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Abstract: Research into river processes in different climatic and geomorphic areas is vital for a clearer
understanding of the non-linear responses of rivers to climate change. The Huaihe River (HHR) Basin,
located in China’s North–South Transition Zone (NSTZ), provides an ideal environment in which to
explore river responses to climate change within a humid/semi-humid transitional area. Based on
optically stimulated luminescence (OSL) and 14C dating, combined with sedimentary stratigraphic
analyses, we reconstructed the river processes of three sedimentary sequences in the upper HHR
since the Late Quaternary. Our results showed that the upper HHR was characterized by aggrading
meandering channels from the Last Glacial Maximum (LGM) to 0.5 ka, and an aggrading wandering
channel from 0.2 ka to the present. Two periods of downcutting occurred during 5.8–3.0 and 0.5–0.2 ka,
respectively. The river incision is potentially linked to changes in the climate during the Mid–Late
Holocene transition and the Little Ice Age (LIA). However, there have been no marked changes in
channel patterns in the upper HHR since the LGM. This phenomenon reflects the influence of vegetation
on channel patterns during climate change. Our results showed that the fluvial processes in different
climatic and geomorphic areas are controlled by the local hydroclimatic regime.

Keywords: fluvial process; climate change; Late Quaternary; upper Huaihe River

1. Introduction

Fluvial responses to climate change and other impact factors are one of the key issues
in fluvial geomorphology [1–9]. Of these multiple impact factors, climate change has the
capacity to control river behavior by directly and indirectly affecting river runoff and
sediment supply [10–13]. Especially in the context of global warming, combined with
frequent extreme climatic events or abrupt climate change, how to explore the complexity
of river responses to climate change (or extreme climate events in particular) has become
an important issue for fluvial geomorphologists.

Many regional and global syntheses of fluvial processes have shown that, in the long
term (i.e., 10–1000 kyr), fluvial activities are driven by the orbital-scale climate fluctuations
overprinted on to the effects of tectonic uplift [2,3,6,14–16]. However, in the short term
(i.e., 1–10 kyr), there remains considerable debate about how rivers respond to climate
change [4,17–19]. The modeled “non-linear” responses of rivers to short-term climate
change have been confirmed over recent decades by many studies based on syntheses of
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research into different climatic regions [1,4,11,20,21]. This “non-linear” model comprehen-
sively considers the feedback regulation exerted by vegetation cover, soil cohesion, and
other factors on climate change, and it emphasizes the impact of climate transitions on river
behavior, i.e., river incision, the formation of terraces, and changes in fluvial style. It has
become evident that such changes occur mainly during periods of climatic transition (cold–
warm or warm–cold), while in the non-transitional periods (cold or warm), river behavior is
relatively stable [4,5,11,22–25]. However, many studies have suggested that river processes
in different regions may respond differently to climate change in terms of their diversity and
complexity [12,17–19,24,26]. These differences may be related to the local climate, topogra-
phy, vegetation, and internal adjustments of the river system [1,4,12,17,26]. It is, therefore,
necessary to improve the comparative study of river processes in different regions.

The Huaihe River (HHR), which is one of the largest rivers in Eastern China, is located
in China’s North–South Transitional Zone (NSTZ) (Figure 1). The NSTZ, which lies roughly
along the Qinling Mountains–Huaihe River axis, is the transition zone between China’s
humid and semi-humid zones, as well as the warm temperate and north subtropical
zones [27]. This area is transitional and, therefore, sensitive to changes in its river systems,
climate, and other natural, environmental factors [28]. The NSTZ, therefore, provides an
excellent experimental region in which to explore fluvial processes within a humid and
semi-humid transitional area. Field investigations showed that there are well-developed
sedimentary outcrops on both sides of the upper HHR. Based on sedimentary analyses, and
14C and optically stimulated luminescence (OSL) dating, the fluvial geomorphic processes
of the upper HHR were established. Subsequently, we discussed the fluvial responses
to climate change in our chosen study area, and the non-linear responses of rivers to
climate change.
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studied outcrops. WJB: Wangjiaba. ZD: Zhongdu. FP: Floodplain. The rectangular box in Figure 2a
indicates the location of Figure 2b.

2. Study Area
2.1. Geographic Settings

The HHR Basin lies in the southern sector of the North China Plain (NCP) (Figure 1).
There are various landforms within the basin, but it is dominated by plains (i.e., the
Huanghuai Plain), platforms, and depressions, accounting for ~83% of the basin’s total area,
with the remainder of the land surface being composed of low mountains and hills [29]. The
HHR originates in the Tongbai Mountains in southwestern Henan Province. The Tongbai
Mountains area is located in the southwest of the HHR Basin. The main stream of the
HHR can be divided into its upper reaches from its source to Wangjiaba, its middle reaches
from Wangjiaba to Zhongdu, near Lake Hongze, and its lower reaches below Zhongdu
(Figure 2a). The main stream of the HHR, with a length of 1000 km, flows along the
northern flanks of the Tongbai–Dabie orogenic belt. The river system of the HHR Basin
is significantly affected by regional topography, and the direction of flow of tributaries
on both sides of the HHR is consistent with the topography (Figure 2a). In addition, the
tributaries on the northern side of the trunk mostly have longer river lengths and a lower
mean channel gradient than the tributaries on the HHR’s southern side. The gradient of
the HHR’s main channel is 0.2‰, with a mean value of 0.5‰ in its upper reaches. This
gentle gradient results in a poor flood-retention capacity and a wandering channel [30].

The precipitation is mainly concentrated in summer and supplies 55–80% of the
mean annual precipitation (MAP) of the HHR Basin [29]. The mean annual temperature
(MAT) and MAP of the HHR Basin are 13–16 ◦C and 883 mm, respectively. The MAP
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varies from 600–1400 mm, with the highest value of 1400 mm falling in the Tongbai–Dabie
mountain area.

2.2. Paleoclimates

Abundant evidence has suggested that significant climatic fluctuations occurred in
the HHR Basin during the Late Quaternary [31–35]. A summary of Late Quaternary
paleoclimates in the HHR Basin is detailed below and summarized in Table 1.

In the upper HHR Basin, based on analyses of the sporo-pollens, micropaleontologic
evidence and geochemical elements within the Huzupu Profile in Xinyang Prefecture in south-
ernmost Henan Province, it has been suggested that during 30–25 ka, the area covered by lakes
experienced multiple periods of expansion and contraction, potentially reflecting abnormal
climatic fluctuations during the Marine Isotope Stage (MIS) 3/2 transition. From 25 to 13 ka, the
regional climate experienced a change from warm–wet to warm–dry, and then to warm–wet [33].
Additionally, there was a relatively humid climate from 40 to 30 ka, and a relatively dry and
cold climate during 30–18.6 ka in the lower HHR Basin [36]. Moreover, studies of the lacustrine
deposits found in the Shagou Core have indicated that there were climatic fluctuations during
MIS 2, such as a relatively humid stage during 30–26 ka, a drying stage between 26 and 18 ka,
and a relatively warm and wet stage throughout 18–15 ka [37].

During the Holocene, the climate of the study area was similar to that indicative of
the East Asian Monsoon (EAM) area [38–40]. The stalagmite record from Magou Cave
shows that monsoonal precipitation in the region gradually increased from 11.2 to 9.1 ka
and maintained a relatively high value from 9.1 to 4.9 ka [41]. In addition, the clay content
of the Yuzhou loess record gradually increased from 11.5 to 8.5 ka, reaching its maximum
at 8.5–3.1 ka before decreasing after 3.1 ka [32]. However, the clay content of the Yuzhou
profile increased again after 1.5 ka [32], potentially indicating that there was a certain
humidifying trend after 1.5 ka. Historical documents for the past 1,000 yr indicate that the
Medieval Climate Anomaly (MCA) that occurred in the Jiang–Huai area (east of 105◦ E;
~31–34◦ N) was warm and dry, while the Little Ice Age (LIA) was cold and wet [42–44].

Moreover, the Xiangcheng loess sequence from the upper HHR Basin suggests that
there was a different climatic regime during the Late Holocene. It indicates that the
warmest and most humid period here occurred at 3.8–1.8 ka [45]. In addition, the lacustrine
records from the lower HHR Basin indicate a relatively warm and humid Late Holocene
period [46,47]. This difference in climate between the upper and lower HHR Basin might
reflect the influence of local natural factors on the local climate [34,48–50].

Table 1. Summary of climate changes in the HHR Basin during the Quaternary.

MIS

Upper HHR Basin Middle HHR Basin Lower HHR Basin

Huzupu [33] Xiangcheng [45] Yuzhou [32] Yinzhuangqiao
[47] Zhoufen [36] Shagou [37]

1 Warm–wet
(since 13 ka)

Cold–wet to warm–dry
(since 1.8 ka)

Warm–wet (3.8–1.8 ka)
Cold–dry (4.5–3.8 ka)
Cold–wet (5.8–4.5 ka)

Warm to cold–dry
(12.1–5.8 ka)

Cold–dry (since
3.1 ka)

Warm–wet
(8.5–3.1 ka)

Warming and
wetting (11.5–8.5

ka)

Warm–wet (5–1.5
ka)

Cooling and
drying (7.5–5 ka)

Warm–wet
(11.3–7.5 ka)

2
Warm–dry to

warm–wet (25–13 ka)
Warm–wet (30–25 ka)

Cold–dry
(13–11.3 ka)
Warm–wet
(14.2–13 ka)
Cold–dry

(19.2–14.2 ka)

Cold–dry
(30–18.6 ka)

Warm-wet
(18–15 ka)

Dry (26–18 ka)
Wet (30–26 ka)

3 Wet
(40–30 ka)
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3. Sampling and Methodology
3.1. Fieldwork

At least four river terraces were found to have developed in the upper HHR near
the Tongbai Mountains (Figures 2b and 3). Terraces T4 and T3 are located in the Huaihe
Town area. The floodplain (FP), Terraces T1 and T2 are well-developed along both flanks
of the upper HHR. We conducted field observations of the lower three geomorphic sur-
faces (i.e., FP, Terraces T2 and T1). In this study, we chose three outcrops (YHT2, HHT1,
and HHT0) for investigation (Figure 3). Sedimentary architectures were delineated and
described in the field. Samples were then taken for laboratory analysis.
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3.2. Grain Size

Samples for grain size analysis were collected at 5 cm intervals over the three outcrops.
The samples were both treated and measured in the Key Laboratory of Western China’s
Environmental Systems (Ministry of Education) at Lanzhou University. In the laboratory,
grain size samples were first treated with HCl and H2O2 to remove carbonates and or-
ganic matter, respectively. Then, the purified samples were measured using a Malvern
Mastersizer 2000 (Malvern Instruments Ltd., Worcestershire, UK) laser particle sizer.

3.3. Dating Methods

Charcoal and organic sediments were sampled for 14C dating. These materials were
both pretreated and measured at the Beta Analytic Radiocarbon Laboratory. The 14C dates
were calibrated using BetaCal3.21 software and the Northern Hemisphere atmospheric 14C
calibration dataset IntCal13 [51]. The AMS dating results are listed in Table 2.

Table 2. AMS and conventional radiocarbon dates from HHT1 and HHT0 outcrops.

Laboratory
Code Outcrop Depth

(m) Dated Material δ13C
(‰)

14C Age
(a BP)

Calibrated 14C Age
(cal. a BP)

Beta-546613 HHT0 1.46 Charcoal −26.3 210 ± 30 216–144
Beta-546614 HHT0 1.35 Charcoal −26.0 160 ± 30 231–124

Beta-546617 HHT1 4.70 Organic
sediment −22.6 3000 ± 30 3253–3075

The OSL samples were collected from freshly cleaned sections using steel tubes.
All laboratory analyses were conducted in the luminescence laboratory at the Qinghai



Water 2023, 15, 1767 6 of 18

Institute of Salt Lakes. The unexposed central section of each sample was used for OSL
measurements to estimate the equivalent dose (De). The samples were treated with 10%
HCl and 30% H2O2 to remove carbonates and organic matter, respectively. Coarse silt
fraction (38–63 µm) of these samples was wet sieved and etched with 35% hydrofluorosilicic
acid (H2SiF6) for two weeks to remove feldspars. Finally, 10% HCl was used to remove
fluoride precipitates [52,53].

OSL signals were measured using a Risø TL/OSL–DA–20 reader. De was determined
using a combination of the single-aliquot regenerative-dose (SAR) protocol [54] and the
standardized growth curve (SGC) method [55–57]. Environmental dose rates were calcu-
lated based on Prescott and Hutton [58] and the contents of U, Th, and K.

A preheat plateau test was conducted for samples ISL–Lum–2020–515 and ISL–Lum–
2020–32 (Figure 4). A plateau was observed for temperatures ranging from 240 to 260 ◦C
for both samples. Recuperation for the 200-to-300 ◦C preheat temperatures was <1% of the
natural signal (Figure 4a). The recycling ratios for different preheat temperatures all fell
into a range of 0.9–1.1 (Figure 4b). Therefore, the SAR protocol with a preheat temperature
of 260 ◦C and a second preheat of 220 ◦C after test dose was selected to measure the De.
The OSL decay and growth curves for samples ISL–Lum–2020–515 and ISL–Lum–2020–32
are shown in Figure 5. The blue light-stimulated OSL signals decreased very quickly
during the first second of stimulation, indicating that the signal is dominated by the fast
component [59]. The OSL results are listed in Tables 3 and 4.
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Table 3. OSL dating results for samples taken from YHT2 outcrop.

Laboratory
Code Outcrop Depth (m) Grain

(µm) K (%) Th (ppm) U (ppm)
Water

Content
(%)

Dose
Rate(Gy/ka) De (Gy) OSL Age

(ka)

ISL–Lum–
2020–524 YHT2 0.4 38–63 1.96 ± 0.04 12.84 ±

0.70 2.22 ± 0.30 21 ± 5 2.98 ± 0.22 17.2 ± 0.3 5.8 ± 0.4

ISL–Lum–
2020–523 YHT2 2.0 38–63 2.03 ± 0.04 11.76 ±

0.70 2.11 ± 0.30 18 ± 5 3.02 ± 0.22 53.2 ± 1.6 17.6 ± 1.4

ISL–Lum–
2020–521 YHT2 4.1 38–63 1.94 ± 0.04 11.58 ±

0.70 2.00 ± 0.30 20 ± 5 2.82 ± 0.21 53.2 ± 1.1 18.9 ± 1.5

ISL–Lum–
2020–519 YHT2 5.0 38–63 1.83 ± 0.04 10.27 ±

0.70 1.70 ± 0.30 14 ± 5 2.77 ± 0.21 54.6 ± 1.2 19.7 ± 1.6

ISL–Lum–
2020–518 YHT2 5.4 38–63 1.82 ± 0.04 10.44 ±

0.70 1.82 ± 0.30 25 ± 5 2.40 ± 0.19 51.6 ± 1.0 21.5 ± 1.7

ISL–Lum–
2020–517 YHT2 5.6 38–63 1.54 ± 0.04 6.88 ± 0.60 1.29 ± 0.30 16 ± 5 2.12 ± 0.17 51.8 ± 1.7 24.4 ± 2.1

ISL–Lum–
2020–516 YHT2 5.8 38–63 1.83 ± 0.04 9.06 ± 0.60 1.62 ± 0.30 13 ± 5 2.71 ± 0.21 49.5 ± 1.3 18.3 ± 1.5

ISL–Lum–
2020–515 YHT2 6.1 38–63 1.74 ± 0.04 6.63 ± 0.60 1.29 ± 0.30 16 ± 5 2.27 ± 0.18 53.2 ± 1.8 23.4 ± 2.1

Table 4. OSL dating results for samples taken from HHT1 outcrop.

Laboratory
Code Outcrop Depth (m) Grain

(µm) K (%) Th (ppm) U (ppm)
Water

Content
(%)

Dose Rate
(Gy/ka) De (Gy) OSL Age

(ka)

ISL–Lum–
2020–35 HHT1 0.55 38–63 2.41 ± 0.04 12.30 ±

0.70 2.98 ± 0.40 15 ± 5 4.02 ± 0.29 2.1 ± 0.6 0.5 ± 0.2

ISL–Lum–
2020–34 HHT1 1.60 38–63 1.87 ± 0.04 10.27 ±

0.70 2.14 ± 0.30 15 ± 5 3.31 ± 0.25 5.9 ± 0.3 1.8 ± 0.2

ISL–Lum–
2020–33 HHT1 3.30 38–63 1.42 ± 0.04 8.91 ± 0.60 1.86 ± 0.30 15 ± 5 2.50 ± 0.19 7.8 ± 0.1 3.1 ± 0.2

ISL–Lum–
2020–32 HHT1 4.35 38–63 1.28 ± 0.04 7.23 ± 0.60 1.40 ± 0.20 15 ± 5 1.96 ± 0.15 9.1 ± 0.3 4.6 ± 0.4

ISL–Lum–
2020–31 HHT1 4.60 38–63 2.00 ± 0.04 13.80 ±

0.80 1.52 ± 0.30 15 ± 5 3.04 ± 0.23 10.1 ± 0.3 3.3 ± 0.3

4. Results
4.1. Stratigraphy
4.1.1. YHT2 Outcrop

The YHT2 outcrop lies on the northern flank of the HHR near Yuehe Town
(Figures 2b and 3). The uppermost surface of this outcrop is ~9.1 m above the mod-
ern river level (arl). The upper 6.4 m of this profile were studied. Six sedimentary units
were identified (Figure 6).

The lowermost unit (U1; 6.4–6.2 m) is composed of reddish-brown medium sands,
which were interpreted as channel-fill deposits. Unit U2 (6.2–5.58 m) was divided into
three subunits (U2a, U2b, and U2c). The lower subunit (U2a; 6.2–6.1m) is composed
of blue-gray fine sands interbedded with thin layers of yellow-brown fine sands. The
subunit U2b (6.1–5.74 m) consists of yellow-gray fine sands with parallel bedding, but the
lower part of U2b is interbedded with some layers of blue-gray fine sands. The upper
subunit (U2c; 5.74–5.58 m) is dominated by blue-gray fine sands and silts. There are
some thin layers of yellow-gray fine sands that were identified in the lower part of U2c.
This interbedding of blue-gray and yellow-gray fine sands might indicate transformations
between fluvial (sandbar) and backswamp environments. Unit U3 (5.58–5.4 m) consists
of yellow-gray fine sands with parallel bedding, which indicates sheet-flood deposits
on the top of the sand bar. Unit U4 (5.4–4.1 m) consists of yellow-gray silts, with few
layers of fine sands. The composition of this unit implies the existence of a relatively
stable environment, during which time a floodplain developed. Unit U5 (4.1–0.4 m) is
dominated by silts. This unit can be subdivided into two parts. The lower part (U5a;
4.1–0.7 m) is composed of reddish-brown silts. It is dense and massive, containing many
gray-white stripes and rusty brown mottles, potentially the result of strong leaching. In
addition, the upper part (U5b; 0.7–0.4 m) is composed of yellow-gray silts with many
reddish-brown rusty spots, implying strong leaching and deposition. The uppermost
unit (U6), at 0.4–0 m, has been influenced by modern human activity and contains many
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plant roots. The backswamp deposits at the bottom of U2, and the thick layer of overbank
deposits at Units U4 and U5, may indicate the development of floodplains in a meandering
or anastomosing river system. However, lacustrine deposits and coal commonly occur in
association with anastomosing river overbank deposits in humid areas [60,61]. Therefore,
based on this sedimentary structure and lithofacies models [62], we deduced that the YHT2
section indicates a meandering channel system.
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4.1.2. HHT1 Outcrop

The HHT1 outcrop is located on the southern flank of the HHR near Huaihe Town.
The top of this terrace is about 6 m arl. Six sedimentary units were identified (Figure 7).
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The lowermost unit (U1; 4.8–4.41 m) consists of blue-gray silts and fine sands. Two layers
of yellow-gray fine sands were observed in this unit. The composition of U1 might indicate
backswamp deposits, interrupted by channel bedloads. U2 lies between 4.41 and 2.65 m and
is composed of yellow-gray fluvial silts and fine sands. There are some rust-colored spots,
but no sedimentary structures were clearly identified. Some angular gravels with a grain
size of 3–5 cm were observed between 3.30–3.25 m. The composition of U2 might indicate
the development of a sand bar in the main river channel. U3 (2.65–1.70 m) is characterized
by reddish-brown, colloidal, clayey silts, with a dense and massive structure; this can be
attributed to ephemeral sheet flood deposits accumulated during floodplain development.
U4 (1.7–1.0 m) is in unconformable contact with the underlying U3. An inclined sedimentary
discontinuity was observed at the base of U4, potentially implying an erosion event. In
addition, the lower part of U4 consists of yellow-gray silts and fine sands; its upper part is
composed of fine-to-medium sands, with some angular gravels. The composition of this unit
might indicate a rapid accumulation process. U5 (1.0–0.6 m) is composed of yellow-gray silts.
The uppermost unit (U6), at 0.6–0 m, is affected by plant development and has a grayish-black
color. U5 and U6 represent floodplain deposits accumulated under gentle hydrodynamic
conditions. Based on the composition of this sedimentary structure and lithofacies models [62],
we deduced that the HHT1 profile indicates a meandering river environment, including a
period when backswamp deposits developed.

4.1.3. HHT0 Outcrop

The HHT0 outcrop, located on the southern flank of the HHR near Huaihe Town, is
the modern floodplain (Figure 3). The top surface of this profile is ~4 m arl. Only the upper
2 m of this profile was studied (Figure 8). It was divided into six sedimentary units.
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The lowermost unit (U1) occurs between 2.1 and 1.5 m below the surface and is
dominated by gravels and coarse-grained sands. The unit U2 (1.5–1.2 m) is characterized
by medium-to-coarse sands, with small-scale (5–10 cm thick, ~10 cm width) trough cross-
bedding. The upper unit U3 (1.2–1.14 m) is composed of a layer of brown fine-to-medium
sands. We therefore deduced that U2 and U3 might indicate sand bar deposits. U4
(1.14–0.5 m) is dominated by yellow-gray medium sands, interbedded with thin layers of
angular gravels. Small-scale (10–15 cm thick and 10–30 cm width) trough cross-bedding
was observed in U4. The unit U5 (0.5–0.29 m) consists of fine sands, with few angular
gravels observed. The units U4 and U5 were attributed to the lower parts of point-bar
deposits. The uppermost unit (U6; 0.29–0 m) is composed of black-gray silts affected by
surface vegetation. Therefore, U6 was attributed to sheet-flood deposits. As a part of the
modern HHR floodplain, this sedimentary profile indicates a sedimentary assemblage
typical of modern wandering channels.

4.2. Dating Results

The AMS and OSL dating yielded 16 age results ranging from 24.4 to 0.16 ka (Tables 1–3).
In the bottom of the YHT2 outcrop, three OSL ages in unit U2 were dated around 24.4–18.3 ka
(Figure 6), indicating that the onset of accumulation in this profile might have started around
the Last Glacial Maximum (LGM). The sample ISL–Lum–2020–516 in the middle part of
U2 was dated at 18.3 ka, which is younger than the above three ages in units U3 and U4,
although it might be underestimated. In addition, one age (ISL–Lum–2020–524, 5.8 ka) was
obtained in Unit U6 at the top of the profile, indicating that the end of accumulation occurred
around 5.8 ka. In the HHT1 outcrop, an OSL age (ISL–Lum–2020–31, 3.3 ka) and AMS age
(Beta–546617, 3000 a B.P.) were obtained in U1, indicating that the HHT1 aggraded around 3 ka
(Figure 7). However, an older age of 4.6 ka (ISL–Lum–2020–32) was dated in the upper unit
U2. Thus, it was regarded as an outlier. An age of 0.5 ka (ISL–Lum–2020–35) was obtained in
U6, indicating the end of deposition of the HHT1 profile. In the HHT0 outcrop, two AMS ages
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(Beta–546613, Beta–546614) at the top of unit U1 were dated at 210–160 a B.P., indicating that
the accumulation of modern floodplains might take place around 0.2 ka. All dating results are
generally consistent with the internal stratigraphical positions, except for the overestimated
sample ISL–Lum–2020–32 in HHT1 and underestimated sample ISL–Lum–2020–516 in YHT2.

5. Discussion
5.1. Late Quaternary Fluvial Processes in the Upper HHR

Using our sedimentary analyses and dating of the three profiles (YHT2, HHT1, and
HHT0), we reconstructed the fluvial processes of the upper HHR near Tongbai since
the LGM (Figure 9). From the LGM to 5.8 ka, the upper HHR was dominated by an
aggrading, meandering channel. The gray-white stripes and rusty-brown mottles within the
sedimentary profile (YHT2; Figure 6) would indicate strong leaching and soil development
during the formation of the floodplain. However, a period characterized by transformations
between sandbar and backswamp deposits was identified as having occurred during the
LGM (Figure 6). Subsequently, a channel incision/erosion event occurred at 5.8–3 ka
(Figure 9). At ~3 ka, another period of transformations between fluvial and backswamp
deposits took place (Figure 7). After that, from 3 to 0.5 ka, a meandering channel developed
in the study area. However, a marked erosion event took place at ~1.8 ka, identified by a
discontinuity in the HHT1 profile. In addition, river downcutting occurred at 0.5–0.2 ka,
followed by the development of the modern wandering channel (Figure 9).
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5.2. Fluvial Responses to Climate Change in the Upper HHR

Climate change can regulate river behaviors, i.e., via aggradation/incision processes and
changes to channel patterns, by affecting runoff, vegetation, and soil cohesion [4,5,11,17,63].
The downcutting events observed in the upper HHR show a clear correlation with regional
climate change (Figure 10). For example, the channel incision that occurred at 5.8–3 ka was likely
triggered by climate change during the Mid–Late Holocene transition. During this transition
period, the regional climate became increasingly unstable, as indicated by loess (Figure 10d) [45]
and peat records (Figure 10e) [64]. Moreover, there is evidence that there was a relatively
warm, humid, and increasingly unstable climate in the HHR Basin during this transition
period [31,32,45,46]. For example, the grain size of fine particles (1–5 µm) in the Yuzhou loess
profile increases until it eventually reaches its largest value during the Holocene (Figure 10a) [32].
The decrease in the magnetic susceptibility of the Yinzhuangqiao profile in northern Jiangsu
Province also indicates a similar warm–wet but transitional climatic regime (Figure 10b) [47].
We can therefore deduce that the channel incision in the upper reaches of the HHR might have
been the result of increasingly heavy seasonal precipitation triggered by a climatic transition
within the context of a warm, humid climatic background.
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Figure 10. Correlation of the fluvial processes and changes in climate in the upper HHR since
the LGM. (a) The content of fine materials in the Yuzhou loess profile in Yuzhou [32]; (b) mag-
netic susceptibility of the Yinzhuangqiao Core [47]; (c) reconstructed Holocene temperature of the
Qingfeng Profile [31]; (d) reconstructed temperature and moisture for the Xiangcheng Profile [45];
(e) reconstructed temperature of the Dajiuhu Core [64]; (f) mean grain size of the Shagou Core [37];
(g) stalagmite d18O data from Sanbao Cave [40]; (h) oxygen isotope record of the GISP2 ice core in
Greenland [38]; and (i) schematic diagram of fluvial processes of the upper HHR.

Additionally, the downcutting that occurred at 0.5–0.2 ka might be driven by regional
climate change during the LIA (Figure 11). It has been suggested, based on sedimentary
and literary climate records, that there was a relatively warm and dry MCA, but a cold
and wet LIA in the Jiang–Huai area (Figure 11a,b) [42–44,65,66]. Moreover, meteorological
disaster reconstructions, based on the literature, have indicated that there was a significant
increase in extreme flood events during the LIA (Figure 11c) [67]. Therefore, we deduced
that frequent high-amplitude floods during the LIA forced the river incision observed in
the upper HHR.
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On a broader, global scale, it may be deduced that the differences evident in river 
behavior in different regions may be caused by local hydroclimatic regimes. For example, 
on the Gujarat Plain in arid areas of Northwestern India, there is evidence of an active, 
meandering channel during MIS 3 but an aeolian-dominated phase during MIS 2, as well 
as transformations between fluvial and aeolian processes during the Holocene [26]. Sig-
nificant differences between fluvial processes also existed in Central and Southeastern 
Australia during the LGM and Late Glacial. During these periods, arid Central Australia 

Figure 11. Changes in climate and fluvial processes in the upper HHR during the past 2000 years.
(a) The upper green curve indicates a temperature anomaly in the central eastern China [65]; (b) the
middle-orange curve indicates a dry-wet index derived from historical documents from the Jiang–
Huai area, eastern China [66]; (c) the lower-blue and red curves indicate extreme flood and drought
events, respectively, in the Jiang–Huai area [67]; and (d) the fluvial processes of the upper HHR
over the past 2000 years. The black section indicates aggradation; the dotted-white section indicates
river incision.

Numerous studies have suggested that there was a cold and drying climate during the
LGM [33,36,37] in the HHR Basin, as well as an amelioration of the regional hydroclimate
since the last deglaciation [34,35]. Recently, a quantitative study based on pollen records
has indicated that during the LGM in China, the MAT was ~5.6 ± 0.8 ◦C lower than today’s,
while the MAP was ~46.3 ± 17.8 mm lower [68]. Moreover, the MAP fell further in northern
China (by ~51.2 ± 21.4 mm), whereas a small decrease of ~0.2 ± 41.5 mm occurred in
southern China [68]. In addition, vegetation reconstructions of the NCP have indicated that
regional vegetation patterns in the north changed from grassland to forest, and that, while
forest was always present in the south, this region was characterized by a clear change in
vegetation type after the LGM [69]. Therefore, there was no clear climatic deterioration
in the study area during the LGM, but there was a relatively colder, wet climate. The
meandering channel pattern with no marked changes observed in the study area would,
therefore, suggest forest vegetation and a wet climate during the LGM.

Additionally, several layers of blue-gray, backswamp deposits developed at ~3 ka
during the LGM. This backswamp deposition points to an overwetting environment on the
floodplain and sandbar caused by frequent flooding. The transformations between fluvial
and backswamp deposits during these two periods, therefore, indicate the presence of a
relatively wet and transitional climatic regime.

5.3. Regional Differentiation

Although climate change can significantly affect river behavior, fluvial responses to
climate change often exhibit significant complexity due to the effects of local topography,
vegetation, and internal adjustments within river systems [1,4,17,19,26]. Our results showed
that the upper HHR were incised during the Mid–Late Holocene transition (5.8–3 ka), a
phenomenon also observed in other rivers in Northwestern China [17,70]. Moreover, the
undercutting of rivers in this period can be compared to other river courses on a global scale,
e.g., the Cowhouse Creek in the USA [71] and many rivers in Europe [72,73]. However, not
all climatic transitions are known to have driven river incision. For example, the upper
HHR was still dominated by aggradation towards the end of the LGM, as well as the last
deglaciation–Holocene transition. Such non-linear fluvial responses to climate change,
potentially related to internal adjustments within individual river systems, have also been
noted in other regions [17,74,75].
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Additionally, there have been no marked changes in channel patterns in the upper
HHR since the LGM. However, in contrast, the Shiyang River in arid northwestern China
was characterized by a braided channel during the 22–13 ka period and a meandering
channel between 13 and 5 ka [17]. Furthermore, changes in river channel patterns at the end
of the LGM appear to have been widespread in other regions, such as in humid/semi-humid
areas of Europe (once influenced by glacial/periglacial processes) [76–78] and the humid
subtropical regions of the USA (not influenced by glacial/periglacial landscapes) [79]. The
uniqueness of the upper HHR might, therefore, represent the impact of local climatic and
vegetation controls. The wet climate and forest-dominated vegetation prevalent in the
region since the LGM might be the main reason for the unchanged river channel patterns
observed in the upper HHR. Similarly, the reconstructed Last Glacial fluvial history in the
Netherlands showed that the effects of climate change on river systems depend mainly on
changes in vegetation [76].

On a broader, global scale, it may be deduced that the differences evident in river
behavior in different regions may be caused by local hydroclimatic regimes. For example,
on the Gujarat Plain in arid areas of Northwestern India, there is evidence of an active,
meandering channel during MIS 3 but an aeolian-dominated phase during MIS 2, as well as
transformations between fluvial and aeolian processes during the Holocene [26]. Significant
differences between fluvial processes also existed in Central and Southeastern Australia
during the LGM and Late Glacial. During these periods, arid Central Australia experienced
a break in river activity, whilst humid Southeastern Australia remained fluvially active [80].
Furthermore, three geosystem types developed in Western Peru during the Holocene under
the influence of local topographic and hydroclimatic conditions: coastal desert; lomas (with
tafone widely developed); and mountain desert (with active fluvial activities during El
Nino events) [18].

The above analysis also revealed that regional geomorphic processes are manifested
differently in different climatic zones. In humid zones, climate-driven fluvial processes
can be the dominant factors in regional geomorphologic evolution in humid areas. In
arid and semi-arid areas, aeolian processes can be superimposed on river processes, and
climate-influenced aeolian–fluvial interactions become the main factor controlling regional
geomorphic processes [19,26,63,81]. In addition, in glacial or periglacial areas, changes
in glacier advance and retreat, vegetation cover, and seasonal permafrost due to climate
fluctuations can combine to influence surface runoff and sediment yield, and glacial–fluvial–
lacustrine processes may dominate regional geomorphic processes [5,23,82].

6. Conclusions

This work provides a case study of fluvial processes in a unique humid region (China’s
NSTZ) and evaluates the influence of the local hydroclimate on the upper HHR. River
downcutting occurred mainly during the Mid–Late Holocene transition and the LIA, po-
tentially as the result of floods triggered by climate change. In addition, the river’s channel
pattern has not changed significantly since LGM. The study area has not experienced signif-
icant aridity and vegetation change since the LGM, explaining the relatively stable channel
pattern observed in the area. More broadly, significant differences in fluvial processes
occurring under different climatic–geomorphic conditions were found. Changes in the
local hydroclimatic regime might be the most important factor driving these dissimilari-
ties. Future research into fluvial processes in different geomorphologic–climatic regions
is now required to comprehend more clearly the relationships between rivers and local
hydroclimatic factors.
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