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Abstract: This study presents a deep-learning-based forecast model for spatial and temporal predic-
tion of pluvial flooding. The developed model can produce the flooding situation for the upcoming
time steps as a sequence of flooding maps. Thus, a dynamic overview of the forthcoming flooding
situation is generated to support the decision of crisis management actors. The influence of different
input data, data formats, and model setups on the prediction results was investigated. Data from
multiple sources were considered as follows: precipitation information, spatial information, and
an overflow forecast. In addition, models with different layers and network architectures such as
convolutional layers, graph convolutional layers, or generative adversarial networks (GANs) were
considered and evaluated. The data required to train and test the models were generated using a
coupled hydrodynamic 1D/2D model. The model setup with the inclusion of all available input
variables and an architecture with graph convolutional layers presented, in general, the best results
in terms of root mean square error (RMSE) and critical success index (CSI). The prediction results of
the final model showed a high agreement with the simulation results of the hydrodynamic model,
with drastic reductions in computation time, making this model suitable for integration into an early
warning system for pluvial flooding.

Keywords: urban pluvial flooding; deep learning; spatiotemporal modeling; real-time flood forecasting

1. Introduction

Pluvial flooding caused by heavy rainfall poses a high safety risk; for highly sealed
urban areas in particular, precipitation becomes almost exclusively runoff. According to
the sixth report of the Intergovernmental Panel on Climate Change (IPCC) [1], the number
and intensity of heavy rainfall events have increased in recent years. This trend will likely
persist because of global warming. In combination with the ongoing urbanization of cities,
an increase in the frequency of pluvial flood events and in the resulting risk is expected in
the future [2]. Since pluvial flooding, compared to fluvial flooding, can theoretically occur
anytime and anywhere in urban catchments, comprehensive protection is not possible from
a technical and economic point of view. Thus, early warning systems are essential to enable
proactive protection in an incident. In addition, actors in municipal crisis management, as
potential users of real-time warning systems, have high expectations of the reliability of
the warning alerts. Spatially and temporally precise predictions are required for efficient
action in a crisis and to avoid wrong decisions as far as possible. In summary, there are two
competing requirements listed by Zhao et al. [3] for predictive models used in real-time
warning systems:
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• High temporal and spatial resolution of flood forecasts;
• Sufficient lead time between prediction and event occurrence.

Hydrodynamic (HD) computational models are a widely used tool for spatiotemporal
high-resolution modeling of pluvial flood events. Initially, the main focus was on modeling
the sewer network, but in recent years modeling the surface flooding process has become
increasingly essential, and coupled modeling of both systems has become state of the art.
The outputs are high-resolution 2D water level maps showing the flood hazard. Various
studies on the validation of simulation results using images from social networks [4,5],
surveillance camera footage [6], or reported insurance claims [7] have shown the excellent
quality of these models. However, this quality is accompanied by high computational
costs [8], which means that computational times can quickly reach several hours to days
for a single event, depending on the study area size. Compared to flash floods in natural
watersheds, which are triggered by advective precipitation events and can be predicted
with numerical weather models for multiple hours or several days [9], pluvial flash floods
are usually caused by convective precipitation cells. With current nowcasting models, these
events can only be predicted with lead times of up to two hours [10–12]. Due to the short
lead times, hydrodynamic models are presently unsuitable for real-time usage because of
their long computation times. Therefore, the field of application is limited to the simulation
of individual scenarios to identify general flooding hazards.

To meet the second requirement of sufficient lead time, many approaches to developing
real-time warning systems for pluvial flooding focus on minimizing the computation times
of hydrodynamic computational models as far as possible. For this purpose, the level of
detail of the models can be reduced by considering only hotspots or reducing the resolution
of the computational network [13]. Both approaches were combined by Hofmann and
Schüttrumpf [14] for application in a real-time warning system. Other methods focus on
increasing computational speed through parallel data processing [15,16] or simplifying
computational operations [3,17,18]. However, reducing the level of detail or simplifying
computational processes is accompanied by reduced accuracy of the computational results.

Other investigated approaches to reducing computation times use data-driven models
to estimate flood extends. Most of these approaches are based on machine learning and
often on deep learning. Especially, deep learning has recently achieved great success in the
field of image processing [19–22]. The developed methods are applied in more and more
areas such as earth system sciences [23] or water resources management [24]. In terms
of flood modeling, Mosavi et al. [25] provided a general overview of existing machine
learning models and Bentivoglio et al. [26] reviewed deep learning models. These models
are usually trained with the results of hydrodynamic models to achieve similar results in a
fraction of the time. Some of the investigated approaches differ significantly concerning the
considered methods. For example, Bermúdez et al. [27] used an artificial neural network
(ANN) to predict the maximum overflow volumes in subcatchments for a precipitation
event. Depending on the predicted overflow volumes, a suitable flooding situation is
selected from a result catalog of pre-simulated events. A similar approach was taken by
Jhong et al. [28] and Lin et al. [29] with a support vector regression (SVR)-based model.
They first used an SVR model to predict the water level hydrograph on the ground surface
at various reference points in the study area. Subsequently, an SVM model was used to
determine the inundation areas depending on the predicted water level at these points in
combination with geographic information.

Bermúdez et al. [30] also developed an SVR model to predict floodplains. However,
the prediction of water levels is performed directly for 25,000 points instead of only for a few
reference points so that spatial information about the flooding event is instantly available.
Berkhahn et al. [31] applied the same approach, where the method used is an ensemble of
fully connected multi-layer perceptron layers. However, a disadvantage of fully connected
networks is the high number of weights (parameters) to be trained and the associated high
computational and memory requirements. This differs from convolutional neural networks
(CNNs), which share the weight matrix in space, significantly reducing the number of
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weights [32]. Guo et al. [33] used CNNs in an autoencoder architecture and trained a
model to compute the flooding situation for entire cities. Hofmann and Schüttrumpf [34]
also adopted CNNs but organized them in a generative adversarial network (GAN). To
enable the transferability of the trained models to other areas, Guo et al. [33] and Löwe
et al. [35] utilized spatial information as an additional input variable. Seleem et al. [36]
also took advantage of spatial inputs and highlighted the good performance of a CNN
architecture over a random forest algorithm regarding transferability. In addition, do
Lago et al. [37] used spatial information in combination with a GAN to distribute the
rainfall-runoff volume determined by a hydrologic model in a study area. Moreover, deep
learning models have shown promising results in similar tasks such as flood sensitivity
modeling [38–40] or fluvial flooding prediction [41,42].

In this work, a deep learning model for temporal and spatial prediction of pluvial
flooding is developed for integration into an early warning system. The target variable
represents a sequence of flood grids with a 2 m × 2 m resolution for the forecast horizon.
Three potential variables are considered as inputs whose effect on the prediction quality
is investigated as follows: (i) the fallen, as well as the predicted precipitation; (ii) spatial
information on terrain properties and degree of pavement; (iii) the predicted overflow
hydrographs for the forecast horizon. The investigations aim to check which inputs are
required and how they must be provided to the model. The main contributions of this
study can be summarized as follows:

1. Development of a prediction model for pluvial flooding based on deep learning that can
predict the spatial and temporal evolution of the flooding situation. In contrast to other
studies investigating the use of deep learning to predict pluvial flooding [31,33–35], the
model output is a flooding sequence for the upcoming time steps instead of the maximum
water levels. The chosen model design also allows predictions to be generated at any point
in an event and is not limited to specific durations of an event. The accuracy of the results
is expected to be as close as possible to that of physically based models, with drastically
reduced computation times at the same time.

2. Compared to existing studies on predicting pluvial flash floods using deep learning
approaches [31,33–35], the sewer network is considered as an extra retention volume
here. To achieve this, an event-specific overflow forecast is taken as an additional input
variable informing whether the sewer network is overloaded or not. In subsequent
operational use, this input can be provided either by hydrodynamic sewer network
models or data-driven models.

3. Different model setups are evaluated. This refers, on the one hand, to the considered
model inputs and in the case of overflow prediction, to the data format and the model
architecture depending on it. Furthermore, different modern deep learning architectures
such as encoder-decoder networks, graph neural networks, or generative adversarial
networks are combined and compared with each other in the investigations.

2. Methodology
2.1. Modeling Concept

The overall model structure is shown in Figure 1. The model aims to calculate the
upcoming flooding situation for the next time steps starting from a time of observation.
For this purpose, different precipitation information, spatial information, and an overflow
forecast are available as potential input. Together with the predicted inundation areas,
three different data formats are thus considered as follows:

• 1D time series (precipitation information and overflow forecast): These are time series
whose values vary along the temporal axis but are assumed to be constant over the
spatial extent of the study area (precipitation) or correspond only to a single spatial
unit in the study area (overflow).

• 2D raster (spatial information): These are raster data sets whose values vary across the
spatial extent of the study area but are assumed to be constant over time.
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• 3D raster sequence (predicted inundation areas): These are grid sequences with the
same format as video sequences. The values vary both spatially and temporally.
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The consideration of different data types is a special requirement for development of
the machine learning (ML) model, which has to be capable of processing them together.
This condition severely limits the number of suitable ML methods. Furthermore, the
methods must be able to efficiently process image data (2D raster) and especially video data
(3D raster sequence) and recognize structures within them. For this reason, the focus here
is on artificial neural networks, which have proven to be particularly efficient in similar
problems such as precipitation nowcasting (e.g., [43–45]) or various traffic forecasting tasks
(e.g., [46–48]). Figure 1 presents the proposed model setup with the potential inputs and
the predicted flooding situation as the target.

2.2. Considered Layers and Network Architectures
2.2.1. Fully Connected Layers

In artificial neural networks with fully connected layers, all neurons of one layer are
fully connected to the neurons of the following layer. A widely used network architecture
with fully connected layers is the multilayer perceptron (MLP), based on the perceptron
developed by Rosenblatt [49]. This is a mathematical model for information processing that
receives input, weights it, sums it up, and passes it on, according to an activation function.
MLPs consist of multiple perceptrons organized in fully connected layers. The network
output depends on the weights between the layers. These must be adjusted in a training
process using an optimization algorithm to minimize the error between outputs and targets.
MLPs represent a simple and widely used network architecture. In addition, individual
layers are often used as part of more complex architectures, as practiced in this work.

2.2.2. Convolutional Layer

The convolutional neural network (CNN) is a network architecture developed sub-
stantially through the work of LeCun et al. [50], which has proven to be highly effective in
image recognition. Convolutional layers consist of a receptive field and a kernel containing
the weights. When processing image data, the receptive field slides over the input images
with a given step size, generating many small sections multiplied by the kernel’s weights.
In contrast to fully connected layers, the filter uses the same weight matrix at different
image locations. Thus, the number of parameters to be learned is drastically reduced.
Moreover, convolutional layers focus on recognizing particularly relevant features and can
detect them at different locations in an image [51]. In addition to processing 2D data such
as images, convolutional layers can also be used to process 1D data such as time series or
3D data sets such as video sequences.

2.2.3. Recurrent Layer

Compared to fully connected layers, recurrent layers have feedback loops that allow
the layer outputs to be fed back into the same layer again. This makes them highly suitable
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for modeling sequential data such as text or time series. The longer the input sequences,
the more feedback is required. In the case of very long sequences, this leads to deep
networks. Training these networks often causes the problem where the gradient toward
the lower layers shrinks and vanishes, or it grows in the other direction and explodes.
These problems, also called vanishing and exploding gradients, cause the network to stop
converging in the deeper layers or the training to become unstable [52]. Therefore, these
networks are said to have a “short-term memory”, which leads to the problem where
longer-term dependencies are only barely considered or not at all.

To counter this problem, Hochreiter and Schmidhuber [53] developed the so-called
long short-term memory (LSTM) cells. The special feature of LSTM cells compared to
classical recurrent neurons is that they have an additional cell state. This cell state makes it
possible to take long-term dependencies into account. The cell state is controlled by gates
which decide what information is added to the state, what is forgotten, and how the cell
state influences the network output.

2.2.4. Graph Neural Networks (GNNs)

The network layers described above are suitable for processing categorical data, se-
quential data, or data structured as rasters. However, many data sets are also available
as networks in the form of graphs, in which the connection of individual objects to other
objects plays an important role. These include, for example, social networks, molecules,
traffic networks, or even sewer networks. A particular type of neural network was devel-
oped for this kind of data, the so-called graph neural network (GNN). Scarselli et al. [54]
introduced this architecture over a decade ago. It was made especially popular by the work
of Defferrard et al. [55] and Kipf and Welling [56], who combined GNNs with CNNs to
form graph convolutional networks (GCNs). This architecture has been used to optimize
the performance of neural networks for many problems including traffic forecasting [57],
forecasting pressure in drinking water supply networks [58], and forecasting COVID-19
infection events [59].

The basis of GNNs is a graph G, which can be represented in the simplest form as
G = (V; E), where V stands for the nodes and E for the edges. An edge from node vi ∈ V
to node vj ∈ V can be described as (vi, vj) ∈ E. For efficient processing of graphs in ML
applications, they are usually represented as a matrix. One way of doing this is to use an
adjacency matrix A ∈ RN×N consisting of an N × N matrix in which, for each position i, j
(1 ≤ i ≤ N; 1 ≤ j ≤ N), the following is the case:

ai,j =

{
1 if

(
vi, vj

)
∈ E,

0 else.
(1)

Furthermore, graphs can be divided into directed and undirected. In directed graphs, the
edges between two nodes can only be crossed in one direction, while in undirected graphs, the
connection can be crossed in both directions. Furthermore, the edges in graphs can be weighted,
whereby the entries in the adjacency matrix are multiplied by a given weight.

GNNs can be used to predict features on the level of nodes, edges, or the whole graph.
In addition to the adjacency matrix, a feature matrix X ∈ RN×D is considered as input.
Here, N describes the number of nodes and D is the number of input features per node.
The output at the node Z ∈ RN×F (F stands here for the number of output features) is
accordingly a function f of the adjacency and feature matrix:

Z = f(A; X) (2)

The value of Z can be computed with different GNN architectures. Many studies rely
on the GCNs described in Kipf and Welling [56]. GCNs transfer the convolution operation
known from CNNs from image data to graph data. The main idea behind this is that
the representation of a node always depends on its features and on the features of its
neighboring nodes.
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2.2.5. Generative Adversarial Networks

The generative adversarial network (GAN) is an architecture first presented by Good-
fellow et al. [60] consisting of two sub-models. First, a generator G generates records
based on a random distribution z similar to the training data set. Then, a classifier called
discriminator D computes the probability of whether a data example x comes from the
training data set or the generator. The models have contrary goals and compete against
each other in a zero-sum game during training. The generator aims to produce outputs that
the discriminator cannot distinguish as “real” contents from a data set or “fake” outputs
produced by the generator. Conversely, the discriminator aims to classify the generator’s
outputs as “false” content with the highest possible probability. Both models are trained
simultaneously and use the same loss function L, which indicates the likelihood of whether
an input data set is “real” or “false.” While the discriminator’s parameters are adjusted
to maximize this probability, the generator’s parameters are adjusted to minimize it. This
results in the following function presented in Goodfellow et al. [60]:

min
G

max
D

L(D, G) =Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)

[log(1−D(G (z)))] (3)

In classical GAN models, which receive only a random distribution as input, there is
no way to control how data are generated [61]. With this in mind, Mirza and Osindero [61]
developed conditional GANs (cGANs), a modified version, which in addition to a random
distribution z, also depends on latent information y. This gives the model some context that
can be used to influence the output. For example, images can be generated from contours
or labels [22] or the resulting flooding from a precipitation forecast [34,37].

3. Case Study

Different deep-learning-based model setups were developed and tested for a study
area to predict pluvial flooding. The data sets required for the training process were
generated using an HD model of a study area and a data set with various precipitation
events. In addition to the tests conducted to compare the model setups, this section also
describes the HD model and the precipitation data set, as well as the data generation and
preprocessing steps as an essential part of the research.

The deep learning models were developed in Python 3.8 using Tensorflow [62]. In
addition, other common libraries such as Scikit-learn, Pandas, Numpy, and Matplotlib
were used for data preprocessing and visualization. The two modules MIKE IO 1D and
MIKE IO [63] were used to read the result files that are output by MIKE+. Geopandas and
GDAL were also used to process spatial data and NetworkX for processing data structured
as graphs. The models were trained on a workstation with an NVIDIA RTX 6000 GPU with
48 GB of GPU memory.

3.1. Study Area and Hydrodynamic Model

A study area of 3.1 km2 in the south of the city of Gelsenkirchen in Germany was
selected for the investigations (see Figure 2). The site is primarily urban and drains with a
combined sewer system. The terrain has an average slope of 7.5% and is not influenced
by rivers or slopes in terms of flooding. A railroad line runs across the area, dividing
the catchment area into a northern and southern part. Both parts are connected by two
underpasses, which are potentially at risk of flooding and were underwater during past
extreme events.

To generate the flooding grids used as the target for the training process, a coupled
1D/2D HD model of the study area was implemented in the software Mike+ [64]. The
municipal drainage utility of Gelsenkirchen provided a sewer network model for the
study area. The field of the study area comprised 975 manholes and 982 reaches. A grid-
based computational mesh with a 2 m × 2 m resolution was created, which contained
772,415 elements to model the runoff behavior at the ground surface. Elevation information
was added to the computational mesh using 3D survey data acquired by airborne laser
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scanning from the Cologne District Government [65]. Buildings were additionally raised
so that they represented a flow barrier. The sewer network and surface models were then
coupled in a bidirectional manner via the manholes.
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3.2. Pluvial Flood Event Data Sets

When using deep learning models, the developed model’s accuracy depended heavily
on the data set provided for the training process. For the training, precipitation hydrographs
were used, for which the respective target variables were determined with the help of the
hydrodynamic model. Since sewer networks in Germany were designed for overflow
frequencies in the range of 2 to 10 years, according to DIN EN 752:2017 [66] and DWA-A
118 [67], precipitation events that lead to sewer system overflow are quite rare. For this
reason, the investigations were not limited to historical events in the study area. Instead,
data from a total of eight terrestrial rain gauges near the study area with continuously
measured data for a period of >60 years as well as different design rainfall events were
used. The considered rainfall data have a temporal resolution of five minutes.

To consider only relevant events, partial duration series were created from the rainfall
records of the eight rain gauges. Preliminary experiments have shown that only rainfall
events with a return period of >5 years are likely to cause overflow and the formation of
relevant flood areas. Therefore, only rare events with higher return periods were considered.
In total, 153 events suitable for training were identified.

While the real measured data provide a realistic representation of the rainfall charac-
teristics, design rainfall data offer the possibility of a representative coverage of all relevant
durations and return periods. Different model rainfall patterns, durations, and return
periods were considered to cover the full range of all possible precipitation loads. Fol-
lowing Schmitt [68], so-called increase factors were also considered to cover precipitation
beyond a return period of 100 years. The highest factor was set at 4.0 based on the findings
from studies to determine “Maximized Area Precipitation Heights for Germany (MGN)”.
This is a physical–empirical-based estimate of the probable maximum physically possible
precipitation heights [69].

As a result, 258 events (105 model rainfall events, 153 natural rainfall events) were
available for model training. Figure 3 shows the distribution of events as a function of their
respective return periods for the two data sets.
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4.0, the number indicates the increase factor by which the values of the 100-year model rains were
multiplied.

3.3. Data Generation and Preprocessing
3.3.1. Data Generation Process

With the calibrated hydrodynamic 1D/2D flood model and the generated precipitation
series as model load, the necessary training data sets for the ML-based forecast models were
produced. The precipitation was assumed to be spatially homogeneous, and an additional
lag time of 120 min was considered for each event to represent the decay of floods. As a
result, different hydrographs such as overflow hydrographs from spilling manholes as well
as sequences of grids with inundation areas were obtained.

At the end of a simulation, in addition to a map with the maximum water levels
at the ground surface, MIKE+ outputs a multidimensional grid data set. The data set
contained a temporal sequence of grids with the water levels at the respective time of
the simulated event. This data set allowed training a ML method to predict the desired
temporal evolution of an upcoming event and was used as a target variable in the training
process. In addition, it was also possible to output overflow hydrographs from spilling
manholes, which are considered as potential inputs in the analyses carried out here. For
the models developed here, only overflow onto the ground surface was considered, not the
inflow from surface runoff into the sewer network.

As in other studies [33,35], spatial information was used as potential input for the
deep learning model in this study. Löwe et al. [35] conducted extensive investigations on
the relevance of different types of spatial information in their study. The spatial information
found to be most suitable (terrain aspect, curvature, the depth of terrain depressions,
imperviousness, and flow accumulation) was also considered here in the analyses.

3.3.2. Data Preprocessing

Because of the different units and value ranges of the considered data and their
partially right-skewed distributions, the data were further preprocessed. The spatial
information was transformed following the procedure in Löwe et al. [35] and scaled to the
interval [−1, 1] if negative values were present, and to the interval [0, 1] otherwise. The
remaining data were also scaled to the interval [0, 1], but no additional transformation was
performed.

Predicting pluvial flooding was treated as a supervised learning problem in this study.
Accordingly, the data for the training process were converted into pairs of input and target
variables. The spatial information was relatively straightforward since it was static and
did not change between training samples. However, this did not apply to the time series
and grid sequences, which changed dynamically along the temporal dimension. Hence, a
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sliding window approach was used. Thereby, for each time step t of an event, a window
was opened over the past D time steps and the upcoming H time steps, resulting in intervals
[t-D+1,..., t] for the past time steps and [t+1,..., tH] for the predicted time steps. D and H were
set to 60 min for the studies performed here, corresponding to 12 time steps for the chosen
temporal resolution of five minutes. The precipitation forecast for the forecast horizon
of 60 min was set to be the measured precipitation of the corresponding time steps for
the investigations carried out here. In the future, a forecast generated by a precipitation
forecast model will be used. The procedure for generating the training pairs P is shown as
an example for one observation time step in Figure 4. The total number of all generated
training pairs from the 258 used events was 9045.
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The data set was split into training, validation, and testing data sets event by event.
Out of the 258 events, the data pairs of 26 events were retained for testing, all of which
were from the station closest to the study area. The data pairs from the remaining events
were used 90% (209 events) for training and 10% (23 events) for validation.

3.4. Investigated Model Setups

As described in Section 2.1, artificial neural networks were used as ML methods to
develop the prediction model. In addition, various potential inputs were available, which
were examined to determine what extent the developed model would benefit from their
integration. At the beginning of the investigations, the architecture shown in Figure 5
was chosen as a starting point. Initially, only precipitation information was selected as an
input to predict a sequence of flooding grids. The architecture was inspired by the work
of Guo et al. [33], but it underwent various modifications. In this model architecture, the
precipitation information is first processed using two convolutional 1D layers for feature
extraction before a fully connected layer and a reshaping layer follows. The latter converts
the data into a format that can be upscaled to the output format. This is followed by a
decoding part consisting of four deconvolutional 3D layers that generate the flooding
raster sequence from the extracted features. Other architectures such as LSTM layers or
fully connected layers for feature extraction or convolutional 3D layers in combination
with upsampling layers for decoding were also tested, but they led to worse results. All
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convolutional and deconvolutional layers, except the last one, are followed by a batch
normalization layer [70] to stabilize the training process and to enable higher learning
rates, as well as a rectified linear activation unit (ReLU) [71] as activation function. The
last deconvolutional layer is followed by a sigmoid activation function [72] without batch
normalization.
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For training, all models used the mean squared error as the objective function (unless
otherwise described) and were trained with the Adam optimization algorithm [73] for
100 epochs. The size of the batches was set to 16 since larger batches led to GPU memory
overload. A value of 0.001 was selected as the learning rate, previously determined
following the procedure described by Smith [74]. Only the models with the smallest error
for the validation data set during the training were saved to avoid overfitting.

3.4.1. Experiment 1: Comparison of Different Input Variables

In the first experiment, it was evaluated which combination of potential model inputs
provided the best results. The precipitation information including the precipitation fore-
cast was regarded as mandatory. The remaining two inputs were varied in all possible
combinations so that the following models were compared with the following inputs:

• Model 1: Precipitation;
• Model 2: Precipitation + Overflow forecast;
• Model 3: Precipitation + Spatial information;
• Model 4: Precipitation + Overflow forecast + Spatial information.

Figure 6 shows the baseline architecture with the additional input paths considered
for feature extraction. The overflow prediction is processed similar to the precipitation
information and connected to the output architecture after the reshaping layer via a con-
catenate layer before the decoding path follows. At the same point, the spatial information
is integrated into the network. The feature extraction for this type of data is conducted with
an encoder structure consisting of several convolutional 2D layers with a stride of two to
downsample the input raster. The output of the last convolutional 2D layer is stacked H
times to obtain identical dimensions in front of the concatenate layer.
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3.4.2. Experiment 2: Comparison of Different Preprocessing of the Overflow Data

Different formats to integrate the overflow data into the model were investigated in
the second experiment. Initially, these were available as hydrographs for all nodes in the
catchment area. The issue was to what extent the model could benefit from these several
hundred hydrographs without spatial relations. In this context, in addition to the unstruc-
tured overflow hydrographs (variant a), two other variants were investigated, adding the
overflow data to the model as a raster sequence (variant b) and as a spatiotemporal graph
(variant c). Figure 7 provides an overview of the possible architectures.

The raster sequences in variant (b) were created by intersecting the overflow hy-
drographs with a sink catchment raster. The result was a sequence of grids with the
accumulated overflow volumes of all manholes per time step and for each sink catchment.
In the model architecture, the raster sequences are processed with an encoder structure con-
sisting of convolutional 3D layers with a stride of two. As in the decoding part, each layer
is followed by a batch normalization layer and a ReLU activation function. The output of
the last layer is then concatenated to the baseline architecture and further processed there.

In variant (c), the overflow forecast is processed with a temporal graph convolutional
network (T-GCN) following Zhao et al. [75] and Yu et al. [57]. This approach combines
a graph convolutional layer with a recurrent layer. While the graph convolutional layer
captures the spatial dependencies of the sewer network, the recurrent layer captures the
temporal dynamics of the overflow process at the individual manholes. This enables the
modeling of the spatiotemporal learning problem presented here. The graph convolutional
layer receives a feature matrix containing the overflow hydrographs and an adjacency
matrix representing the sewer network as an unweighted and directed graph. A LSTM
layer is used as the recurrent layer. The output of the T-GCN block is then passed to a fully
connected layer followed by a reshaping layer, analogous to the precipitation data, before
concatenating with the output architecture.
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3.4.3. Experiment 3: Comparison of Different Model Setups

In a third experiment, the performance of the previously best-evaluated model was
compared to a conditional generative adversarial network (cGAN). The structure of the
cGAN is shown in Figure 8 and was inspired by the work of Isola et al. [22] and Hofmann
and Schüttrumpf [34]. The latter had used the architecture successfully for flood prediction.
Unlike a normal GAN, the cGAN receives context in addition to noise as input. In the
present investigations, following the findings of Isola et al. (2017), the noise was completely
ignored as input and only context in the form of the potential model inputs from experiment
1 was considered. Moreover, following similar studies [22,34,37], a mean absolute error
function (L1 loss) was integrated into the objective function (cf. Formula (3)). Thus, the
generator aims not only to fool the discriminator, but also to minimize the error between
the results of the HD-Model used as the target variable.

The best model from experiments 1 and 2 was used as the architecture for the generator.
A network structure suitable for classification was used as the discriminator. It first extracts
the features from the individual inputs similar to the other model structures and then
merges them with a concatenate layer (see Figure 9). Afterward, another convolutional
3D block with ReLU and batch normalization follows, as well as a convolutional 3D layer
followed by a sigmoid activation function. The output represents a binary classification. In
contrast to the generator, dropout [76] with a dropout rate of 0.5 was used for regularization
in the discriminator. In this way, the training process could be stabilized and better results
could be achieved.
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3.5. Performance Evaluation

The predicted (ML model) and simulated (HD model) flooding grids were compared
cell by cell to evaluate the prediction results. For this purpose, the root mean squared error
(RMSE) and the critical success index (CSI) were used as two different quality criteria types.

The RMSE is a continuous index that compares the exact water levels and evaluates
the average deviation:

RMSE =

√
1
n

n

∑
i=1

(
yNN

i − yHD
i
)2 (4)

where n stands for the number of cells compared and yi for the respective values of the
individual cells determined with the neural network NN and the hydrodynamic model
HD. The RMSE can assume values in the range [0, ∞], where 0 corresponds to the optimal
fit. The absolute error is given as the result. Other metrics for determining the relative
error, such as the relative mean squared error (MRSE), were also tested. However, it was
found that pixels with low water levels sometimes resulted in extreme relative errors. In
the subsequent averaging of error values over all the cells of a flooding grid, this problem
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led to poor results. However, the affected cells have only a low hazard potential and are
thus of minor relevance compared to cells with high water levels.

The CSI is a categorical index for evaluating location accuracy and is a widely used
measure for assessing extreme events in both precipitation [43–45] and flash flood forecast-
ing [35,77]. Compared to other categorical indices such as the hit rate or the false alarm
rate the CSI considers both misses and false alarms. Since both are equally unfavorable
for the developed prediction model, the CSI is best suited for this purpose. First, binary
classification of the cells needs to be performed to determine the CSI. In the present case,
the pixels were classified as flooded and non-flooded. Subsequently, the CSI was calculated
as follows:

CSI =
TP

TP + FN + FP
(5)

In this example, TP stands for the number of cells correctly predicted to be flooded, FP
denotes the cells incorrectly predicted to be flooded, and FN indicates the number of cells
incorrectly predicted not to be flooded. It thus responds to both missed and false alarms.
This makes it well suited for the present task since missed and falsely predicted inundated
areas are equally inconvenient in an emergency. The values of the CSI are in the interval
[0, 1], where 1 corresponds to the best result.

The evaluation procedure only calculated metrics for pixels where the HD model or the
neural network predicted water levels above a given threshold. Following the procedure in
Löwe et al. [35] or as common practice in precipitation forecasting [43], multiple thresholds
were considered for the CSI to evaluate the location accuracy at different water levels. The
same approach was used here for the RMSE to account for the deviation in dependence on
various water levels.

4. Results
4.1. Comparison of the Investigated Model Setups

The three experiments described were carried out one after another, and in each case,
the best model was carried into the next experiment. Table 1 summarizes the results
of all experiments. The metrics for the individual water level threshold values d were
formed in each case as the mean value of all samples of the 26 test events and all prediction
time steps. For experiment 1, it was clearly shown that considering the overflow forecast
(models 2 and 4) led to better results and generally predicted high water levels more
reliably. The additional consideration of spatial information led to higher accuracy for
water depth values ≤ 0.2 m. On the other hand, at higher thresholds, model 2 without
spatial information performed best. Altogether, the difference between the two models was
small. The result was unsurprising because the spatial information was a static variable
without changes among individual training pairs. Thus, the data set acted more as a
mask and did not significantly impact the error signal required for training progress.
Nevertheless, since various studies have shown that spatial information can enable the
transferability of trained models [35,78], model 4 was included in the following experiment.

A comparison of the different model setups in experiment 2 showed that considering
the overflow information as a raster sequence led to the worst results. In addition, the
format demanded a significantly larger memory consumption during model training and
almost double the computation time. The unstructured input of the overflow hydrographs
performed slightly better for the lower thresholds, although the differences were marginal,
especially for the RMSE. The input as a graph gave the best results for the higher thresholds,
which was the most relevant for flood prediction. Therefore, model 7 was carried into the
final experiment.
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Table 1. Evaluation results for all models from the three experiments (for each experiment and metric,
the best result is bolded).

Model

RMSE ↓ CSI ↑
d ≥
0.02

d ≥
0.05 d ≥ 0.1 d ≥ 0.2 d ≥ 0.5 d ≥

0.02
d ≥
0.05 d ≥ 0.1 d ≥ 0.2 d ≥ 0.5

Experiment 1: Model Inputs

Model 1
(Inputs: rain) 0.039 0.052 0.074 0.140 0.553 0.504 0.488 0.399 0.299 0.122

Model 2
(Inputs: rain, manhole spilling) 0.028 0.037 0.052 0.096 0.096 0.538 0.543 0.495 0.414 0.768

Model 3
(Inputs: rain, spatial

information)
0.037 0.050 0.074 0.144 0.547 0.510 0.466 0.384 0.293 0.157

Model 4
(Inputs: rain, spatial

information, manhole spilling)
0.026 0.035 0.051 0.092 0.118 0.595 0.574 0.511 0.421 0.746

Experiment 2: Manhole Spilling Forecast Format

Model 5
(Unordered) 0.026 0.035 0.051 0.094 0.118 0.595 0.574 0.511 0.421 0.746

Model 6
(Raster Sequence) 0.030 0.040 0.058 0.115 0.148 0.548 0.514 0.434 0.340 0.679

Model 7
(Graph) 0.026 0.036 0.052 0.092 0.081 0.575 0.557 0.492 0.424 0.788

Experiment 3: Model Architecture

Model 8
(T-GCN) 0.026 0.036 0.052 0.092 0.081 0.575 0.557 0.492 0.424 0.788

Model 9
(T-GCN cGAN) 0.027 0.037 0.055 0.113 0.158 0.623 0.602 0.545 0.440 0.723

The third and last experiment showed high location accuracy for the model setup as a
conditional GAN (model 9). On the other hand, the “classic” T-GCN (model 8) showed a higher
accuracy for the RMSE. For a better assessment of individual outliers that may negatively affect
the metrics, further evaluations were subsequently performed with both models.

4.2. Assessment of the Prediction Accuracy

The metrics were determined for each event in a further step to obtain a more detailed
evaluation of the model performance. Figure 10 shows the distribution of the results for the
T-GCN and the T-GCN cGAN. It should be pointed out that only 4 of the 26 events resulted
in water levels > 0.5 m, so the metrics determined for that threshold are only partially
representative. The differences between the two models shown in Table 1 are also apparent.
Moreover, a slightly more extensive spreading of metrics was observed at higher thresholds
for the T-GCN cGAN than for the T-GCN. Still, a significant negative influence of extreme
outliers on the results could not be detected.

For a threshold value of 0.05 m, Figure 11 shows the RMSE and the CSI values of the
26 events with respect to their return periods (T). Here, both models provided good results
even for the particularly relevant very rare events with T > 100 a. For the CSI, the results
were in the upper range of all test events. The results for the RMSE were also positive
considering that the absolute deviations were included in the calculation. Neither of the
two models presented extreme outliers at certain recurrence intervals, and their results
were similar.
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In a third analysis, it was assessed whether the models overestimated or underesti-
mated water levels. For this purpose, the prediction error as a function of the simulated
water levels is shown in Figure 12 in a 2D histogram. All pixels from all forecast grids of
the 26 events above a threshold of 0.05 m were considered. The dashed line indicates the
ideal fit between forecast and HD simulation. The deviations vary relatively evenly around
the dashed line for both models, with a slight trend toward overestimating water levels.
Again, this showed a slightly better performance of the T-GCN.
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4.3. Forecast for a Historical Heavy Rainfall Event

For the final evaluation, the T-GCN was tested using the historical heavy rainfall event
of 3 July 2009 in the study area of Gelsenkirchen (Figure 13).
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Figure 13. Results and evaluation for three time steps of a single forecast with the T-GCN at the
beginning of the event on 3 July 2009 in Gelsenkirchen. Instead of showing the entire study area, a
section with a flooded underpass is expanded for better visualization.

A forecast was generated at the beginning of the event for a forecast horizon of 60 min.
The precipitation sum for the predicted period was 46 mm and for some duration intervals,
return periods of more than 200 years were reached. Figure 13 presents HD simulation
and forecast results, location accuracy and the water depth difference for three forecast
time steps. The visual comparison shows a high agreement and that no unrealistic flooding
patterns were produced. In addition, the following characteristics of the model are shown
in the figure:
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1. Predictions with shallow water depths and only a few flooded pixels often lead to
large errors. This problem is particularly evident at step t = +15 min with a CSI of 0,
the worst possible result. The RMSE also shows the worst value compared to the other
time steps. The same problem was also found by Löwe et al. [35]. On the other hand,
predicted flood maps with many flooded pixels usually show a high accuracy, as is
the case for time steps t = +30 min and + 60 min. Accordingly, the flooding patterns
particularly relevant for crisis management are predicted with high accuracy.

2. The model reacts with a slight delay to the precipitation load. While increasing flood
areas before the peak are underestimated, the extent of areas after the peak is slightly
overestimated. This behavior is illustrated by the histogram with the error frequencies,
and it is also displayed in other events.

3. In the center of the depicted section, there is an underpass where the most considerable
differences of up to 25 cm occur. However, it should be noted that the water levels
there are sometimes more than two meters high. In this case, the relative error would
be in the range of about 10–15% and thus within an acceptable range.

5. Discussion

The results showed a good agreement between the predicted inundation areas and the
HD model results. The visual comparison showed only small differences, which should
play only a minor role in its use in warning systems or as a basis for decisions in crisis
management. The RMSE and CSI values were in a range similar to other studies [34,35,37],
where deep learning models were used to compute flood maps. However, it should be
noted that the comparison with other studies is limited because of the different prediction
model tasks (grid sequences instead of single grids) and the different characteristics of the
used study areas (topography, imperviousness, etc.). The investigations also found that
the model provided good results for rare events with high return periods. In addition, the
chosen model structure is independent of the event duration. That is because the model
does not require inputs such as the precipitation load for the entire event, but only considers
a fixed number of past and future time steps of each forecast time point in an event. On the
other hand, it must be considered that perfect precipitation and overflow forecasts were
used in the experiments. In practice, both predictions are subject to uncertainties, which
would affect the model developed here. Therefore, regarding operational use, further
investigations with results from forecast models for precipitation and overflow are required
to evaluate the effects of the uncertainties on the predicted inundation areas.

The final model needed only a few seconds to calculate the flooding sequence for the
following 60 min. Even when extended to larger areas, the computation time is expected
to be less than one minute, making the model suitable for real-time operation. This result
was consistent with findings from other studies [31,34,35,78]. Although an extension of the
prediction horizon will lead to higher computational and memory requirements because
of the additional flooding grids, it will be otherwise technically feasible. However, the
possible forecast horizon is limited by the uncertainties of precipitation forecasts. These
increase dramatically after only a few minutes for extreme events using the currently
available forecast models and thus do not allow meaningful forecasts for more than two
hours [79].

As Hofmann and Schüttrumpf [34] indicated, generation of the training, validation,
and test data sets with hydrodynamic models is very time intensive. For the relatively small
test area used in this study, it took about two months to compute all 258 considered events
on a high-performance workstation. If extended to the entire city area of Gelsenkirchen,
without additional computing resources, the calculations would need several years, making
the approach unfeasible. In addition to more extensive computing resources, a smaller data
set could be another solution. For this purpose, investigations are planned on determining
the data quantity required to achieve adequate prediction results. Especially for the events
with lower return times, it is quite possible that reducing the data set will not lead to a
significant loss of quality.
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In addition to the required computational resources for data generation, the scalability
of the model was limited by the high memory requirements for model training. Because
of the high dimensionality of the flooding sequences used as target size (12 images of
1024 × 768 px for the relatively small study area of 3.1 km2), an expansion to larger areas
and thus a higher number of raster cells to be computed will quickly exceed the available
GPU RAM. Considering the currently available technology, this makes training impossible
beyond a certain amount of data. One approach to covering entire urban areas is to divide
the computational domain into sub-models and merge the results as described in Berkhahn
et al. [31]. Another method is to train models in parallel on multiple GPUs. One approach
to this is represented by the Python library Mesh-TensorFlow [80], which allows developing
large models with extreme memory requirements and training them in parallel on multiple
GPU units.

Another way to scale the model to an entire urban area is to make a trained model
transferable. A model could then be developed for a sub-area and used to forecast the rest
of the municipal area. Furthermore, this characteristic would allow the model to adapt to
changes in the catchment area, for example, in topography, land use, or the sewer network,
without retraining. Some studies [33,35] used topographic information as an additional
input to include physical system properties to establish model transferability. This approach
can be combined with transfer learning techniques to improve results for the target area
with a small amount of additional training [36]. Because of the further consideration
of overflow as an input variable in the experiments presented here, considering only
topographic information is insufficient. Instead, the combination or intersection of the
overflow forecast with other physical system properties is required as an additional input
to enable transferability. The intersection of overflow forecasts with sink catchments
performed in experiment 2 (see Section 3.4.2) is a step in this direction. A similar approach
was proposed by Löwe et al. [35] by weighting flow paths by adjacent overflow volumes in
a raster data set. However, both methods are likely to yield losses in prediction accuracy
and lead to a significant increase in GPU memory demand.

Finally, with the current model setup, the neural network can only become as good
as the HD model. Accordingly, the generally known limitations of HD models also apply
here. These include the limited validation opportunity due to the lack of measurement
networks for recording water levels during flooding events. Water level detection using
social media images [4,5] or recordings from surveillance cameras [6] could provide a
solution in the future. In addition, spatial information on flooding extent would be highly
desirable such as through extraction from satellite data [81,82]. Nevertheless, because of its
coarse temporal and spatial resolution, this approach is currently limited to fluvial or tidal
flooding. In the future, further technical developments might enable the use of satellite data
for pluvial flood modeling and possibly even provide a data source for training ML models.

6. Conclusions

This paper presented experiments with different deep learning models for predicting
pluvial flooding in urban areas. The special feature of the different models was the spatial
and temporal prediction of the flooding situation in the form of a sequence of flood maps.
In addition, the models generated a forecast for the following 60 min at any given time
step of an event. As part of the model development, experiments were conducted to
determine the influence of different input variables, input formats, and model architectures
on prediction quality. The best model proved to be a T-GCN, which was characterized
by low computation times and, at the same time, produced flood maps with reasonable
differences from the ones produced by an HD model. Furthermore, the best results were
achieved with precipitation information, an overflow forecast, and spatial information as
input. The main disadvantage of the presented model setup is the limited scalability and
transferability. On the one hand, long computation times during training data generation
and high demand for GPU RAM during model training limit the size of the considered
area. On the other hand, due to the limited transferability, the trained model cannot be
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used for other catchments and must be retrained when structural changes occur in the
used catchment area. The additional consideration of overflow, which positively affects the
model quality, means that the trained model cannot be transferred without further input
information. Here, additional information about the spatial overflow structure is required
as model input, which can be exchanged if the model is used for other catchment areas.

Further investigations will be needed at various points. This applies mainly to in-
tegrating real rainfall and overflow forecasts into the prediction process. Here, for use
in real-time warning systems, it must first be shown that accurate flood forecast results
can still be achieved despite the uncertainties transferred to the model. The likely lower
model quality can be mitigated by systematic hyperparameter tuning, which was not part
of this study. To the best of our knowledge, no other studies currently use machine learning
models to predict flooding sequences considering the sewer network. Accordingly, no
models were available that could be used as a benchmark in this study. Therefore, a transfer
to an open-source dataset such as the Belinge dataset [83] is envisaged to provide the
T-GCN as a benchmark for future developments.

Furthermore, the model’s scalability to an entire urban area must be examined. The
time required for data generation by the HD model and the high GPU memory requirements
for training remain constraints, but they can be countered with various approaches such
as increased computing resources or targeted data volume reduction. It also remains to
be examined how and to what extent it is possible to scale the model to large areas while
considering manhole spilling as an input variable. In addition, further investigations are
needed regarding the accuracy of the developed model in areas with different topography.
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