whole showed a high distribution
in the west and a low distribution in the east.

Water 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 7. Spatial distribution of Sen trend + MK test at different time scales, January–December 

2001–2020. 

4.3. Karst Agricultural Drought Forecast for the Next 5 Years 

4.3.1. Spatial Distribution Characteristics of Karst Agricultural Drought in the Next 5 Years 

In this study, the SARIMA model was used to predict agricultural droughts at differ-

ent timescales from January to December 2021–2025, and since August is prone to drought, 

the spatial distribution of agricultural droughts in karst from August 2021–2025 was plot-

ted (Figure 8) and analysed. For the 1-month timescale, the spatial distribution pattern of 

August drought in Guizhou Province over the next 5 years is similar, and the overall 

drought characteristic values are low in the southwest and high in the east, implying that 

the drought in the southwest region of the study area is more severe than in other regions 

during the same period. However, the most severely affected region is northeast of Ton-

gren (Yanhe, Yinjiang, and Songtao), and the most severe drought occurs in August 2021 

as a light drought (−0.563). The 3-month timescale has a similar spatial distribution pattern 

as the 1-month timescale: the drought intensity is higher in the west and lower in the east, 

but there is a local drought centre. The lowest drought characteristic value in August 2021 

was −0.748 (Weining), and the drought intensity was more severe than the 1-month time-

scale in the same period; however, there were no drought areas in the following 4 years. 

Compared with the first two timescales, the 6-month timescale showed an overall west-

high east-low distribution of drought intensity, but the local drought was more severe. 

The 9-month timescale was the most severe timescale of local drought, except for the se-

vere drought in Weining, and the intensity of drought in Songtao reached −1.569 (severe 

drought) in August 2021. The following 4 years were similar to the 6-month timescale, 

with moderate drought. The 12-month timescale was similar to the 9-month timescale; 

however, the local drought (Guiyang) was relieved, and no drought occurred in the study 

area in August 2021. In summary, the spatial distribution of agricultural drought at differ-

ent timescales over the next 5 years was variable, but the drought intensity as a whole 

showed a high distribution in the west and a low distribution in the east. 

Figure 7. Spatial distribution of Sen trend + MK test at different time scales, January–December
2001–2020.



Water 2023, 15, 1795 14 of 21Water 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 8. Spatial distribution of agricultural drought at different time scales, August 2021–2025. 

4.3.2. Characteristics of Temporal Changes of Karst Agricultural Drought for the Next 5 Years 

To further describe the future trends of agricultural drought in karst, this study used 

RBEAST to analyse the seasonality, trends, mutation points, and mutation point probabil-

ities of agricultural drought at different timescales from January to December 2021–2025. 

The results show that agricultural drought for the next five years will have a trend of mit-

igation at the 1- and 3-month timescales and aggravation at the 6-, 9-, and 12-month time-

scales (Figure 9). For the 1-month timescale, there were two significant abrupt change 

points (October 2021 and January 2023) in the seasonality of drought characteristic values 

(Figure 9a) with a probability of abrupt changes of 100% and 88.596%, respectively, and 

an abrupt change, but with a lower probability in October 2022. With regard to the trends, 

there was generally an increase followed by a slight decrease, and then a levelling off. 

First, the agricultural drought was significantly relieved from January to November 2021, 

followed by a slight increase until October 2022, after which it levelled off. This meant that 

there were also two mutation points in the trend, which were November 2021 (probability, 

92.201%) and October 2022 (73.858%); also in addition, Figure 9a shows that there is a 

higher probability that the agricultural drought was relieved in January–November 2021, 

followed by a higher probability that the agricultural drought was aggravated until Octo-

ber 2022. Following that, the agricultural drought seasonality was more variable on a 3-

month timescale than on a 1-month timescale, but the overall agricultural drought tended 

to ease. Seasonality exhibited three abrupt change points: November 2021 (100%), August 

2022 (86. 675%), and February 2024 (70.142%). There were two mutation points with a high 

probability of trends (November 2021, 89.013%; January 2024, 63.571%), with a trend of 

drought remission followed by slight aggravation. Two mutation points existed for 6-

Figure 8. Spatial distribution of agricultural drought at different time scales, August 2021–2025.

4.3.2. Characteristics of Temporal Changes of Karst Agricultural Drought for the Next 5 Years

To further describe the future trends of agricultural drought in karst, this study used
RBEAST to analyse the seasonality, trends, mutation points, and mutation point probabilities
of agricultural drought at different timescales from January to December 2021–2025. The
results show that agricultural drought for the next five years will have a trend of mitigation at
the 1- and 3-month timescales and aggravation at the 6-, 9-, and 12-month timescales (Figure 9).
For the 1-month timescale, there were two significant abrupt change points (October 2021 and
January 2023) in the seasonality of drought characteristic values (Figure 9a) with a probability
of abrupt changes of 100% and 88.596%, respectively, and an abrupt change, but with a lower
probability in October 2022. With regard to the trends, there was generally an increase followed
by a slight decrease, and then a levelling off. First, the agricultural drought was significantly
relieved from January to November 2021, followed by a slight increase until October 2022, after
which it levelled off. This meant that there were also two mutation points in the trend, which
were November 2021 (probability, 92.201%) and October 2022 (73.858%); also in addition,
Figure 9a shows that there is a higher probability that the agricultural drought was relieved in
January–November 2021, followed by a higher probability that the agricultural drought was
aggravated until October 2022. Following that, the agricultural drought seasonality was more
variable on a 3-month timescale than on a 1-month timescale, but the overall agricultural
drought tended to ease. Seasonality exhibited three abrupt change points: November 2021
(100%), August 2022 (86. 675%), and February 2024 (70.142%). There were two mutation
points with a high probability of trends (November 2021, 89.013%; January 2024, 63.571%),
with a trend of drought remission followed by slight aggravation. Two mutation points
existed for 6-month timescale seasonality in July 2021 (100%) and September 2022 (76.358%).
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The trend was different from that of the previous two timescales, with the drought showing
an increasing trend from January to July 2021, a sudden change in July (96.063%), relief in
November 2022, another sudden change in November 2022 (96.061%), and an increase in
drought until March 2024 (79.481%), when the drought stabilised after a relief trend. The
9-month timescale was similar to the 6-month timescale, with an overall increasing trend
of drought. Regarding the seasonality, there were three abrupt change points: July 2021,
December 2022, and December 2023. Drought showed an increasing trend from January to
August 2021, followed by a decreasing trend from August 2021 to October 2022, and then
stabilised after an increasing trend from October 2022 to January 2024. The 12-month timescale
seasonality showed abrupt changes in January 2022, July 2022, and August 2023. Overall,
drought showed aggravation-slight, mitigation-slight, and aggravation-stabilisation trend,
with abrupt changes in September 2021, April 2022, and July 2023.
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points and probability; and slpSign indicates a trend of change. Purple indicates drought relief, red
indicates aggravation, green indicates no change.
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5. Discussion

Precipitation is a key process in the global water cycle [44], and drought is inseparable
from the water cycle process [45]. Guizhou Province has a subtropical humid monsoon
climate that is alternately controlled by tropical marine air masses and polar continental
air masses with an abundant but regional distribution of precipitation. In spring (March,
April, and May), surface vegetation that is sprouting requires more water; vegetation
sprouting is affected, and vegetation growth is inhibited in areas with precipitation deficits.
In summer (June, July, and August), high temperatures increase vegetation transpiration.
When precipitation cannot be effectively replenished, the vegetation close their leaf stomata
or even shed old leaves to prevent excessive water evaporation [46]. In autumn (September,
October, and November), surface crops mature and require less water than in spring, but
reduced rainfall and persistent high temperatures can affect water vapour transport, and
thus, vegetation growth. However, winter (December, January, and February) has low
precipitation and high relative wetness and snowfall, resulting in less river recharge than
in other seasons, which can trigger an agricultural drought.

Secondly, karst development and elevation constitute different subsurface condi-
tions, which affect the water storage capacity of the basin. The unique ‘surface-subsurface
binary structure’ of karst landscapes has a stronger water storage capacity in the basin
compared with that of non-karst areas. The higher the elevation, the farther the surface is
vertically from the basin’s dissolution/erosion datum, and the greater the water storage
space and water storage capacity [47]. When vegetation growth is inhibited by insuffi-
cient precipitation, the watershed water storage capacity is weak and vegetation cannot
be effectively recharged, thus accelerating the occurrence of drought. At the same time,
high altitudes can lead to low temperatures, which is also a major factor limiting the
growth of vegetation. Therefore, the agricultural drought process is extremely complex
and not only involves factors such as atmospheric precipitation, evapotranspiration,
soil moisture, and the vegetation growth state, but is also related to the substratum
(elevation and karst development intensity), which is the result of multi-factor coupling.
In summary, this study clarified the coupling of drought-causing factors and constructed
an agricultural drought model based on RF and SVR regression algorithms for karst
areas, and the model constructed by the RF algorithm showed a better performance and
was thus finally selected to monitor karst agricultural drought. The chosen RF algorithm
was constructed based on a regression tree, which is an integrated learning method
that can achieve information superiority and has a higher fitting accuracy than the SVR
algorithm (Figures 3–5). It is more suitable for karst areas, providing a reference basis
for karst agricultural drought monitoring.

In addition, this study found an overall trend of alleviation of agricultural drought in
Guizhou Province at different timescales (1, 3, 6, 9, and 12 months) over the past 20 years
(Figures 6 and 7), which may be attributed to the significant improvement in vegetation
cover in Guizhou Province in recent years through the implementation of various measures,
such as returning farmland to forest and rock desertification management [48], which is
consistent with the findings of a study by Pi et al. [49]. Overall, agricultural drought was
more severe in 2010, 2011, and 2012 (Figure 5), and this study identified severe drought for
1 month in February (−1.867), exceptional drought in March (−2.082), and severe drought
in summer 2011 (drought intensity: July, −2.284; August, −2.764; September, −2.075).
Drought conditions were severe in spring 2010; summer, autumn, and winter 2011; and
spring and summer 2012. The historical disaster record recorded a very severe summer,
autumn, winter, and spring drought in 2010; an exceptionally severe summer, autumn,
winter, and spring drought in 2011; and a drought in most of Qianxinan in 2012, which
coincided with the monitoring results of this study. It is worth noting that from 2009 to 2013,
against a background of atmospheric circulation anomalies, southern branch troughs, and
persistently weak stratospheric polar vortices, the Arctic Oscillation anomaly changed the
cold air path eastward, and the warm and humid airflow had difficulty reaching Guizhou
Province, which is an important reason for the severe drought in the study area [50], further
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verifying the results of this study. From the spatial variation characteristics (Figure 7), the
drought in the southwest region of the study area showed an aggravating trend and was
more severe than that in the east, which was related to the weak horizontal transport of
westerly winds [50].

Finally, this study predicted that the overall drought intensity for the next 5 years will
be high in the west and low in the east (Figure 8), with a similar spatial distribution to
the altitude of Guizhou Province (Figure 1). This may be attributed to the high altitude,
fragmented surface, and high permeability of karst landscapes in the west that are highly
susceptible to high-intensity drought and serious stone desertification [45]. Farming in
areas with large slopes becomes inevitable, making crops and soils more susceptible to
drought [51]. In addition, the temperature decreases with increasing elevation, and low
temperatures can limit vegetation growth. Meanwhile, it is predicted that agricultural
drought will show a trend of alleviation at the 1- and 3-month timescales and aggravation
at the 6-, 9-, and 12-month timescales for the next 5 years. This may be due to the long
timescale, extended drought epoch, and gradual weakening of the water storage capacity
of the watershed, which increases the probability of propagation between droughts and ag-
gravates agricultural drought. In addition to the timing and probability of abrupt changes
at each timescale (Figure 9), this study could provide a reference for the development
of drought prevention and relief measures in Guizhou Province. In addition, this study
predicts a high probability of sudden changes in karst agricultural drought by autumn and
winter in 2021, 2022, and 2024. Consulting relevant information from the Guizhou Agri-
cultural Meteorological Bureau, the average autumn temperature in 2021 was 2.4–6.7 ◦C
higher than in the rest of the year, with low precipitation and rapid development of drought,
frequent cold air activity in late autumn and early winter, and low precipitation before
winter compared with the same period, with insufficient soil subsoil moisture. A severe
drought was followed by a cold wave in the autumn and winter of 2022. The accuracy of
this model for monitoring drought in karst agriculture can be verified to some extent. The
study focused on clarifying and modelling the agricultural drought process under natural
conditions; however, drought is a complex natural phenomenon [52], and human activities,
national policies, and other influencing factors were not considered, which is a shortcoming
of this study and will continue to be explored in the future.

6. Conclusions

In this study, five drought-causing factors (precipitation, evapotranspiration, NDVI,
elevation, and karst development intensity) were considered, and a semi-empirical and
semi-mechanical agricultural drought monitoring model for karsts was constructed using
RF and SVR algorithms with SSI as the dependent variable. The performance of the model
was evaluated using the Pearson correlation coefficient, RMSE, R2, and correlation analysis
with SPI (Pearson, Kendall, and Spearman). The drought model based on the RF algorithm
was found to be superior for monitoring agricultural drought in karst areas.

Based on the RF-CDI, the spatial and temporal evolutionary characteristics of droughts
in the region over a 20-year period were explored. In terms of the temporal changes, the
model monitored the overall trend of agricultural droughts at different timescales to be
in remission, with 2010, 2011, and 2012 being more severe and typical drought years. In
terms of spatial variation, the regions with positive Theil–Sen trend values for agricultural
drought at different timescales accounted for the majority of the study area, indicating
that most regions showed a trend of drought mitigation, with a small number of regions
showing a trend of aggravation, mainly in the southwest region of the study area (Bijie
City, Liupanshui City, and Qianxinan Prefecture). Most stations passed the test at p < 0.01.

The spatial distribution of agricultural drought at different timescales over the next
5 years was variable, but the drought intensity as a whole had a high west–east distribution.
At the same time, it was predicted that the agricultural drought for the next 5 years will
follow the trend of mitigation at the 1- and 3-month timescales and the trend of aggravation
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at the 6-, 9-, and 12-month timescales. The probability of abrupt changes in the autumn
and winter of 2021, 2022, and 2024 is high.

Author Contributions: L.C.: Methodology, data curation, and writing—original draft. Z.H.: Conceptu-
alization, methodology, project administration, and funding acquisition. X.G.: Editing and supervision.
M.X.: Editing and supervision, S.P.: Editing and supervision. H.T.: Editing and supervision. S.Y.: Editing
and supervision. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are grateful to the editors and anonymous reviewers for their useful sug-
gestions and comments. This study was supported by the Natural Science Foundation of China
(ul612441; 41471032); the Natural Science Foundation of Guizhou Province, China (OKHJ-ZK
2023 Key028); the natural and scientific research fund of Guizhou Water Resources Department
(KT202237); the Natural and scientific fund of Guizhou Science and Technology Agency (OKH J
20101 No. 2026, OKH (20131 No. 2208)); and the 2015 Doctor Scientific Research Startup Project of
Guizhou Normal University.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, K.K.; Li, J.Z.; Zhang, T.; Kang, A. The use of combined soil moisture data to characterize agricultural drought conditions

and the relationship among different drought types in China. Agric. Water Manag. 2021, 243, 106479–106493. [CrossRef]
2. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [CrossRef]
3. Alzira, G.S.S.S.; Alfredo, R.N.; Laio, L.D.S. Soil moisture-based index for agricultural drought assessment: SMADI application in

Pernambuco State-Brazil. Remote Sens. Environ. 2021, 252, 112124–112139.
4. Sandeep, P.; Obi, R.G.P.; Jegankumar, R.; Arun, K.C. Monitoring of agricultural drought in semi-arid ecosystem of Peninsular

India through indices derived from time-series CHIRPS and MODIS datasets. Ecol. Indic. 2021, 121, 107033. [CrossRef]
5. Liu, X.F.; Zhu, X.F.; Pan, Y.Z.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring:progress, challenges, and prospects. J. Geogr.

Sci. 2016, 26, 750–767. [CrossRef]
6. Dai, A.; Trenberth, K.E.; Qian, T.T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil

Moisture and Effects of Surface Warming. J. Am. Meteorol. Soc. 2004, 5, 1117–1130. [CrossRef]
7. Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 2007, 11, 1405–1419.

[CrossRef]
8. Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100.

[CrossRef]
9. Zhang, A.Z.; Gensuo, J. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing

data. Remote Sens. Environ. 2013, 134, 12–23. [CrossRef]
10. Albert, I.J.M.V.D.; Beck, H.E.; Crosbie, R.S. The millennium drought in southeast Australia (2001–2009): Natural and human

causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057.
11. Tadesse, T.; Champagne, C.; Wardlow, B.D.; Hadwen, T.A.; Brown, J.F.; Demisse, G.B.; Davidson, A.M. Building the vegetation

drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: First results. GISci. Remote Sens. 2017, 54,
230–257. [CrossRef]

12. Sun, L.; Wang, F.; Li, B.G.; Chen, X. Study on drought monitoring of wuling mountain area based on multi-source data. Trans.
Chin. Soc. Agric. Mach. 2014, 45, 246–252.

13. Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data.
Remote Sens. Environ. 2010, 114, 2875–2887. [CrossRef]

14. Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The vegetation drought response index (VegDRI): A new integrated
approach for monitoring drought stress in vegetation. GISci. Remote Sens. 2008, 45, 16–46. [CrossRef]

15. Wu, J.J.; Zhou, L.; Liu, M.; Zhang, J.; Leng, S.; Diao, C. Establishing and assessing the Integrated Surface Drought Index (ISDI) for
agricultural drought monitoring in Mid-Eastern China. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 397–410. [CrossRef]

16. Du, L.T.; Tian, Q.J.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating
MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2012, 23, 245–253. [CrossRef]

17. Shen, R.P.; Gou, J.; Li, L.X. Construction of a drought monitoring model using the random forest based remote sensing. J. Geo-Inf.
Sci. 2017, 19, 125–133.

18. Han, L.Y.; Zhang, Q.; Ma, P.L.; Jia, J.; Wang, J. The spatial distribution characteristics of a comprehensive drought risk index in
southwestern China and underlying causes. Theor. Appl. Climatol. 2016, 124, 517–528. [CrossRef]

19. Li, K.Z.; Xu, Z.C.; Lv, X.X.; Dong, Y.P.; Wang, H.S. Quantifying the effect of drought with different durations on karst dissolution
based on field control test. Prog. Geogr. 2021, 40, 1704–1715. [CrossRef]

https://doi.org/10.1016/j.agwat.2020.106479
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1016/j.ecolind.2020.107033
https://doi.org/10.1007/s11442-016-1297-9
https://doi.org/10.1175/JHM-386.1
https://doi.org/10.1080/01431169008955102
https://doi.org/10.1016/0273-1177(95)00079-T
https://doi.org/10.1016/j.rse.2013.02.023
https://doi.org/10.1080/15481603.2017.1286728
https://doi.org/10.1016/j.rse.2010.07.005
https://doi.org/10.2747/1548-1603.45.1.16
https://doi.org/10.1016/j.jag.2012.11.003
https://doi.org/10.1016/j.jag.2012.09.010
https://doi.org/10.1007/s00704-015-1432-z
https://doi.org/10.18306/dlkxjz.2021.10.008


Water 2023, 15, 1795 20 of 21

20. Chen, L.H.; He, Z.H.; Pan, S. Spatial and Temporal Evolution Characteristics of Karst Agricultural Drought Based on Different
Time Scales and Driving Detection. J. Soil Water Conserv. 2023, 37, 136–148.

21. Zhao, Y.L.; Zhao, J.; Li, Y.; Xue, Q.Y. Research progress of Huajiang Kaest gorge, Cuizhou Province. J. Guizhou Norm. Univ. 2022,
40, 1–10+132.

22. Huang, D.H.; Zhou, Z.F.; Peng, R.W.; Zhu, M.; Yin, L.J.; Zhang, Y.; Xiao, D.N.; Li, Q.X.; Hu, L.W.; Huang, Y.Y. Challenges and
main research advances of low-altitude remote sensing for crops in southwest plateau mountains. J. Guizhou Norm. Univ. 2021,
39, 51–59.

23. Oroian, M.; Dranca, F.; Ursachi, F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of
phenolic compounds from propolis. J. Food Sci. Technol. 2020, 57, 70–78. [CrossRef] [PubMed]

24. Mansoor, Z.; Bahram, S.; Majid, D. Probabilistic hydrological drought index forecasting based on meteorological drought index
using Archimedean copulas. Hydrol. Res. 2019, 50, 1230–1250.

25. Wen, Q.Z.; Sun, P.; Zhang, Q.; Liu, J.M.; Shi, P.J. An integrated agricultural drought monitoring model based on multi-source
Remote Sensing data: Model development and application. Acta Ecol. Sin. 2019, 39, 7757–7770.

26. Du, L.T.; Tian, Q.J.; Wang, L.; Huang, Y.; Nan, L. A synthesized drought monitoring model based on multi-source remote sensing
data. Trans. Chin. Soc. Agric. Eng. 2014, 30, 126–132.

27. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Zhou, Y.Y.; Fu, D.J.; Lu, C.X.; Xu, X.; Tang, Q. Positive effects of ecological restoration policies on the vegetation dynamics in a

typical ecologically vulnerable area of China. Ecol. Eng. 2021, 159, 106087. [CrossRef]
29. Sain, S.R. The Nature of Statistical Learning Theory. Technometrics 2012, 38, 409. [CrossRef]
30. Tian, Y.; Wang, X.Y.; Ping, G.Q. Agricultural drought prediction using climate indices based on Support Vector Regression in

Xiangjiang River basin. Sci. Total Environ. 2018, 622, 710–720. [CrossRef]
31. Ding, Y.L.; Zhang, H.Y.; Wang, Z.Q.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A Comparison of Estimating Crop Residue Cover from

Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods. Remote Sens. 2020, 12, 1470. [CrossRef]
32. Yang, L.P.; Ren, J.; Wang, Y.; Zhang, J.; Wang, T.; Li, K.X. Soil salinity estimation model in Juyanze based on multi-source remote

sensing data. Trans. Chin. Soc. Agric. Mach. 2022, 53, 226–235.
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