
Citation: Bañas, K.; Robles, M.E.;

Maniquiz-Redillas, M. Stormwater

Harvesting from Roof Catchments: A

Review of Design, Efficiency, and

Sustainability. Water 2023, 15, 1774.

https://doi.org/10.3390/ w15091774

Academic Editor: Luís Filipe Sanches

Fernandes

Received: 15 February 2023

Revised: 26 April 2023

Accepted: 30 April 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

Stormwater Harvesting from Roof Catchments: A Review of
Design, Efficiency, and Sustainability
Karen Bañas 1,2, Miguel Enrico Robles 1,3 and Marla Maniquiz-Redillas 1,*

1 Department of Civil Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines
2 College of Engineering and Architecture, Catanduanes State University, Calatagan, Virac 4800, Philippines
3 Civil and Environmental Engineering Department, Kongju National University,

Cheonan 31080, Republic of Korea
* Correspondence: marla.redillas@dlsu.edu.ph

Abstract: Roof runoff is collected rainwater from a roof using a rainwater harvesting system (RWHS).
The construction of an efficient RWHS requires a thorough analysis of the rainwater quality and the
appropriate treatment process for its intended use. In line with this, a bibliometric and comprehensive
review of studies related to roof rainwater harvesting was conducted. A corpus of 1123 articles was
downloaded from the Scopus database and parsed through the CorText Manager to determine the
relationships between keywords, journals, and topics related to rainwater harvesting. A compre-
hensive analysis was also conducted to determine the different designs of RWHS, the quality of
harvested rainwater from roof catchments, the efficiency of the system for specific purposes, and
its sustainability in terms of economic, environmental, and social aspects. Results show that the
effectiveness of a RWHS heavily depends on its installation site, the physicochemical characteristics
of the harvested rainwater, and the acceptability of the end users. An effective water treatment
process is essential for achieving better water quality for harvested rainwater. Moreover, assessing
the financial viability and return on investment of an RWHS is necessary.

Keywords: comprehensive review; rainwater harvesting; rainwater harvesting system design; roof
runoff; water quality; water supply; sustainability; reuse

1. Introduction

Water scarcity remains a pressing issue worldwide. It has been previously found that
about 4 billion people, or two-thirds of the world’s population, experience severe water
scarcity at least one month per year [1]. This number was projected to reach 6 billion
by 2050, with 73% residing in Asia [2]. Furthermore, socioeconomic factors that include
population growth, increasing living standard requirements, and rising global temperature
contributes to domestic water scarcity [3]. Conventional domestic water sources, including
groundwater and surface water, are also vulnerable to contamination. The study of Sui
et al. (2015) explained that in certain environmental conditions, groundwater could be
susceptible to emerging contaminants, particularly pharmaceutical and personal care
products (PPCP) [4]. Every activity that could result in the purposeful or unintentional
release of chemicals or wastes into the environment has the potential to contaminate
these sources.

Rapid urbanization can also contribute to water scarcity and pollution issues, and
future population growth will put more pressure on water infrastructure. Urbanization
helps the economy and improves living circumstances, but unplanned expansion carries
many hydrological concerns, such as pollution, water supply, and drainage [5]. Increasing
impermeable surfaces and poor resiliency of urban drainage system design from constant
development increases peak storm runoff, which could harm urban communities and their
water security in general [6]. Increased frequency of downpours due to climate change also
imposes greater and intensified effects. Precipitation is anticipated to increase at higher
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latitudes and decrease nearer the equator. Increased rainfall is expected to come in the
form of more frequent heavy downpours. Particularly when combined with changes in
land use, this change in precipitation patterns will probably result in a higher occurrence of
flooding. Moreover, clean freshwater is projected to become more scarce, and illness caused
by unclean water is projected to increase. With the overlapping effects of increasing water
demand, widespread urban development, and degradation of water quality in conventional
sources, exploring alternative domestic and drinking water sources has garnered significant
interest among researchers.

Capturing stormwater for reuse has been suggested to counteract the rising peak flow
rates and increasing demand for clean and drinkable water [7]. Low-impact development
(LID) is an approach to managing stormwater runoff. It is a design approach that employs
artificial and natural infiltration and storage methods to manage stormwater where it is
generated. Rainwater harvesting systems (RWHS), sometimes called rainwater harvesting
(RWH), are LID techniques that could collect roof runoff for storage and supply and can
provide effective runoff management and flood reduction benefits while simultaneously
serving as a water supply. RWHS are deemed a climate change adaptation tool that could
benefit water-scarce areas [8]. RWHS can also be a crucial reserve in emergencies or when
the public water supply systems fail during natural catastrophes. Numerous studies also
claim that stormwater collection through RWHS has great potential for addressing climate
change and preventing domestic water pollution [9–11].

RWHS implementation challenges require various considerations to optimize its usage
over an area. The RWHS design depends on several key factors, such as geographical
location, building structural design, quality of rainwater harvested, and relevant economic
assessments. Likewise, other design parameters such as return period, design rainfall,
concentration time, and peak time should be considered in adapting RWH [12]. Addi-
tional measures must also be applied in these systems as pollution in rainwater harvesting
remains a concern [13]. Filtration is one of the most known methods to decrease debris
and solids in rainwater, as stated in previous studies [14–16]. Disinfection may also be
applied to improve the physicochemical and microbiological quality of water [9,17]. Fur-
thermore, trapping stormwater and storing it in temporary impoundments for evaporation
or ground infiltration can also be an effective option that could successfully complement
technologically intensive approaches [6]. Addressing these issues is significant in building
a long-term recharge method and controlling stormwater runoff, later contributing to the
restoration of preurban hydrology in catchments [18–20].

This review study investigated the innovative study of RWHS focusing on water
quality, usefulness, financial viability, and climate change solutions and directs future
research initiatives on the topic. Thus, a bibliometric analysis was conducted to identify the
research trends regarding roof rainwater harvesting. In addition, a comprehensive review
was also conducted to evaluate the quality of harvested rainwater from roof catchments,
the different components of RWHS with treatment processes that utilized roof runoff, and
its efficiency for reuse, e.g., irrigation, domestic, commercial, and livestock use. The rainfall
quantity and the corresponding storage tank capacity were also examined in this review.
The evaluation of the current studies regarding the economic, social, and environmental
sustainability of RWHS is also highlighted.

2. Materials and Methods
2.1. Bibliometric Review

The research articles used for the bibliometric review were downloaded from the
Scopus database [21]. As shown in the methodology framework in Figure 1, the ini-
tial search string inputted was TITLE-ABS-KEY (“rainwater harvesting”), resulting in
3117 documents. To filter the documents further and determine the articles relevant to roof
rainwater harvesting, the keywords “roof” and “runoff” were added to the search string,
resulting in 1123 documents. No filtration of articles from specific years was performed.
The resulting documents were downloaded as a Research Information System (RIS) file on
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23 August 2022 and parsed into a corpus using the CorText manager, an online software
used to quantitatively assess scientific articles based on bibliometric information collected
from a set of downloaded research articles [22]. Various scripts that include a network
map of keywords, years, and countries, contingency matrices (keyword and journal; key-
word and country), and a Sankey diagram of keywords were generated from the CorText
Manager for the analysis of terms, references, and trends of topics related to roofing
rainwater harvesting.
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Figure 1. Framework of the review methodology.

A heterogeneous network map and a Sankey diagram were generated to visualize the
relationship and the magnitude of co-occurrence among keywords related to roof rainwater
harvesting. In generating the network map, “keywords”, “time steps”, and “country” were
selected as the first, second, and third variables, respectively. The chi2 test was selected as
the specificity measure, in which the independence and relevance of the variables from
each other were measured. Under the same script type, the Sankey diagram was generated
by setting the number of slices to 5 on the Dynamics table. Contingency matrices were also
generated to visualize the magnitude of the co-occurrence of roof rainwater harvesting-
related keywords in both journals and countries. In generating the contingency matrix,
“keywords” was selected as the first field, while “journal” and “country” were selected as
the second fields of the two scripts. The number of nodes was set at 10, while chi2 was
selected as the contingency analysis measure.
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2.2. Comprehensive Review

The research articles used for the bibliometric review were filtered further for the
comprehensive review. Specific keywords were added to the initial Scopus search string
to identify research articles relevant to roof runoff collection, treatment, and sustainabil-
ity. Three Scopus searches were conducted for the comprehensive review. In the first
search, the keywords “treatment” and “characterization” were added, which resulted in
398 documents. The collected documents were then limited to research articles that were in
English and relevant to rainwater characterization and treatment. The filtration resulted in
37 documents for the first Scopus search. The next Scopus search, in which the keywords
“quantity” and “sustainability” were added, underwent the same filtration process. The
second search turned up 33 documents. In the third Scopus search, the keywords “reuse”
and “design” were added, which resulted in 468 documents. It was also limited to articles in
English and relevant studies, which resulted in only 11 documents. A total of 92 documents
were used for the comprehensive review. The available information in the research articles
was synthesized using Microsoft Excel for analysis.

3. Results
3.1. Bibliometric Review
3.1.1. Network Mapping and Evolution of Keywords and Terms

A heterogeneous network map (Figure 2) was created using the CorText Manager to
determine the association of keywords, countries, and years relevant to research on roof
rainwater harvesting. Keywords within or near a solid circle have high co-occurrences,
while keywords surrounding a year have high co-occurrences with that particular year.
Moreover, countries that are near each other have high co-occurrences. It can be seen
from the figure that the keywords “water harvesting” and “water quality” have high co-
occurrences for several years between 2000 and 2013, indicating that water harvesting,
regardless of the source and the surface on which it was collected, has been a topic of
interest for the mentioned time frame. Furthermore, the high co-occurrence of the two
keywords denotes that water quality assessment was the focus of most water harvesting-
related research published from 2000 to 2013. It can also be observed that the keywords
“tank sizing”, “rainwater tank”, and “water demand” have high co-occurrences with the
year 2015, indicating that research initiatives on the efficiency of rainwater harvesting were
mainly published in that particular year.

The network map shows that keywords with “rainwater harvesting”, such as “roof-top
rainwater harvesting”, “rainwater harvesting (RWH)”, and “domestic rainwater harvest-
ing”, all have high co-occurrences with more recent years. The co-occurrences indicate that
rainwater harvesting is an emerging research topic and is becoming more globally relevant
as time progresses. It can also be observed that sustainability has been a focus in research
on roof rainwater harvesting. The presence of the keywords “sustainability”, “cost-benefit
analysis”, and “economic analysis” shows that the sustainability and economic advantages
of roof RWHS are widely investigated, mainly in Western countries such as the United
States, Canada, and France.

The Sankey diagram in Figure 3 shows the evolution of keywords relevant to roof
rainwater harvesting. A darker-colored tube connecting two keywords denotes a strong
relationship between the two keywords. In contrast, the thickness of the tube denotes
the level of co-occurrence between the keyword and the particular year it belongs to. It
can be seen that the years 1989 and 1993 are present in the network map but not in the
Sankey diagram. The keywords generated from articles published in the mentioned years
are represented in the 1996 column. Since the number of slices generated for the Sankey
diagram was limited to five, keywords from articles published before 1996 were displayed
in the next year, in which relatively more articles were published. It can be observed
that stormwater management and sustainability have been relevant to roof rainwater
harvesting since the 1990s. Furthermore, specific purposes of rainwater harvesting were
found to be relevant to sustainability in the 2010s, such as “urban commercial infill” and
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“greywater reuse”. The most robust keyword relationship in the diagram was between
“supplemental irrigation and economic analysis” and “residential buildings and rainwater
harvesting”. This strong relationship indicates a significant evolution in the usage of
harvested rainwater, from irrigation to domestic use. It can also be seen in the figure that
most rainwater harvesting-related research prioritizes water savings, water demand, and
drinking water. The keywords “GIS” and “remote sensing” in recent years indicate that
advanced has been significantly involved in investigating the effectiveness and efficiency
of rainwater harvesting.
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3.1.2. Contingency Matrix

Two contingency matrices highlighting the co-occurrence between keywords, journals,
and countries are shown in Figure 4. The darkness of a cell in the matrix indicates the
magnitude of co-occurrence between two fields. A red cell indicates a strong relationship
between two fields, while a blue cell denotes a weak relationship. Moreover, a white cell
indicates neutrality between the two fields. The number on the horizontal axis indicates the
number of articles in which its corresponding keyword was used. Moreover, the number
on the vertical axis denotes the number of articles collected from its corresponding journal
or country. On the contingency matrix for keywords and journals in Figure 4a, it can be
observed that the keyword “rainwater harvesting” had the highest co-occurrence with
the Journal of Hydrology. The mentioned journal had the highest co-occurrence, with the
keyword “runoff”. The two darkest red cells intersect agricultural water and management
and the keywords “climate change” and “runoff”. Water (Switzerland) was found to have
a co-occurrence with the keywords “GIS”, “water supply”, and “water quality”.
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The co-occurrence between keywords and journals is shown in Figure 4b. The coun-
tries with the highest co-occurrence of the keyword “rainwater harvesting” were Australia,
the Netherlands, and Malaysia. South Africa and Spain also had positive co-occurrence
values with “rainwater harvesting”. A strong relationship was found between the key-
words “runoff” in South Africa and “rainwater” in Spain and Australia. Furthermore, a
strong co-occurrence was found between the keyword “stormwater management” and the
United States. Other noticeable relationships include the high co-occurrence of India with
the keyword “GIS” and China with the keyword “runoff”.

3.2. Comprehensive Review
3.2.1. Roof Runoff Quality

Roof rainwater quality can be influenced by a variety of factors, including roof charac-
teristics (e.g., material, age, slope), environmental factors (air pollution, geographic location,
season), and rainfall characteristics (rainfall intensity, antecedent dry period, rainfall dura-
tion). Studies have stated that pollutants accumulate both in the air and on the roof from the
onset of rainfall until the emergence of roof runoff [23]. Rainwater harvesting components
and external factors, such as climatological conditions, including rainfall intensity and dry
days, also influence the quality of rainwater runoff [24]. Similarly, rainwater can become
corrosive and murky due to air pollution [25]. The demographic and social behavior of
the population also influences the quality of harvested rainwater [9]. The identification
of contaminants and the conditions in which they arise can help to develop rules, reg-
ulations, and maintenance recommendations for small-scale rainwater harvesting [26].
Common contaminants from roof runoff include zinc, copper, and iron [27], although their
concentration can depend on the roofing materials, environmental factors, and rainfall
characteristics [23].

Figure 5 summarizes influent roof runoff concentration values obtained in the re-
viewed studies. The highest and lowest values for electrical conductivity are 410 µs/cm and
14.7 µs/cm, respectively. One of the high values of electrical conductivity is 105.59 mg/L
which is found in asphalt-felt roof runoff in the study of Boguniewicz-Zabłocka and
Capodaglio (2020) [6]. Nitrogen and chlorine content ranges from 9.36 mg/L to 0.02 mg/L
and 44.22 mg/L to 1.72 mg/L, respectively. Sulfate comes from emissions of sulfur-
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containing compounds that occur primarily from the combustion of petroleum-derived
fuels. These could easily combine with rainwater in the atmosphere.
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Figure 5. Summary of the influent roof runoff concentration values obtained in the reviewed studies
(n = 24).

The highest sulfate concentration is 205.43 mg/L, while the lowest is 2.23 mg/L.
Physicochemical characteristics such as E. coli came from the feces of animals that accu-
mulated on roofs. Additionally, it was found that coliform bacteria may also develop and
increase the contamination of rainwater due to prolonged storage in barrels. The values
of E. coli obtained from the data of the reviewed studies ranged from 450 CFU/100 mL to
4.90 CFU/100 mL. High concentrations of copper and zinc were observed, implying that
some roofing materials affect the water quality, specifically during the onset of rain after a
long dry period [15,28].

Regarding roofing material, some studies showed that the quality of rainwater har-
vested from roof runoff was greatly affected by the materials used for roofing [13,27]. The
concrete roof had a beneficial influence on hardness, EC, pH, and alkalinity compared to the
other roof types [29]. Rainwater collected in the spring and autumn with a flat roof covered
with epoxy resin had the poorest microbiological quality [30]. When harvesting rainwater
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for non-drinking purposes, a stabilized soil cistern was considered an alternative [28].
Conversely, on metal roofs, the combined effects of concentrated UV radiation and higher
temperatures provided a sterilizing effect, thus improving the water quality of the roof
runoff [15]. Green roofs may also be considered when choosing a roofing material; however,
one of the studies recommended choosing appropriate components for long-term use [31].

Some findings of water quality tests indicate that particulate matter from the atmo-
sphere was the predominant pollutant in the RWH collection system [32], making rainwater
stored in barrels inadequate for human consumption [33]. Studies suggest that pollutants
can build up on a roof over an extended dry period, causing pollutant concentrations to
be higher. Eliminating ponding on the surface was found to be effective in minimizing
the potential of microbiological contamination of the roof runoff [27,34]. Since rainwater is
collected from rooftops, studies recommend choosing suitable roofing materials based on
the intended application [35].

3.2.2. Components of Rainwater Harvesting System

The reviewed articles found that rainwater harvesting systems are typically composed
of rainwater barrels for storage. Other RWHS were accompanied by a treatment process
to remove contaminants from the harvested rainwater. In some cases, roof runoff RWHS
applications depended on the location, type of infrastructure, characteristics of rainwater,
and the system itself. Table 1 shows a summary of the components of RWHS. It includes
the roofing materials, storage tank capacity, materials used for the treatment process, and
the study results. These components are significant in achieving the efficiency of RWHS.

Treatment Process

The surface used to collect rainwater significantly impacts the quality, and micro-
biological quality typically necessitates a thorough disinfection to create safe drinking
water [36]. Good design, construction, and proper use of the system should be followed to
have a stable and efficient operation [37]. Using basic filtration technologies has shown a
potential to address the need for alternative clean water sources during the dry season [38].
Many countries utilize filtration as the primary treatment process in RWHS, as shown in
Table 1. Some studies have applied techniques corresponding to the site conditions and
purpose of treated rainwater. Khayan et al. (2019) employed mollusk sand media and acti-
vated carbon to purify lead (Pb)-contaminated water collected from lead-coated roofs [25].
Wu et al. (2017) adopted fine mesh filters to treat rainwater in China [28]. Filtration and
chlorination can also be used conjointly to make rainwater safe for drinking [16,17]. First
flush treatment is also suggested since more contaminants are present at the onset of rain
because organic matter builds up in the atmosphere and on roofs during the dry season.
Membrane methods such as nanofiltration can produce better-quality, safer drinking water,
and have a minor environmental impact than other treatment options [39]. In Vietnam,
filtration with a reverse osmosis filter and boiling was used to treat water for drinking and
domestic uses [40]. Disinfection using a pilot-scale solar photocatalytic fixed bed tubular
reactor was also an effective treatment process in India for potable use [41]. Nanofiltration,
using a system consisting of a filtration cell, a nitrogen gas tank with a regulator, a permeate
collection cell, and a computer that records data for the flux calculation, was used in Turkey
to achieve the standards for drinking water [19]. Using gravel filters also cleanses water in
an RWHS, reducing total coliforms to negligible levels [16].

Sedimentation is another treatment process that can be used for rainwater, wherein
the sediments are allowed to settle at the bottom of the tank for a period. This process
allows a change in the physical parameters of rainwater, improving the quality at the
top of the container with time. Poorer water quality, however, could be observed at the
bottom of the tank due to the settling solids [35]. Rainwater retention can also enhance
the physicochemical and microbiological quality of rainwater collected from any roofing
material, regardless of the season or the roofing material used [19]. Closed tanks with no
fresh rainwater intake for at least six weeks are necessary to improve the water quality [30].
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Table 1. Summary of the Components of RWHS with Treatment Process and its Efficiency.

Country Roofing Materials Roofing Area
m2

Type/Capacity of
Storage Tank Treatment Process Materials for the

Treatment Process Result Usage Reference

Canada

Modified bitumen
finish ply,

polyvinyl chloride
(PVC), and

thermoplastic
polyolefin (TPO)

2052 Precast concrete
cisterns 25,000 L

Filtration and
disinfection

Multimedia filters;
activated carbon;

micro-filters (5 to 1 µm
nominal pore size);

ultraviolet disinfection
system; sodium

hypochlorite addition

Rainwater collected would
be unfit for human

consumption if not treated
before being distributed

throughout the structure.

Non-potable [26]

China Asphalt felt roof 37.5 -
Grid filter,

flocculation, and
sedimentation

-

Roof runoff may satisfy the
miscellaneous domestic

wastewater quality
standard for toilet flushing,
city greening, car washing,

and house cleaning.

Non-potable [13]

Brazil

Masonry and
ceramic tiles

Gutters:
galvanized sheet
metal, aluminum

alloy, and
polyvinyl chloride

(PVC)

100
900

1422
1000 L and 1500 L

Filtration of coarse
materials, discharge

of first water,
filtration of fine

particulate material,
and chlorination

For filter screens, 5000 L of
water requires 8 g of

calcium hypochlorite (65%
active chlorine) diluted in

1.5 L of water.

The system is efficient, as
the water sent to the

sewage system is reused,
contributes to utility bill

savings, and helps prevent
urban floods.

Non-potable [42]

Indonesia Zinc roof - Rain barrel

Mollusk sand
filtration model and

activated carbon
sorption (0.2–5 mm.)

Activated carbon from
coconut shell (0.2–5 mm);

Mollusk sand from the shell
of the shellfish (0.2–5 mm)

A decrease in turbidity and
lead contamination was

attained.
Potable [25]

Nigeria

Asbestos,
aluminum,
corrugated

galvanized iron,
and plastic sheets

- 255 L

Chlorination,
boiling, alum, and a
combination of alum

and chlorine

Asbestos; aluminum;
corrugated galvanized iron;

plastic sheets

A decrease in turbidity after
3 mm diversion, removal of

total soluble solids, and
E. coli removal after alum +

chlorine treatment.

Potable [17]
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Table 1. Cont.

Country Roofing Materials Roofing Area
m2

Type/Capacity of
Storage Tank Treatment Process Materials for the

Treatment Process Result Usage Reference

India Concrete Slab - - Gravel filter and
chlorination

Concrete tank; PVC gutters;
gravel filter

Total coliforms dropped to
negligible levels. All water
samples had a pH that was
close to neutral. Almost all
water samples had fluoride

and iron levels below
acceptable standards.

Potable [16]

New
Zealand

Galvanized steel
roof -

Low-density
polyethylene resin

200 L
Filtration

Chlorination/boiling

200-L emergency rainwater
tanks (linear low-density
polyethylene resin) with
removable lid; Diverter
(contains coarse screen),

brass tap, and restraining
strap

69% of rain-fed tank
samples collected in this

study exceeded the
health-based guideline

value for the lead of
0.01 µg/L, indicating that

the source is unsuitable for
long-term consumption.

Non-potable [15]

Vietnam

Corrugated tiles
and cement,

corrugated; steel
sheets, or concrete

roofs

- Brick and concrete

6% of Households
added disinfectant

30% used
strainers/filtration

box
98% use Boiling

water or Filtration
with a reverse
osmosis filter

-

All values meet the national
standard of Vietnam for
drinking water except

coliforms; water can be
potable if boiled.

Potable [40]

India - - -

Disinfection using
pilot-scale solar

photocatalytic fixed
bed tubular reactor

Pyrex glass tubes
immobilized with

Ag-doped TiO2

Removal of COD after
120 min; complete

disinfection against E. coli
after 120 min.

Potable [41]

Turkey
Commercial flat
sheet polymeric

membranes
2000 273,000 L Nanofiltration

Filtration cell; nitrogen gas
tank with a regulator;

permeate collection cell;
computer

Sulphate and NOM
removal was observed. Potable [20]
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Table 1. Cont.

Country Roofing Materials Roofing Area
m2

Type/Capacity of
Storage Tank Treatment Process Materials for the

Treatment Process Result Usage Reference

South Korea - - -

Solar-based
disinfection of
Pseudomonas

aeruginosa (9 h)

8 sterile PET bottles of 2 L
capacity

Disinfection during sunny
weather. Non-potable [43]

China Stabilized-soil
catchments - 8000 L Fine mesh filter

Fine mesh filter; 8 m3

capacity cistern (cement,
soil stabilizer)

The stored water did not
meet drinking water

standards due to high levels
of bacterial contamination.

Non-potable [28]

Brazil - 80 Fatboy slim
reservoir 2460 L Filtration

1.0 mm mesh; 2460-L fatboy
slim reservoir with

polyethylene coating

The rainwater was not
suitable for drinking

purposes.
Non-potable [14]
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Treating rainwater as soon as it reaches the surface has become a practical solution in
many cases [44]. In rainfall harvesting, the application of green roofs could have a consider-
able impact on the treatment of incoming rainwater. Green roofs are green infrastructures
that could treat runoff and reduce the peak discharge of water. The performance of green
roofs is determined mainly by the type of green roof, the climate, and the amount of irriga-
tion received [45–48]. Runoff partially decreases with the use of the green roof’s integrated
infiltration, filtration, and evapotranspiration processes, and the concentration of pollutants
can also be minimized [49]. Due to their low initial investment and ongoing maintenance
expenses, extensive green roofs are used more commonly than intensive ones [50]. An
intensive green roof typically has a deeper substrate layer restricted to smaller places. In
contrast, an extensive green roof likely has a shallow substrate layer covering a large area.
Smart RWHS may be an option in choosing green roof designs. It can store rainwater
for use while utilizing a new technology. In the study of Oberascher et al. (2021), smart
RWH systems release stormwater automatically before rain events, which can further boost
integrated system resilience [51].

Efficiency of Treatment

The summary of the efficiency of the rainwater treatment process from the reviewed
articles is shown in Table 2. Limited information has been shown in the downloaded
articles that include the removal of contaminants. The pH of typical, pure rain ranges from
5.0 to 5.5, which could become more acidic when it interacts with sulfur dioxide or nitrogen
oxides, often produced by power plants and automobiles. Therefore, the increase in pH
content has been notably shown in the articles to determine the efficiency of the treatment
process. Other contaminants such as total suspended solids (TSS), turbidity, chemical
oxygen demand (COD), and E. coli removal have also been highlighted in these studies. In
the studies reviewed, the TSS, turbidity, and COD removal reached up to 72.75 ± 4.27%,
52.71 ± 33.26%, and 63.61 ± 19.26% (mean ± SD), respectively. One reviewed study
proclaimed that a 100% removal of E. coli removal was observed after six weeks of storage
at 12 ◦C [30]. Most of the treated water experiences an increase in pH, with one achieving a
52.63% increase. A wide variability of change can be distinguished in the pollutant removal,
between 0.63 and 0.06. The skewness or measured symmetry of the pollutants can be seen
clearly. The results in the percent removal of TSS and percent increase in pH are positively
skewed, which implies that the removal and increase are not uniform in the different
treatment processes. However, it was observed that the results of the percent removal of
E. coli, COD, and turbidity are almost the same, which means that the studies reviewed
have similar results. Moreover, to have an efficient rainwater treatment system, one should
consider the materials and methods to be used and the contaminants to be removed.

Table 2. Summary of the efficiency of the rainwater treatment process (n = 7).

TSS
(% Removed)

pH
(% Increased)

Turbidity
(% Removed)

COD
(% Removed)

E. coli
(% Removed)

Mean 72.75 31.54 52.71 63.61 79.23
Median 71 26 50 64 87.69

Minimum 70 16 11 32.68 50
Maximum 79 52.63 99 90 100

Standard Deviation 4.27 18.93 33.26 19.26 24.57
Coefficient of Variation 0.06 0.6 0.63 0.3 0.31

Skewness 1.73 1.2 −0.07 −0.43 −0.47

3.2.3. Quantity and Reuse

The rainfall amount, duration, intensity, and distribution contribute to the design
and implementation of RWHS in any given location [52]. The quantity of rainwater that
can be harvested should be considered, along with the purpose it will serve. Figure 6
shows the summary of the roofed area and its corresponding rainfall amount recorded in
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every study reviewed. Only 29% of the paper reviewed has a value greater than 500 m2,
regardless of the rainfall amount. For example, a rainfall amount of only 640 mm/yr has a
roofing area of 2450 m2 in the paper of Custodio and Ghisi (2019), whereas in the study of
Sámano-Romero et al. (2016), a rainfall amount of 4239 mm/yr has a roofing area of only
50 m2 which shows that the recorded rainfall amount is usually not the basis for computing
the area of the roof. However, most buildings’ roof spaces are not large enough to collect
enough rainwater to meet demand [53]. Nevertheless, catchment area and catchment
surface type can be changed to enhance system performance [54]. Due to the dynamic
characteristics of rainfall, some studies consider the size of the storage tank rather than
the roof area, which makes the storage tank the most significant expense in RWHS and
domestic rainwater harvesting (DRWH) systems [55]. Areas with less rainfall would require
small storage tanks for economic reasons. The study of rainfall and the area’s physical and
social factors can help design the RWHS to make it reliable [56]. Figure 7, on the other hand,
shows the relationship between the ratio of the runoff volume and tank size versus rainfall
amount. The results indicate that as the rainfall amount recorded increases, the ratio of the
runoff volume collected to the storage tank volume increases. The volume of roof runoff
collected and tank size were critical in the preliminary design of an RWHS in one of the
studies reviewed [11]. However, one study can be seen as an outlier. The R2 value is 0.2795,
which implies that the data points are not closer to the mean value.
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RWH can act as the primary water source in rural areas where the availability of
water resources is a serious problem or as a complement to the main water supply in
urbanized areas when integrated with the current conventional water delivery systems [54].
Rainwater collected using RWH systems can then be reused for other purposes. Figure 8
shows the percentage of studies reviewed with data on the reuse of rainwater harvested
from roof runoff. Studies show that rainwater is typically used for domestic, commercial,
irrigation, and livestock purposes. Among the 54 reviewed studies, 30 papers reviewed the
use of rainwater for domestic purposes, of which 13 percent is potable, and 43 percent is
non-potable. The rainwater collected from the roof is not potable and should not be used
for drinking, but it can be used for flushing, cleaning, and gardening [57]. Nevertheless,
treating it appropriately can serve its purpose as a potable water supply. Utilizing rainwater
collected from rooftops can promote water sustainability and lessen the vulnerability of
the water supply for homes and other uses [58]. In rural communities, especially in
developing nations without access to safe drinking water supplies, rainwater harvesting
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(RWH) systems can produce drinking water [59]. Since the capacity of rainwater tanks to
supply livestock holdings with water is greatly influenced by the research area’s regional
characteristics, i.e., longer dry periods, tank design cannot be completely standardized [60].
Covered and uncovered rainwater tanks can also be employed to meet irrigation needs.
According to Londra et al. (2021), the required tank sizes could lessen local pressure on
water resources [61]. Additionally, RWH models are frequently used to assess various
system designs, notably the sizing of rainwater tanks [62]. Using RWH can bridge the
water deficit for agriculture and the amount of rainfall, lessening potential water system
demands and subsidizing irrigation while promoting sustainable development [63].

Figure 7. Scatter plot of the ratio of the runoff volume and tank size versus rainfall amount (n = 13).
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3.2.4. Rainwater Harvesting Potential and Sustainability

In addition to rainwater harvesting, source separation, and on-site wastewater treat-
ment are important aspects of the water sector’s circular economy. Important implications
for the wastewater discharge infrastructure include sufficient collection facilities, buffer
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reservoirs during dry periods, and a different pipe system to collect and distribute the
water [64]. Cultural reforms and awareness are required to raise public understanding
about the necessity of water conservation and protection [42]. Understanding end-user
prioritizing preferences was critical for responding to increasing water constraints and
scaling up alternate water delivery systems [65]. Oviedo-Ocaña et al. (2018) state that the
end user’s desire to use alternative sources (rainwater), the purpose for using alternative
sources, the readiness of the end-users to pay for investment, operation, and maintenance,
and the willingness to carry out the operational activities are heavily considered in in-
stalling RWHS [66]. In the reviewed studies, the amount of water that an RWH method
can save was predicated on the situation of the installation sites and the end users. Water
end-uses, total water consumption, and catchment area were among the found building
attributes [67,68]. The study of Kwon et al. (2018) also implied that collecting rainwater
on a neighborhood scale rather than per individual building can be more economically
viable [69]. Table 3 compares RWH approaches regarding occupancy category, catchment
area, daily consumption, payback period, and Internal Rate of Return (IRR) corresponding
to the number of years. The traditional method of determining the payback period of any
investment is to use it individually and case by case, taking into account the cost of the
investment and its subsequent benefits over time while converting future predicted gains
into a lower net present value, taking into account the return rate [70]. A study by Park
and Um (2018) explains that the lesser the occupancy and roofing area, the shorter the
payback period. Sustainability improves as storage capacity increases and water demand
decreases [71].

Table 3. Summary of rainwater harvesting system potential.

Country Occupancy Roofing Area
(m2)

Daily
Consumption
(L/d/Capita)

Payback
Period
(Years)

IRR *
(%/# of Years) Reference

Brazil 2 houses, 4 inhabitants/house 100–1422 150 3.5 19/25 [42]

Colombia 65 houses/5 inhabitants/house 30.5 130 30 4.7/30 [65]

Colombia 1 house, 4 inhabitants 101 203 23 6.5/50 [66]

Netherlands 4 houses 140–235 119 60 - [36]

Poland 16 multi-family buildings 13,250 - 100 9/12 [72]

Poland Dormitory/600 inhabitants 2450 - 30 -
[73]Slovakia Dormitory/600 inhabitants 4900 - 20.27 -

Bangladesh 1 residential building/
60 inhabitants 16.72 135 3–4 - [74]

Greece 1 house/2 inhabitants 100 200 28 - [75]

Italy
984 Multi-story/multi-family
building/1–6 inhabitants per

apartment
25–100 - 10 50/15 [76]

Poland Single-family house/
4 inhabitants 230 243.9 30 - [77]

Note: * IRR—Internal Rate of Return.

A rainwater harvesting system provides positive effects over its entire life cycle,
making it cost-effective and reasonable for both the project and society [5]. Additionally, it
was learned that the expense of installing a rainwater harvesting system could quickly be
recovered in three to four years [74]. It is vital to emphasize the various upfront expenses
associated with the infrastructure that makes it possible to deploy rainwater harvesting in
households and the costs associated with maintenance and operation over the year [78].
The ability to save tap water, as well as capital and operational costs incurred throughout
the system’s operation, were also found to significantly impact the cost of employing
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the rainwater management system [75]. The option in which rainwater from the roof is
dumped directly into the sewage system has a lower life cycle cost [79]. Moreover, it was
found that the roof area, which is directly proportional to the amount of rainwater collected
on the roof, affects the payback times for each initial investment [70]. In Mexico, a local
strategy is required to create a nationwide rainwater harvesting program [80].

A flexible framework for planning, executing, and assessing green infrastructure
is necessary since it combines specific economic, social, and environmental goals and
advantages [81]. In a study in Greece, RWH implied the potential to improve the quality
of urban life concerning environmental values. The study claimed that social services
such as education and social safety could be strengthened by supplying safe water in
a long-term and sustainable manner using RWH [75]. In addition to economic growth
strategies that emphasize the environment and promote industry and public engagement
in environmental protection activities, nations should implement incentives and stringent
environmental protection rules [82]. Highly permeable surfaces are frequently converted
to impermeable ones, resulting in increased stormwater runoff, decreased infiltration of
groundwater, and surface water quality [83]. Due to the increased disruption of natural
landscapes brought on by urban expansion, urbanization has been continuously harming
the quality of surface waters; therefore, to lessen these effects, LID technologies were
developed to conserve the natural hydrologic cycle [84]. One of the articles reviewed states
that when minor rainfall events occur, the number of flooded areas can be reduced by up to
100%. For a rainfall event with a depth of up to 50 mm, a reduction in the region that floods
by about 35% can be achieved when using RWHS [85,86]. However, it was found out in one
of the studies reviewed that limited labor, high operational expenses, insufficient cash, price
changes, inconsistent rainfall, limited accessibility, a shortage of materials, land tenure,
and substandard systems available on the market were among the limiting problems faced
by end-users [87]. In the Netherlands, utilizing rainwater as a source for decentralized
drinking water production has a more negligible ecological impact than using surface water
in a centralized system when only consumables are considered [36].

One of the social aspects to be considered is the community’s acceptance of the in-
stallation and maintenance of RWHS. State agencies must assist householders’ increased
involvement with their tanks, enhanced understanding of tank operation, and support
for tank maintenance education and training [88–90]. The community’s attitude, norms,
and forms of knowledge about water perception and day-to-day management influence
the implementation of water practices and facilitate interaction among stakeholders and
local authorities, according to social analysis [64]. To gain crucial insight into the economic
viability of RWHS, a detailed cost-benefit analysis should be undertaken for various climate
zones [74,91]. Rainwater harvesting has several characteristics appealing to sustainable
water resource use: multi-level governance models, increased public participation, in-
creased full-cost recovery, and reduced environmental and social impacts [92]. Policies
and regulations reflect regional, national, or international viewpoints and priorities on
agreed-upon objectives to offer a framework for defining the rights and obligations of
the affected stakeholders. They are shaped to meet their needs [93]. Rainwater can be
acceptable to society as an alternative water source because of information campaigns
conducted and laws promoting and, in some cases, requiring such solutions. People may
be more aware of the potential for saving water and favor alternative solutions [94].

4. Challenges and Future Directions

A more sustainable strategy for exploiting water resources will be necessary to meet
water scarcity problems, considering both the quantity and quality of water required for
each user. Health risks linked with RWH may be one topic that needs to be addressed imme-
diately. Nevertheless, the greatest challenge in maintaining rainwater quality for its specific
consumption is the treatment of harvested roof runoff. Cost and proper maintenance are
the factors to be emphasized when utilizing RWHS.
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Although green roofs may be the most efficient RWHS that can be used in residential
areas, the challenge here is the system’s preparation, cost, and maintenance. Moreover,
the materials and labor need to be considered before the implementation to give way to
the effectiveness and efficiency of the system. Additionally, an extensive study may be
conducted on the existing structure to determine the capacity of a building to accept the
weight of the green roof. Changes in the design of the structure may be encountered that
will incur a more considerable expense. An automated RWHS may also be one of the
challenges that some researchers are considering looking into.

With improving dependability and resilience, as well as decreasing susceptibility,
RWHS performance becomes more sustainable. Using economic evidence to convince
households to adjust existing infrastructure and invest in rainwater retention systems
is worthwhile. High operational costs, price volatility, an inconsistent rainfall pattern,
insufficient financing, and limited accessibility were all factors that hindered the adoption
of RWHS to capture and preserve water. Granting benefits and incentives that may take
the form of tax incentives to encourage the compliance of establishments and structures
to practice RWH may also be considered. It is also vital to establish consideration when
establishing RWH policy. The governing body may establish regulations for RWH, identify
acceptable end uses and treatment standards, and require system components, maintenance
practice standards, and reuse rates.

Moreover, to advance in the use of decentralized water management alternatives,
some changes must occur at various levels and domains, as well as several conditions to
be favored: public acceptability of users and other social factors must be assured, costs
must be reasonable, health, technical, and environmental risks must be acceptable, new
regulations and incentives must be made available, and social learning processes and
adaptation capacity must be enhanced. Further, RWH research should concentrate on
financial analysis considering multiple benefits, life cycle analysis that includes energy use
and greenhouse gas emissions, productive water use, such as boosting rural and urban
agriculture, and institutional and socio-political support to improve RWH acceptability.

5. Conclusions

Upon conducting the bibliometric analysis, it was revealed that the growth of stormwa-
ter harvesting, particularly from roof catchments, as a topic of interest in the field of research
has been on an upward trend. The high co-occurrence of rainwater harvesting in recent
years showed the topic’s emergence and growing significance. The results of the biblio-
metric analysis also revealed that sustainability, water demand, and rainwater reuse are
the primary concerns of studies on roof runoff harvesting conducted in the last decade.
The evolution of rainwater harvesting as a subject, presented through the network map
and Sankey diagram, suggests that RWH possesses great potential in addressing water
scarcity globally.

The comprehensive review results revealed the characteristics of an RWHS, the quality
of roof runoff, and the system’s sustainability. The results indicate that rainwater harvesting
is one of the sustainable solutions to water scarcity and, potentially, to global warming and
climate change. Roof runoff was found to be one of the significant sources of rainwater that
can be collected for domestic water purposes, helping to solve the problem of water scarcity.
It was also learned that basic yet effective water treatment equipment is necessary to assure
higher quality before use. Contamination prevention or treatment systems for RWH should
also be addressed at the design stage to reduce contamination, which is mostly caused
by TSS, turbidity, and total or fecal coliforms. Green roofs are one of many tools aimed
at encouraging more urban greening to make communities greener, healthier, and more
resilient to the effects of climate change.

The roof runoff generated from rainfall, if properly collected and preserved, can help
alleviate water scarcity in households, although the government must provide subsidies
to improve system accessibility. The suggested system should be financially viable, and a
return on investment can be expected. The results of this study could help end-users, re-
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searchers, and developers choose the best RWHS for a particular desired purpose harvested
rainwater may serve.
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