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Abstract: Organophosphate esters (OPEs) are increasingly used as flame retardants and plasticizers
in various products. Most of them are physically mixed rather than chemical bonded to the polymeric
products, leading to OPEs being readily released into the surrounding environment. Due to their
relatively high solubility and mobility, OPEs are ubiquitous in the aquatic environment and may pose
potential hazards to human health and aquatic organisms. This review systematically summarized
the fate and distribution of OPEs in the aquatic environment and the potential effects of OPEs on
humans. Data analysis shows that the concentrations of OPEs vary widely in various types of aquatic
environments, including surface water (range: 25–3671 ng/L), drinking water (4–719 ng/L), and
wastewater (104–29,800 ng/L). The results of human exposure assessments via aquatic products and
drinking water ingestion indicate that all OPEs pose low, but not negligible, risks to human health. In
addition, the limitations of previous studies are summarized, and the outlook is provided. This review
provides valuable information on the occurrence and distribution of OPEs in the aquatic environment.

Keywords: organophosphate esters; aquatic environment; distribution characteristics; aquatic organisms

1. Introduction

Organophosphate esters (OPEs), a new type of flame retardant, are considered the ideal
replacement for brominated flame retardants (BFRs) due to fewer production steps, simpler
processes, low prices, good flame retardant performance, and long-lasting effects [1].
Generally, OPEs, though they have wide variety, are primarily classified into two categories:
monomeric OPEs and oligomeric OPEs. Table 1 lists the primary information for the most
common OPEs in this review. OPEs are commonly used in electronic products, textile
coatings, lubricants, hydraulic fluids, building materials, and children’s toys [2,3]. In recent
years, with the gradual prohibition of BFRs [4], the global consumption of OPEs continues
to rise [5,6], from 0.68 million tons in 2015 to more than 100 million tons in 2018. China is
one of the nations with the highest consumption and production of OPEs worldwide [7],
and the annual production volume of OPEs was about 0.36 million tons in 2020. These data
suggest that OPEs have become a major flame retardant [8,9].

As OPEs are usually present in the final products through physical additions rather
than chemical bonds, and as most OPEs are semi-volatile, they may easily enter and
contaminate the environment via volatilization, dissolution, and abrasion. Over the past
few decades, the rapid increase in the global consumption and production of OPEs had
led to the widespread occurrence of OPEs in all water bodies including wastewater, rivers,
oceans, drinking water [10], and even in biota [11].

In terms of toxicity, previous studies reported that OPEs may show genetic toxicity,
reproductive system disorders, deterioration of immune system function, and carcinogenic
dermatitis to animals due to short-term and long-term exposure [12,13]. Currently, most
studies have focused on chlorinated OPEs (Cl-OPEs), such as TCEP, TCPP, and TDCPP,
which may be more cytotoxic than alkyl-OPEs and aryl-OPEs. Some countries have begun
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to legislate in order to restrict its production and use [14]. In addition, some studies have
reported the biological toxicity of alkyl-OPEs and aryl-OPEs. TBOEP may cause a delay
in gonadal development and an inhibition in the growth of zebrafish [13]. TPhP have
been demonstrated to cause hepatotoxicity and metabolic disorders in male Chinese rare
minnows [15].

Table 1. Properties and applications of common organophosphate esters.

Compound Abbr. CAS No. Molecular Formula Molecular Mass LogKow
Solubility

(mg/L, 25 ◦C)

Trimethyl phosphate TMP 512-56-1 C3H9O4P 140.07 −0.65 3.00 × 105

Triethyl phosphate TEP 78-40-0 C6H15O4P 182.16 0.8 5 × 105

Tri-n-butyl phosphate TnBP 126-73-8 C12H27O4P 266.32 4 280
Tri-iso-butyl phosphate TiBP 126-71-6 C12H27O4P 266.31 3.60 3.72

Tripropyl phosphate TPP 513-08-6 C9H21O4P 224.23 2.35 6450
Tris(2-ethylhexyl) phosphate TEHP 78-42-2 C24H51O4P 434.64 9.43 2

Tris(2-butoxyethyl) phosphate TBOEP 78-51-3 C18H39O7P 398.48 3.75 1100
2-Ethylhexyl diphenyl phosphate EHDPP 1241-94-7 C20H27O4P 362.40 6.30 1.9

Tris(2-chloroethyl) phosphate TCEP 115-96-8 C6H12Cl3O4P 285.48 1.44 7000
Tris(1-chloro-2-propyl) phosphate TCPP 13674-84-5 C9H18Cl3O4P 327.56 2.59 1200

Tris(2-chloro-1-(chloromethyl)ethyl)
phosphate TDCPP 13674-87-8 C9H15Cl6O4P 430.90 3.80 1.50

Triphenyl phosphate TPhP 115-86-6 C18H15O4P 326.29 4.59 1.9
Tri-3-cresyl phosphate TCrP 563-04-2 C21H21O4P 368.36 5.11 1.20 × 10−2

Cresyl diphenyl phosphate CDPP 26444-49-5 C19H17O4P 340.31 4.51 0.24
2,2-bis(chloromethyl)trimethylenebis(bis(2-

chloroethyl)phosphate) V6 38051-10-4 C13H24Cl6O8P2 582.99 1.92 2.1

Bisphenol-A bis(diphenyl phosphate) BDP 5945-33-5 C39H34O8P2 692.63 7.41 0.42
Tetraphenyl resorcinol

bis(diphenylphosphate) RDP 57583-54-7 C30H24O8P2 574.45 4.50 1.1 × 104

Note—abbr.: abbreviation; CAS no.: chemical abstract service number; and log Kow: octanol-water parti-
tion coefficient.

OPEs can enter the aquatic environment via several paths, such as atmospheric deposi-
tion, rainfall, and surface runoff [16,17]. OPEs have a complex migration and transformation
process under different hydrodynamic forces in the water environment, which makes the
distribution of OPEs change constantly. The differences in the partitioning behavior of OPEs
in an aquatic environment were observed due to their different physicochemical properties.
Generally, chlorinated OPEs are more hydrophilic than others. For example, TCEP, TCPP,
and TDCPP are hard to transform or degrade in aquatic environments and therefore have
a higher proportion in water than in sediment. Nevertheless, some water-soluble OPEs
(i.e., TEP and TCEP) can also enter sediment by combining with suspended matter, such as
plankton, in the water via gravity. OPEs with poor water solubility are more likely to be
adsorbed in sediments [18]. OPEs in the water may be diluted [19,20] or enriched during
transport, or may be carbonized by microbial decomposition. However, OPEs that are
difficult to degrade will be continuously enriched in sediment and will become long-term
and potential secondary pollution sources. Large quantities of OPEs have been observed in
various water bodies and corresponding sediments worldwide; this is especially the case in
Arctic marine sediments and seawater, indicating that OPEs can be transported over great
distances through the atmosphere to remote areas, making the aquatic environment the
long-term global sink for OPEs [21].

As one kind of emerging contaminant, OPEs have been monitored in relation with
stricter national regulations [22]. A variety of instrumental methods have been reported
in the correlative literature for the determination of OPEs in surface water, wastewater,
etc. [2,8,23]. Chromatography-mass spectrometry is playing an increasingly important
role in OPEs analysis due to the high development of mass spectrometry (MS) and chro-
matographic techniques. These compounds are separated and detected by using gas or
liquid chromatography (GC or LC) combined with mass spectrometry after previous ex-
traction/purification steps. Of these, UPLC-MS/MS is an advanced tool for structural
identification due to its higher selectivity and sensitivity. It improves the selectivity for
identifying OPEs with high polarity, large molecular weight, and low volatility.
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Recently, the majority of studies have only focused on the occurrences and fate of a
few typical OPEs, while the environmental behavior of OPEs has not been as thoroughly
studied. Therefore, the fate of OPEs in an aquatic environment and in organisms has
raised widespread concern. At present, the characteristics of pollution and the health
risks associated with OPEs in the aquatic environment have not yet been systematically
summarized. A comprehensive study of OPEs in different aquatic environments is es-
sential to understand the risk that these emerging contaminants pose to human health.
Therefore, we performed a comprehensive review of the current literature on the pollution
situation of OPEs in wastewater, surface water, drinking water, and aquatic organisms, and
summarized the human health risk assessment of OPEs via seafood and drinking water
(Figure 1). We collected the relevant publications from the Web of Science, Google Scholar,
and ScienceDirect databases from 2014 to 2023. The search terms used for the articles were
“OPEs in water”, “aquatic environment”, “MS”, and “human exposure”.
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Figure 1. The pathway of OPEs in an aquatic environment.

2. OPEs in Aquatic Environment
2.1. Wastewater

Wastewater treatment plants (WWTPs) receive and treat domestic and industrial
wastewater, which play a certain role in the process of OPEs entering the environment [24].
The concentration of OPEs in wastewater and sludge from various WWTPs of recent studies
are summarized in Table 2.
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Table 2. Concentration of OPEs in wastewater and sludge from various WWTPS.

Location of Sampling TCPP TDCPP TCEP TBOEP TNBP TPhP TEHP EHDPP ΣOPE Analysis
Instrument Year Ref.

New York
(The United

States)

Wastewater
(ng/L)

Influent 5120 1722 1427 30,143 291 491 392 ND 2230–117,000
HPLC-MS/MS 2017 [25]

Effluent 5949 3106 1106 12,641 301 293 50.5 ND -

Beijing
(China)

Wastewater
(ng/L)

Influent 465 - 150 398 120 15.4 7.10 - -
HPLC-MS/MS 2016 [26]

Effluent 605 - 254 103 93.1 6.20 <LOD - -

The Pearl
River Delta

(China)

Wastewater
(ng/L)

Influent 299.0 60.3 438.2 4349.4 21,271.8 149.2 - - -
GC-MS 2015 [27]

Effluent 472.9 94.5 372.2 494.5 3105.1 24.8 - - -

Beijing
(China)

Wastewater
(ng/L)

Influent 225.0 22.8 179.1 600.3 74.4 21.3 ND 14.0 1399
UPLC-MS 2016 [28]

Effluent 338.9 15.9 232.9 39.9 29.8 4.4 ND 0.9 833

Beijing
(China)

Wastewater
(ng/L)

Influent 440 28 245 31 3.8 0.6 ND ND -
GC-MS 2016 [29]

Effluent 413 47 250 47 48 ND ND ND -

Catalonia
(Spain)

Wastewater
(ng/L)

WWTP1
(ng/L)

Influent 1700 129 180 1560 <MDL 101 <MDL <MDL 3670

GC-MS 2016 [30]

Effluent 2400 136 250 207 220 40 <MDL <MDL 3060

WWTP2
(ng/L)

Influent 6750 290 320 1200 210 250 131 270 2170

Effluent 3000 354 373 620 90 64 <MDL <MDL 5240

WWTP3
(ng/L)

Influent 3600 111 295 7000 900 177 120 440 151,000

Effluent 3700 319 570 1970 174 37 <MDL <MDL 29,800

WWTP4
(ng/L)

Influent 3200 220 220 4600 305 95 12 84 50,500

Effluent 2800 210 240 1500 136 55 <MDL <MDL 5170

WWTP5
(ng/L)

Influent 3710 67 320 8600 135 124 35 240 13,500

Effluent 3100 174 330 3600 65 70 <MDL <MDL 7530

25 WWTPs
(China)

Wastewater
(ng/L)

Influent 265 31 56 288 183 8.1 8.1 5.5 -
UHPLC-MS/MS 2023 [31]

Effluent 238 26 45 71 11 2.9 1.9 0.5 -

WWTP
Wastewater

(ng/L)

Spring
(ng/L) Influent 435.9 70.2 216.1 91.9 - 15 2.3 3.2 838.3

UPLC-MS 2020 [32]

Autumn
(ng/L) Influent 323.3 54.7 236.9 0.7 - 10.2 7.4 8.7 595.2

Winter
(ng/L) Influent 223.5 35.1 79.9 45.7 - 7.9 3.9 6.5 -

Spring
(ng/L) Influent 368.8 44.6 184.1 115.9 - 9 2.2 1.4 -
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Table 2. Cont.

Location of Sampling TCPP TDCPP TCEP TBOEP TNBP TPhP TEHP EHDPP ΣOPE Analysis
Instrument Year Ref.

Guangzhou
(China)

Wastewater
(ng/L)

Influent 756.9 92 254.2 - 353.2 20.3 192.3 - -
GC-MS 2019 [33]

Effluent 651.6 88.4 218.7 - 28.36 1.63 15.44 - -

Guangzhou
(China)

Wastewater
(ng/L)

Influent 3872 <LOD 928 <LOD - - - - 4807
GC-MS 2018 [34]

Effluent 54.1 <LOD 31.5 <LOD - - - - 103.9

WWTP
(Greece)

Wastewater
(ng/L)

Influent 864–3277 29.8–310 50.3–186 476–4037 28.9–129.8 69.5–1299 33.3–376 - 2144–9743
GC-MS 2022 [35]

Effluent 460–1444 9.9–214 46.3–161.4 98.9–783 4.58–83.3 34.1–377 28.3–130 - 1237–2909

Shandong
Peninsula
(China)

Wastewater
(ng/L) Effluent 518.6 55.3 545.8 12.3 30.9 7.2 - - 1568 UPLC-MS/MS 2022 [36]

Ontario
(Canada)

Wastewater
(ng/L) Effluent 1250–2390 210–400 140–340 290–10,200 - 5760 - - - LC-MS/MS 2018 [37]

The Pearl
River Delta

(China)

Wastewater
(ng/L)

Influent 14–638 <LOQ-95.7 <LOQ-113 ND-311 ND-2248 10.1–290 ND-84.9 - 65.8–2842
GC-MS 2019 [38]

Effluent 5.4–104 <LOQ-21.5 <LOQ-31.9 ND-23.1 ND-2541 1–108 <LOQ - 6.37–2710

Zhengzhou
(China)

Wastewater
(ng/L)
Sludge
(ng/L)

Influent 204.2 15.6 172.3 648.7 50.6 15.2 - - 1106.5

UPLC-MS/MS 2016 [39]

Effluent 196 7.5 171.8 96.6 35.9 3.8 - - 511.7

Sludge 60.7 28 21.5 48 53.2 16.9 - - 228.3

Influent 90.8 11.1 70 294.4 53.6 8.8 - - 528.6

Effluent 80.1 8.4 61.4 34.1 401 3.2 - - 227.4

Sludge 52.9 30.9 45.7 67 31 38.7 - - 266.2

67 WWTPs
(The United

States)

Sludge
(ng/g) sludge 61.7 101 10.6 1760 127 30.4 199 189 3070 HPLC-MS/MS 2019 [40]

Note—MDL: the method detection limit; “-”: not measured; ND: not detected; LOD: limit of detection; and LOQ: the limit of quantitation.
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The mean values or range (min–max) are shown. The most abundant and frequent
OPEs in wastewater were TCPP, TCEP, TBOEP, and TnBP. The existence of OPEs in WWTPs
could be due to their widespread application in consumer and industrial material prod-
ucts [24]. A recent study investigated 20 OPEs in influents from 25 WWTPs in China. TEP,
TBOEP, TCPP, TMP, TnBP, TCEP, TDCPP, and TPhP were found in all samples, with the first
three compounds at a high concentration (mean: 392, 288, and 265 ng/L, respectively). The
low detection frequency (16%) and concentration (≤16 ng/L) for TPrP could be explained
by its seldom use [31]. Liu et al. (2019) used GC-MS to study OPEs in wastewater from
a WWTP for one year in China, and revealed that seven of the nine targeted OPEs were
detected in all influent samples. TCPP (mean: 741 ng/L) and TEP (mean: 687 ng/L) were
the dominant OPEs in the influent [33]. Deng et al. (2018) revealed that a high level of
OPEs (2144–4807 ng/L) were observed in a municipal landfill leachate treatment system
in Guangzhou, China. The wastewater samples obtained in each treatment stage con-
tained five common OPEs. TCPP was dominant throughout the treatment process and
accounted for more than 80% and 50% of OPEs in influents and effluents, respectively [34].
Pantelaki et al. (2022) studied the fate of OPEs in two WWTPs in Greece [35]. The total
OPE concentration varied from 2144 ng/L to 4807 ng/L in influents and from 1237 ng/L
to 2909 ng/L in effluents. TBOEP and TCPP were the most abundant compounds in both
WWTPs. In a survey of wastewater effluents in the Toronto area, it was shown that the
highest concentration of TBOEP was up to 10,000 ng/L [37]. Recently, most studies about
the fate of OPEs in WWTPs only focused on monomeric OPEs, whereas there are fewer
studies on oligomeric OPEs. Liang et al. (2018) used UPLC-MS/MS to determine the
concentration of three oligomeric OPEs (V6/BDP/RDP) in sewage and sludge [41]. The
results showed that V6 was detected throughout the whole treatment stages of WWTP, and
the concentration in the water phase was 10.2–27.1 ng/L. Compared with fourteen widely
used OPEs, the concentration levels of oligomeric OPEs in WWTPs were relatively low,
indicating that its market share was limited. Similarly, Wang et al. (2019) revealed RDP (nd-
9.2 ng/L), BDP (nd-6.8 ng/L) and V6 (nd-6.4 ng/L) in the sludge of the United States [40].
Sufficient research data suggested that OPEs were ubiquitous in wastewater [41–43].

Previous studies reported that WWTP has a certain removal efficiency for OPEs in
wastewater. The concentration of OPEs was mostly reduced in WWTPs through activated
sludge adsorption and microbial degradation [32]. Crisdale et al. (2016) studied the sludge
of five wastewater treatment plants in Spain and found that the concentration of TEHP in
the influent was not high (<139 ng/L); however, the TEHP concentration was the highest
in the sludge (367–1570 ng/kg) [30]. In addition, EHDPP can be detected in sludge but not
in effluent. These results indicated that sludge adsorption is a primary method by which
to remove these hydrophobic OPEs. Zeng et al. (2015) revealed that with the decrease in
water solubility, the distribution of TCPP and TDCPP in the solid phase increased, and
they were transferred to the sludge and discharged during the purification process [27]. In
addition, biodegradation also plays a vital part in the removal of OPEs from influents [28].
Nevertheless, the different degradation efficiencies of OPEs in WWTPs were observed due
to their various physical and chemical properties. Previous studies from Kim et al. (2017)
and Zeng et al. (2015) proposed that linear alkyl substances (e.g., TnBP) are degraded
by microorganisms more rapidly than branched substances (e.g., TiBP), and chlorinated
OPEs are more resistant to degradation than non-chlorinated OPEs [25,27]. In view of the
different treatment and degradation methods of WWTPs, the concentration and distribution
of OPEs vary significantly [38].

Wastewater was regarded as a primary source of OPEs due to the relatively low
removal of OPEs in WWTPs [25,29,31,35,40]. The composition and concentration of OPEs
in wastewater are closely related to their usage, physicochemical properties, and sources.
Kim U.J. et al. (2017) detected 16 types of OPEs in the wastewater from a New York WWTP
using HPLC-MS/MS, with total concentrations ranging from 2230 ng/L to 117,000 ng/L.
Six types of OPEs were detected in all samples (n = 48). The removal efficiency was
calculated by comparing the total concentration in influent wastewater and final effluents.
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The removal rates of TBOEP and TEHP were slightly higher than 60%, while the other OPEs
were lower than 40%. The three chlorinated OPEs analyzed in this study showed negative
removal efficiencies, indicating that the removal process in WWTPs is incomplete [25].
Wang et al. (2019) found that OPE triesters and diesters were ubiquitous in the sludge
collected by WWTP around the United States, and that TBOEP and BBOEP were dominant
in the sludge [40]. Most diesters were detected with a high detection frequency (85–100%),
while only two chlorinated diesters, BCEP and BCIPP, showed a low detection frequency
of 62% and 32%. This indicated that chlorinated OPEs were more resistant to degradation
and less efficient in purification than aryl-OPEs and alkyl-OPEs. Zang et al. (2020) revealed
that negative removal may be caused by pollution from sewage treatment facilities and
purification pipelines [14,32] or through the sludge release from sedimentation tanks.
Despite their relatively high removal efficiencies, a fair amount of the OPEs in the effluent
was still released into the aquatic environment, which again indicated that effluent from
WWTPs is a vital source of OPEs in the aquatic environment [36].

Compared with the abovementioned studies, the concentration of OPEs in wastew-
ater is comparatively high. As an emerging contaminant with bioaccumulation and
toxicity [44,45], if it cannot be effectively controlled by the WWTPs, then there will be
potential environmental and ecological risks. Sludge and wastewater are significant media
for OPEs to enter various environments [33]. Moreover, dehydrated sludge can be used as
fertilizer in agriculture [46,47] and then absorbed and transferred to crops, which gradually
leads to water and soil pollution, affecting the quality of agricultural products. Therefore, it
is necessary to treat sludge reasonably in order to safely and sustainably use it as a fertilizer.

2.2. Surface Water (Rivers, Lakes, and Coastal Seawater)

In general, surface water receives OPEs via several paths, such as from industrial
wastewater, atmospheric deposition, and surface runoff [48,49]. The specific concentrations
of OPEs in various lakes and oceans of recent studies are summarized in Table 3.
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Table 3. Concentration of OPEs in surface water from various regions (ng/L).

Location
of Sampling ΣOPE

Alkyl-OPEs Chlorinated-OPEs Aryl-OPEs Analysis
Instrument Year Ref.

TMP TEP TnBP TBOEP TCEP TCPP TDCPP TPhP TCrP

Luoma
Lake, China 0.8–708 <MDL-127 <MDL-32.1 0.01–5.9 0.002–0.2 0.01–552 0.02–10.8 0.03–2.0 0.15–8.2 0.7–54.6 HPLC-MS/MS 2018 [50]

Jiaozhou
Bay, China 474.9–6776.3 ND-8.1 172.0–904.4 1.3–328.3 3.1–152.8 ΣChlorinated-OPEs: 206.7–5614.8 ΣAryl-OPEs: 3.1–20.0

HPLC-MS/MS 2022 [36]
Laizhou

Bay, China 262.8–2907.3 <MDL-90 55.6–2390.1 1.3–86.3 2.4–247.2 ΣChlorinated-OPEs: 143.4–1096.1 ΣAryl-OPEs: 2.3–25.9

Zijiang
River, China 18.8–439 ND-2.89 0.3–9.9 1.2–58 0.97–33.1 1.29–26.6 ND-366 ND-10.1 ND-14.8 - UPLC-MS 2022 [51]

Taihu Lake, China 100–1700 2.7–84 53–1400 0 ND-2.7 14–76 12–2900 ND-6.0 ND-14 ND-1.5 HPLC-MS 2018 [52]

Bohai Sea, China 10.9–516.4 - 0.7–168.1 - - 4.8–474.0 ND - ND - GC-MS/MS 2021 [53]

Poyang
Lake, China 38.4–428.9 ND-1.22 2.3–60.7 - ND-3.52 6.4–52.1 13.4–143.4 ND-70.7 ND-18.9 ND-10.5 UPLC-MS/MS 2022 [54]

The western South
China Sea 2.3–24.4 - - 0.1–2.2 - 0.8–22.6 0.4–6.2 ND-0.3 0.01–0.1 - GC-MS 2022 [48]

Shanghai, China
(Urban/Rural)

340–1688.7 - - 11.6–63.3 15.9–100.6 67.5–865.2 123.9–523 <LOQ-45.3 1.67–47.7 -
GC-MS 2019 [55]

185.4–321 - - 6.91–44.8 <LOQ-47.9 30–63.3 60–154.2 <LOQ 5.03–34.3 -

Source water,
Shanghai 415.7–822.6 - 100.8–182.0 19.8–138.6 1.2–27.5 70.8–129.5 184.3–363.3 4.9–18.1 <MDL-3.6 <MDL UPLC-MS/MS 2022 [56]

Nanjing, China 4.4–195,269 ND-18.5 ND-932.6 ND-385.3 1.1–547.3 ND-15,483 ND-244.3 ND-16273 ND-290 ND-126.6 HPLC-MS/MS 2022 [57]

Beibu Gulf, China
(Summer/winter)

34.2–1227 0.05–14.8 - 0.4–1033 0.8–10.3 1.2–44.9 13.4–164 ND-6.7 0–26 -
GC-MS/MS 2022 [58]

20.6–840 ND ND-782 10–22.8 0.7–13.2 3.4–112 0.7–2.7 ND -

Xiangjiang
River, China 6.1–25.3 - - 0.1–8.9 - ND-0.5 2–13.5 0.1–8.4 - GC-MS/MS 2021 [20]

Qinzhou Bay,
China 150–885 <LOD-2.4 ND-14 ND-139.8 - 30.9–370.3 23.7–568.4 ND-61.4 <LOD-11.5 - GC-MS 2021 [59]

The West
Pacific Ocean 3.02–48.4 - - 0.5–16.7 - 0.7–26.4 0.8–3.3 0.5–8.3 <LOD-0.2 - GC-MS 2021 [60]

The
Canadian Arctic 0.02–306 - - <LOD-8.1 <LOD <LOD-246 0.2–53 <LOD-11 <LOD-63 - GC-MS 2021 [61]
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Table 3. Cont.

Location
of Sampling ΣOPE

Alkyl-OPEs Chlorinated-OPEs Aryl-OPEs Analysis
Instrument Year Ref.

TMP TEP TnBP TBOEP TCEP TCPP TDCPP TPhP TCrP

Greece
(River

water/Coastal
water/Streams)

400–2158 - <MDL-134 15–374 <LOD-997 18–163 59–208 <LOD-14 40–258 77–95

GC-MS/MS 2021 [19]408–1270 - <MDL-126 17–92 <LOD-625 17–162 67–113 <LOD-21 41–260 59–126

377–30,560 - <MDL-352 16–5961 <LOD-11418 19–1018 55–10,742 <LOD-1988 45–1142 77–718

The Rhone
River, France 84.8–264.6 - - 4.4–138.1 - ND-25 36.6–173.1 3.1–8.7 ND-10.7 - GC-MS 2020 [49]

Lake
Shihwa, Korea 597–16,000 - 42.2–3677 - 145–839 86.5–5963 68.3–5102 <LOQ-325 5.1–96.2 - GC-MS/MS 2018 [18]

Amazon River 74–1341.1 - - <LOQ-6.5 <LOQ-1.6 74–1300 - <LOQ-6.9 - GC/MS 2019 [62]

San Francisco
Bay, US 170–5100 - - 7.8–43 24–1000 7.4–300 46–2900 14–450 41–360 - GC-MS 2019 [63]

New York State
(River/Lake/

Seawater)

37.2–510 <LOQ-4 <LOQ-24.8 - 2.53–366 <LOQ-79.5 3.3–214 <LOQ-86.7 <LOQ-36.5 -

HPLC-MS/MS 2018 [64]8.2–1280 <LOQ-5.2 <LOQ-92.1 - 0.6–689 <LOQ-123 4.7–329 <LOQ-159 <LOQ-28.7 -

40–60.8 <LOQ-0.1 0.8–1.8 - <LOQ-7.7 - 25.8–36.3 8.9–25.4 <LOQ-1.6 -

Note—MDL: the method detection limit; “-”: not measured; ND: not detected; LOD: limit of detection; and LOQ: the limit of quantitation.
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The most abundant and frequent OPEs reported in surface water were TCPP, TCEP,
TBOEP, and TPhP. However, the dominant OPEs in different regions and different types
of water environment were evidently different [50,55,65]. According to previous research
on wastewater in WWTPs, Cl-OPEs were recalcitrant to traditional wastewater treatment
technology. Therefore, chlorinated OPEs will enter the surface water with effluents and
will occupy the main part [61]. Lian et al. (2022) revealed the total OPE concentration
in the near WWTP effluents were higher than those in the Jiaozhou Bay [36]. Due to the
low removal rate, Cl-OPEs were the dominant fraction in the Jiaozhou Bay, accounting
for 63% of the total concentration. The concentration of TCEP was the highest (a mean of
546 ng/L). This behavior was in agreement with most of the investigations into surface
water, such as the West Pacific [60] and the Canadian Arctic Ocean [61]. Zhu et al. (2022)
revealed that chlorinated OPEs were the main pollutants at 23 water sites, and Cl-OPEs
accounted for 65% of the total concentration. TCEP (mean 193.2 ng/L) and TCPP (mean
51.8 ng/L) accounted for 79% and 21% of all Cl-OPEs, respectively [66]. The concentration
of chlorinated OPEs was comparable to those in Taihu Lake [52] and Poyang Lake [54].

The concentrations of OPEs in dissolved phase water showed similar spatial dis-
tribution, i.e., the pollution in tributaries was higher than those in the main stream.
Xing et al. (2018) investigated 12 OPEs in the surface water of Luoma Lake and several
tributaries [50]. The results showed that the concentrations of ΣOPEs in Louma Lake
(127–708 ng/L) was lower than those in its tributary, the Fangting River (1066 ng/L), which
is where a large number of villages and factories surround the area. Liu et al. (2018)
detected 12 OPEs in the surface water and sediments from Taihu Lake using HPLC-MS,
and the results showed that elevated levels of OPEs were found in the sampling sites of
the northern region [52]. As industrial wastewater and livestock wastewater are mainly
discharged to the north of Taihu Lake, the complicated inflow/outflow system and high
pollutant discharge lead to poor water quality in the north. Moreover, there are plenty of
chemical plants around the tributaries of Taihu Lake, resulting in higher levels of OPEs in
the tributaries than in the main stream. The conclusion is similar to Chen et al. [67] and
Xing et al. [50].

The concentrations of OPEs in rivers and lakes range widely, depending on local indus-
trial distribution and human activities, especially in the manufacturing and construction
industry [42,68]. OPEs are usually observed near urban and industrial areas [59,65]. For
example, Lian et al. (2022) studied the Zijiang River, which has large mining operations
occurring in its downstream [51]. The results showed that TCEP, TCPP, TEP, TNBP, and
TBOEP were detected in almost all samples, with TNBP and TBOEP accounting for 14.2%
and 9.3% of the OPEs, respectively. TNBP and TBOEP are widely used in hydraulic fluids
and lubricants, which may be released into the surrounding environment during mining.
Human activity is a main factor in causing the different spatial distribution of OPEs [54].
Zhang et al. (2018) used GC-MS to study eight OPEs of urban and rural surface water sam-
ples [55]. The concentrations of the OPEs detected in urban rivers (340–1688.7 ng/L) were
higher than those in rural rivers (185.4–321 ng/L). The concentrations of three Cl-OPEs in
urban surface water were significantly higher than those in rural surface water, indicating
that there may be more potential pollution sources in urban areas. The amount and type of
OPEs in surface water also reflects the industrial development level between urban and
rural areas [55,65].

Significant differences in the level of OPEs were found in different seasons [56,57,62].
Chen et al. (2019) sampled seawater and sediments in northwestern Bohai Bay from 2014 to
2017, and detected the concentrations of 12 OPEs using GC-MS/MS [69]. The concentration
of TEP in summer was the highest among the three seasons investigated, which may be
caused by the high temperature and frequent rainfall in Tianjin in the summer. High
temperature may lead to the release of OPEs from the materials, and the wet deposition
utilizes the atmosphere to migrate OPEs from the air to the aquatic system. Among the
OPEs studied, TEP has the highest water solubility among all the investigated OPEs, so it
is more readily soluble in water. However, for TCEP and TBOEP, the trend is the complete
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opposite. The concentrations of TCEP and TBOEP were the lowest in summer, and this
difference may be related to the physical and chemical characteristics of OPEs. Besides
the impact of high temperature [69,70], floods can also affect the level of OPEs in rivers.
Increased discharge during floods reduces the levels of OPEs in water and results in a
relatively uniform distribution throughout the river [19].

The coastal environment is an important sink of OPEs [68]. The release of OPEs
from the inland is accompanied by the flow of rivers into the sea. At the same time,
the pollution from intensive fishery activities, aquaculture wastewater discharge, and
even some ports and tourism activities, all lead to great environmental stress [58]. The
Bohai Sea, Yellow Sea, and East China Sea are important marginal sea areas for China.
According to Zhong et al. (2020), Qi at al. (2021), and Lin et al. (2022), high concentrations
of OPEs were detected in the Bohai Sea and the Yellow Sea. The total concentration of
OPEs in the Bohai Sea (10.9–516.4 ng/L) was the highest, followed by the Yellow Sea
(12.7–202.6 ng/L) and then the East China Sea [53,71,72], which was attributed to there
being more pollution sources and poor seawater exchange around the Bohai Sea. Due to a
low boiling point and semi-volatility, the OPEs in coastal seawater can be deposited into
sediments and be volatilized into the atmosphere [73]. The long-distance migration of the
atmosphere and ocean currents transport OPEs from industrialized regions to the sea [74,75].
Na et al. (2020) demonstrated the long-distance migration ability of OPEs [76]. Ten OPEs
were found in seawater samples from the northwestern Pacific and the Arctic, with the
concentration varying from 8.5 to 143 ng/L. Xiao et al. (2021) collected surface seawater
from the West Pacific Ocean [60]. The total concentration of OPEs was 3.02–48.4 ng/L,
which were comparable with those in the surface water of the largest High Arctic lake
(mean: 12.9 ng/L) [77]. In addition, Li et al. (2017) revealed there were OPEs (0.3–8.4 ng/L,
mean: 2.9 ng/L) in the seawater of the northeast Atlantic and the Arctic Ocean [74].
Compared with the open sea, the concentrations of OPEs in coastal waters were higher [64].

Previous studies have shown that some OPEs can accumulate in sediments and persist
in aquatic environments [18,50,52,53,59,63,67,69]. OPEs may even produce more toxic
transformation products through biotransformation, photodegradation, or hydrolysis.
Rivers are the main vehicle for transporting and mobilizing OPEs from the mainland to the
coastal marine environment. Monitoring and controlling the concentration of pollutants in
rivers and lakes can effectively prevent marine pollution.

2.3. Drinking Water (Tap Water, Bottled Water, and Barreled Water)

Drinking water is regarded as one of the main ways for OPEs to come into contact with
humans. In general, bottled water, tap water, and barreled water are the three common
types of drinking water [78]. At present, plenty of studies on the fate of OPEs in drinking
water have been carried out in China [20,56,79–82], Pakistan [83], South Korea [84,85],
Canada [86], USA [64,87], and in other countries and regions [88]. The concentrations of
OPEs in different types of drinking water are summarized in Table 4.

Table 4. Concentration of OPEs in several types of drinking water (ng/L).

Location of Sampling TCPP TDCPP TCEP TBOEP TNBP TPhP ΣOPE
Analysis

Instru-
ment

Year Ref

Nanjing,
China

Bottled
water 1.3–16.2 ND ND-48.8 19.5–81.7 - - 165 UPLC-

MS/MS 2014 [79]

Eastern
China

Well water 1.3–3.8 ND-1.1 0.1–3.5 0.01–0.6 0.1–0.4 ND-0.5 4.5

UPLC-
MS/MS 2015 [80]

Barreled
Water ND-48.5 ND-7.0 0.2–44.2 ND-0.3 ND-1.6 0.05–0.9 27.6

Filtered
drink-

ing water
1.6–26.5 ND-6.6 1.9–48.5 ND-5.3 0.2–6.6 ND-1.8 59.2

Tap water 21.5–109 5.4–6.8 28.5–139 1.4–6.6 3.9–76.3 0.3–4.0 192
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Table 4. Cont.

Location of Sampling TCPP TDCPP TCEP TBOEP TNBP TPhP ΣOPE
Analysis

Instru-
ment

Year Ref

Pakistan

Industrial
zones 0.03–85.7 <MDL-21.4 0.09–31.2 - - - <MDL-71.1

GC-MS 2016 [83]Rural
zones <MDL-13.1 <MDL-9.2 <MDL-12.1 - - - <MDL-12.1

Background
zones <MDL <MDL <MDL-0.06 - - - <MDL-0.08

Korea

Tap water 67.0 - 38.8 26.1 3.40 - 137.4

GC-MS 2016 [84]
Purified

water 155 - 70.1 10.7 1.27 - 264.7

Bottled
water 79.6 - 25.3 35.6 4.29 - 53

The Pearl
River

Delta, China

Bottled
water <MDL-170 <MDL-1.9 <MDL-3.1 <MDL-2.2 <MDL-4.5 0 34

UPLC-
MS/MS 2022 [81]Barreled

water 9.8–100 65 <MDL-1.6 94 <MDL-0.6 <MDL-14 24

Tap water <MDL-350 100 <MDL-180 100 <MDL-120 <MDL-36 72

Shanghai,
China DWTP 100.5–220.4 1.9–16.4 33.8–47.6 <MDL-7.0 3.5–39.5 <MDL-1.6 312.1 UPLC-

MS/MS 2022 [56]

Nakdong
River,

South Korea
DWTP 15–35.9 2.2–3.2 13.5–21.8 5.7–20.6 0.8–2.7 2.8–7.5 49.4–86.5 GC-MS 2020 [85]

Nanjing,
China Tap water 78 41.4 207.6 6.7 27.7 179.7 719.8 HPLC-

MS/MS 2022 [57]

Xiangjiang
River,
China

Tap water 9 - 0.3 - 6.2 7.5 23.6 GC-
MS/MS 2021 [20]

New York
State,
US

Tap water <LOQ-67.1 <LOQ-124 <LOQ-17.4 <LOQ-109 - <LOQ-39.9 41.6 HPLC-
MS/MS 2018 [64]

Hefei
China Tap water 15.8 2.2 15.5 0.5 1.1 1.3 - UPLC-MS 2020 [89]

Beijing,
China

Barreled
Water ND-6.3 ND-2.2 ND-8,2 ND ND-1.6 ND-0.25 0.5–23.9 UPLC-

MS/MS 2021 [78]

Major
metropoli-
tan cities,

Korea

Tap water 49.4 2 39.5 43.9 11.8 23 169 GC-MS 2018 [90]

Note—MDL: the method detection limit; “-”: not measured; ND: not detected; LOD: limit of detection; and LOQ:
the limit of quantitation.

The mean values or range (min–max) are shown. Tap water is the cheapest and most
common drinking water in cities and contains abundant OPEs [91]. Tap water is frequently
obtained from rivers and lakes near urban areas [92], and the levels of OPEs in treated tap
water are usually significantly lower than those in rivers or lakes (Figure 2). This is due to
the purification of OPEs in water sources by drinking water treatment plants (DWTP) [56].
Park et al. [90] used GC-MS to detect the level of OPEs (total concentrations 74–342 ng/L)
in the tap water of Korean cities. TnBP, TCEP, TCPP, and TBOEP were detected in all
samples. Li et al. [87] proposed that OPEs are widely distributed in tap water, and that
the level of OPEs varies greatly in different cities. The total concentration of halogenated
OPEs is 3.1–207 ng/L (mean: 50.3), accounting for 65% (mean) of the total OPEs. The
potential risks posed by tap water to human beings vary depending on the raw water
source and treatment process used. Compared with conventional drinking water treatment
technology (DWTT), advanced DWTT can reduce the concentration of OPEs by about
47.8%, indicating that DWTT plays a significant role in the purification of OPEs and is a
key factor affecting the OPEs level of drinking water. Choo et al. (2020) further compared
the removal efficiency of OPEs between traditional and advanced DWTP [85]. The results
show that advanced treatment processes such as ozonation and granular-activated carbon
filtration are more efficient in removing most OPEs. For example, the average removal rates
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of the two Cl-OPEs were negative for conventional DWTP (TCEP: −87%, TCPP: −41%)
and positive for advanced DWTP filtration that uses granular-activated carbon (TCEP:
46%, TCPP: 49%). This shows that upgrading the DWTT capabilities of water plants is a
successful strategy through which to lessen the threat that OPEs pose to tap-water safety.
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Some studies have shown that OPEs were observed in barreled water and bottled water.
Liang et al. (2022) found that the OPE contaminations of bottled water (<MDL-180 ng/L)
and barreled water (11–100 ng/L) were much lower than those of tap water (3.1–940 ng/L)
and river water (25–840 ng/L) [81]. The level of OPEs in bottled water was comparable
to those in Korea (median: 104 ng/L) (Lee et al., 2016) [84]. The level of OPEs in tap
water were higher than those in bottled water, which may be caused by the widespread
use of PVC pipes carrying residual OPEs. The pollution of OPEs in bottled and barreled
water may be caused by many reasons: the water source, packaging materials, purification
process, etc. Lao et al. (2022) pointed out that OPEs could potentially leak out of plastic
containers. [93]. OPEs will leak out more from plastic containers into barreled and bottled
water during long-term and high-temperature storage. For this reason, short-time storage
and maintaining room temperature are essential to avoid the leaching of OPEs. At the same
time, the use of clean water from natural reserves and advanced purification technology in
the manufacturing process is a feasible approach through which to reduce the pollution of
bottled water.

The concentration of OPEs in drinking water is significantly affected by the economic
development and population density of different regions [87]. Zhang et al. (2021) deter-
mined that OPEs in drinking water showed a downward trend from coastal cities (mean:
154 ng/L) to inland cities (mean: 119 ng/L) [94]. The highest ΣOPE concentrations of the
tap water in Korea were found from large-scale industrialized cities, such as Ulsan (mean
144 ng/L) and Ansan (mean 74.0 ng/L) [84]. However, the relatively lowest concentrations
of OPEs were observed in several coastal cities with developed industries, such as Shanghai
and Dalian. The use of advanced process treatment technologies may be the cause of these
variations in the levels of OPEs

These data indicate that drinking water, which is generally considered to be relatively
safe, was being polluted on a large scale. Overall, the mean concentration of OPEs in
drinking water decreased in the following sequence: tap water > bottled water > barreled
water. Nevertheless, studies on the pollution level of OPEs in drinking water are relatively
limited. It is very important for human safety to upgrade the DWTT capabilities of water
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plants, and to also regularly monitor raw water sources in order to reduce the OPE pollution
of drinking water.

2.4. Aquatic Organisms

Aquatic environments are of great importance for protecting biodiversity and maintain-
ing fishery resources. OPEs are mainly transported into remote areas through long-distance
atmospheric deposition or ocean currents. Therefore, the potential effects of OPEs on
freshwater and marine ecosystems must be given special consideration. The concentration
of OPEs in different kinds of aquatic organisms are summarized in Table 5.

Table 5. Concentration of OPEs in several aquatic organisms (ng/L).

Location Species
Number of

OPEs
Analyzed

TCPP TDCPP TCEP TBOEP TNBP TPhP ΣOPE Analysis
Instrument Year Ref.

Antarctic algae 16 23.4 ND 25.5 1.33 9.7 2.6 88.3
(ng/g lw) LC-MS/MS 2020 [95]

Laizhou
Bay,

China

fish and
inverte-

brate
20 - - - - - - 21.1–3510

(ng/g lw) GC-MS 2019 [96]

Alaska sentinel
fish 24 - - - - 5.5 0.1 5.95

(ng/g ww)
UPLC-QQQ

MS 2020 [97]

Spain mussels 18 3.8–29.6 ND <LOQ 5.6–12.4 0.9–9.4 23.6–623.6 -(ng/g dw) LC-MS/MS 2020 [98]

7
European
countries

mussel - - - - - - - 0.50–102
(ng/g dw) LC-MS 2018 [99]

Great
Lakes

lake
trout 22 - - - - - - 9–122

(ng/g ww) LC-MS/MS 2022 [100]

Great
Lakes fish 18 6.7 9.6 13.3 - 1.6 17.1 36.6

(ng/g lw) GC-MS 2017 [101]

Laizhou
Bay,

China

fish
muscle 20 ND-6.1 ND-2.5 ND-5.8 - ND-13.1 ND-8.4 6.6–107

(ng/g dw) GC-MS 2021 [102]

Indian
Ocean dolphin 14 ND ND ND 952–31,841 ND-1333 ND

10,452 ±
11,301

(ng/g lw)
LC-MS/MS 2019 [103]

Alboran
Sea, Spain

dolphin
muscle 16 ND - 32.1 66.9 1309 ND 69.5–2939

(ng/g lw) LC-MS 2019 [104]

US harbor
seal 13 ND-30 ND-56 ND-8.3 <2.5 <1.5 ND-27 17–67

(ng/g lw) LC-MS/MS 2019 [63]

Canada
(in

SHB/WHB)

polar
bear 17 - - - - - - 0.163/0.308

(ng/g lw)
UPLC-

MS/MS 2018 [105]

Note—“-”: not mentioned; ND: not measured; and LOQ: the limit of quantitation.

The mean values or range (min–max) are shown. Generally, chlorinated OPEs were
the main fraction of the total OPEs in biota samples [106]. The average relative abundance
of chlorinated OPEs (34.7%−58.2%) was higher than those of aryl OPEs (4.06–32.2%) and
alkyl OPEs (18.1–40.6%), which may be due to their higher bioaccumulation and lower
biotransformation. These features make chlorinated OPEs more resistant to metabolism
and more persistent in aquatic organisms than other OPE individuals [95].

Several studies have investigated OPEs in algae, invertebrate species, and fish from
different regions. Fu et al. (2020) detected sixteen OPEs in six algae samples collected from
Antarctica using LC-MS/MS [95]. TEP, TCEP, TCPP, TPhP, and TNBP were detected in more
than 75% of the samples, with the total concentration of 1.60 ng/g dw. Bekele et al. [96]
collected marine species from Laizhou Bay, North China. The results showed that the
concentrations of 20 analyzed OPEs in organisms varied from 21 to 3510 ng/g lipid weight
(lw). A total of 17 of 20 OPEs were detected in biota samples with the highest detection
frequency of TCPP (85%), TiBP (80%), and TBEP (77%). The high detection frequencies
were evidence of the extensive use and widespread contamination of OPEs in Laizhou
Bay. Zheng et al. (2020) revealed the median concentration of ΣOPE was 4.97 ng/g wet
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weight (ww) in sentinel fish [97]. Castro et al. (2020) collected seven mussel samples from
Galicia [98]. Then, 8 out of 18 OPEs were detected in these samples (total concentration
LOQ-291 ng/g dry weight (dw)). Aznar-Alemany et al. [99] monitored the OPEs in the
mussel from different European fish and shellfish farming sites. OPEs were found in all
17 samples with the concentrations ranging from 7 to 2005 ng/g lw. Choi et al. (2022)
collected lake trout from five locations in the Great Lakes between 2001 and 2017 [100].
A total of 12 of 22 OPEs were detected above the MDLs, while only 3 of them (TEP, TCPP,
and TBOEP) showed high detection frequencies (>50%). The total OPE concentration was
9–122 ng/g ww. Guo et al. (2017) studied lake trout and walleye samples from the Great
Lakes basin (n = 3 for each lake) [101]. Of these, 6 out of 18 OPEs were detected in the fish
samples (mean: 36.6 ng/g lw), and TNBP was detected in 47% (mean: 1.63 ng/g lw). TPhP,
TCPP, TNBP, and TCEP were detected in more than 7 samples. Bekele et al. [102] analyzed
ten fish species from Laizhou Bay, North China. Of these, 17 out of 20 OPEs were detected
in the fish samples, with a total concentration ranging from 7 to 107 ng/g dw.

As for mammals, OPEs were detected in dolphins, seals, and polar bears. Aznar-
Alemany et al. [103] investigated the concentrations of OPEs in the muscles of Indian Ocean
dolphins. The mean concentration of OPEs was 10,452 ± 11,301 ng/g lw, with TBOEP
accounting for 82 ± 28% of the total OPE contamination. Sala et al. (2019) reported OPEs in
the dolphin samples from the Alboran Sea [104]. The concentrations of OPEs in the muscle
tissue varied from 70 to 2939 ng/g lw, and were one order of magnitude lower than those
detected in the Indian Ocean [103]. According to Sutton et al. (2019), four types of OPEs
were detected in harbor seal blubber: TDCPP (nd-56 ng/g lw), TCPP (nd-30 ng/g lw),
TCEP (nd-8.3 ng/g lw), and TPhP (nd-27 ng/g lw) [63]. Letche et al. [105] collected tissue
samples from the polar bears of various Hudson Bay subpopulations. Only TEHP could be
quantified in the samples despite the presence of several types of OPEs, indicating limited
intake and absorption due to the rapid metabolism in polar bears.

These studies demonstrated the presence of the OPEs observed in aquatic organ-
isms. As some OPEs have a relatively large logKow through bioaccumulation, they can
be transferred from low trophic organisms to high trophic organisms through the food
web [63,107,108]. The survival and reproduction of organisms may be threatened by the
toxicity of OPEs, which mainly manifests as growth inhibition [89,104,109], developmental
delay [110,111], reproduction toxicity [13], neurotoxicity toxicity [12], and apoptosis [15].

3. Human Exposure

OPEs could potentially accumulate in primary producers through food chain accumu-
lation and will eventually reach our dinner table. The ingestion of aquatic products and
drinking water may pose potential harmful effects on human health, which is a topic wor-
thy of further exploration [112–114]. Studies have demonstrated that consuming aquatic
products is a significant way in which humans can be exposed to OPEs. [115–117]. The
industrial processing and packaging of food products are the main contributors to OPE
contamination in foodstuffs. Thus far, certain research have estimated the exposure dose of
OPEs through the ingestion of aquatic products. For example, Choi et al. (2022) studied the
lake trout from the Great Lakes and assessed the estimated daily intake (EDI) of OPEs to be
in the range of 9.6–27 ng/kg body weight (bw)/day [100]. Bekele et al. (2019) estimated
the EDI of OPEs via wild marine fish ingestion [102]. The values were 3.1–22.1 ng/kg
bw/day and 1.7–12.0 ng/kg bw/day for urban and rural residents, respectively. Urban
residents had a higher exposure to OPEs due to the fact that they consume more fish than
rural residents. According to Ding et al. (2018), the daily intake of 10 types of OPEs for
local children and adults were calculated at 97.7 and 55.0 ng/kg bw/day, respectively [118].
Zhang et al. (2020) collected shrimps, crabs, and oysters from the marine aquaculture farms
to assess the dietary risk of OPEs [119]. The EDI values of the total OPEs ranged from
9.31 to 23.75 ng/kg bw/day. Based on the above studies, the exposure through aquatic
products is at least three orders of magnitude lower than the corresponding reference dose
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values. The assessment on the dietary risk in these works does not pose a health risk to
humans at present.

Kim et al. [64] assessed human exposure via the drinking water in North America.
The EDI values of 14 types of OPEs in New York State ranged between 0.2 and 1.3 ng/kg
bw/day (normal exposure) and 1.2–9.7 ng/kg bw/day (high exposure). The results were
comparable to the values of adults in Korea (1.8–11.8 ng/kg bw/day) [84]. Hou et al. (2021)
assessed the exposure of adults to OPEs from barreled water and drinking water from water
dispensers [78]. Under normal-exposure scenarios, the EDIs of 11 types of OPEs via the
ingestion of drinking water from water dispensers (0.7–3.7 ng/kg bw/day) were 39 times
of those via the ingestion of barreled water (0.02–0.1 ng/kg bw/day). Under high-exposure
scenarios, there was a difference of 343 times between the two values. These findings
demonstrated the marked increase in the human exposure risk of OPEs via drinking water
due to the use of water dispensers. Liu et al. (2019) estimated the average daily dose
of a total of 5 types of OPEs, which was in the range of 3.6–7.1 ng/kg bw/day (average-
exposure scenarios) and 38.9–64.8 ng/kg bw/day (high-exposure scenarios) in Nanjing,
China [120].

Overall, these results showed that there is a low, but not negligible, risk to human
health from OPEs, specifically in relation to the ingestion of seafood and drinking water.
However, the long-term and sustained consumption of OPE-contaminated diets can in-
crease the risk of exposure. Therefore, it is worth conducting more detailed assessments of
aquatic organisms in coastal areas, such as ports and urban river discharge areas, and it
isalso necessary to upgrade drinking water treatment technology.

4. Conclusions and Future Perspectives

In summary, a large number of studies showed that OPEs are ubiquitous in various
aquatic environments. Since human beings are easily exposed to such substances, the
process and mechanism of its environmental behavior and the potential ecological risks
caused by OPEs deserve continuous attention. At present, the research on the pollution
traceability and environmental risk of OPEs has not been fully carried out, and the following
gaps still exist:

(1) Thus far, most studies have mainly focused on the commonly used monomeric
OPEs, while scant research is available on oligomeric OPEs and their metabolites.
Therefore, further studies should be encouraged to study their fate and the process of
metabolic/degradation in aquatic environments. More specific studies on OPEs in
water are needed;

(2) In addition to the various water bodies, sediments are the final sink of OPEs in
water sources. More monitoring studies on the multimedia analysis associated with
OPEs are needed, which is extremely important for us to understand the origin and
migration of OPEs. More specifically, the previous studies involved in the detection
of OPEs in aquatic environments were only conducted in one or two environmental
media simultaneously. Only a minority of studies have confirmed the accumulation
of OPEs in aquatic organisms and scant research is available on the partitioning of
OPEs between water and aquatic organisms. In view of the current research status
and existing limitations of OPEs, future relevant research should focus on tracing
the pollution sources and environmental behaviors of various OPEs in different
environmental media;

(3) For the human exposure risk assessments of OPEs, most studies ignored OPE bioac-
cessibility, which possibly overestimated or underestimated the risk posed by OPEs
by not taking into account their specific chemical fractions. Systematic studies on
the toxicity of OPEs and their metabolites should be carried out to lay a scientific
foundation for the accurate assessment of their potential ecological and health risks.
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