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Abstract: Microplastic pollution is widespread around the world and inevitably comes into contact
with organisms. With the accumulation of microplastics in the environment, the negative impact of
microplastics on organisms has become the main focus in the field of microplastics. In this study,
the different particle and concentration effects of fluorescent polystyrene microplastics (PS-MPs)
on Nostocaceae and Daphnia Magna were researched. The results indicate that PS-MPs adhered
to Nostocaceae through static electricity, which hindered the absorption of photons and CO2 by
Nostocaceae, resulting in a decrease in chlorophyll, a low growth rate and high mortality for Nostocaceae.
PS-MPs with very small particles may be integrated into the blood of Daphnia Magna, leading to an
increasing trend of mortality and a decrease in spawning rate. The research provides basic data and a
reference for the effect of PS-MPs on freshwater organisms and has implications for the further study
of microplastics.

Keywords: microplastics; fluorescent polystyrene; Nostocaceae; Daphnia Magna; photosynthesis;
reproductive effect

1. Introduction

Plastic has been widely produced and used since the 1950s, but the production of
plastics has increased rapidly, outspending most other synthetic materials [1]. In 2021, the
total global plastic production reached 390.7 million tons, and 90.2% of the world’s plastic
production was fossil-based [2]. Due to the ease in manufacturing plastics and their good
stability as well as low price, plastics have been widely used in various sectors [3]. In 2021,
packaging and building and construction applications were the world’s two largest plastics
markets, accounting for 44% and 18% of the annual plastic production, respectively [2].

Microplastics are defined as plastic fragments or debris smaller than 5 mm [4] and
are widely distributed in the ocean and on land [5]. Microplastics from different sources
vary in size, shape, density and composition [6]. Microplastics usually exist as particles,
films or fibers, and their surfaces are mostly accompanied by pits and cracks due to
mechanical erosion and chemical weathering [7,8]. Microplastics include primary and
secondary microplastics, and primary microplastics are manufactured on a large scale
and used in specific personal care products, such as exfoliants/abrasives, specific medical
applications and others [6]. After being discarded, plastic particles are released directly
into the environment. Secondary microplastics are a result of the fragmentation of larger
plastic materials under the action of physical, chemical and biological processes [6].

Currently, microplastics pollution is widespread throughout the world [9]. At least
12.7 million tons of plastic without effective disposal flowed into the sea in 2010, and
assuming no management measures are taken, the cumulative amount of plastic waste
entering the sea from the land is expected to increase by an order of magnitude by 2025 [10].

Water 2023, 15, 1744. https://doi.org/10.3390/w15091744 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15091744
https://doi.org/10.3390/w15091744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15091744
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15091744?type=check_update&version=1


Water 2023, 15, 1744 2 of 13

As a common packaging material, polystyrene plays an important role in human
production and life, with a global market value of more than USD 30 billion [11]. In a report
on marine microplastics, polystyrene was one of the most common microplastics found in
the ocean [12,13]. Polystyrene microplastics (PS-MPs) are considered carriers of hazardous
contaminants due to their propensity for adsorbing xenobiotic chemicals [14]. PS-MPs
can adsorb various hazardous contaminants, such as triazole fungicides (hexaconazole
(HEX), myclobutanil (MYC) and triadimenol (TRI)), which are extensively utilized in
agriculture [15]. Furthermore, smaller-sized PS-MPs have been demonstrated to possess
a greater adsorption capacity, making them more likely to be ingested by organisms and
accumulate in their intestines, potentially causing harm to aquatic life [16–18]. Furthermore,
PS-MPs release numerous harmful substances, including dioctyl terephthalate (DEHT),
diethyl hexyl phthalate (DEHP), diphenols (bisphenol A (BPA) and bisphenol S (BPS))
and polycyclic aromatic hydrocarbons (PAH) compounds, all of which are recognized
carcinogens [19,20]. Simultaneously, aged PS-MPs release organic matter more rapidly than
their non-aged counterparts, posing a heightened risk to aquatic environments [21].

At present, research in the field of polystyrene mainly focuses on the impact of
polystyrene on organisms, including plankton, fish and land animals [22–25]. Microplastics
in the environment can be ingested by organisms due to their small size, and there is
compelling evidence that microplastics negatively impact the organisms [26]. Algae are the
most important primary producers in the aquatic ecosystems [27]. Wang et al. proved that
PS-MPs can inhibit the growth of Dunaliella salina and Phaeodactylum tricornutum and induce
high reactive oxygen species (ROS) produced by algae cells to cause oxidative damage
to them [28,29]. Similarly, the exposure of Scenedesmus obliquus to PS-MPs led to growth
inhibition and reduced chlorophyll levels in the cells [30]. PS-MPs also promoted the pro-
duction and release of volatile halocarbons (CHBrCl2, CHBr2Cl and CHBr3), indicating that
PS-MPs in water may enhance volatile halogenated emissions [29]. As for aquatic animals,
Martins et al. also found that exposure to microplastics causes a significant reduction
in spawning rates of Daphnia and suggested that continued exposure to microplastics
may cause population extinction [31]. More seriously, zebrafish exposed to microplastics
face oxidative stress damage, and they induce gut microbiota dysbiosis, even leading to
glomerulopathy [32,33]. Nanosized microplastics could breach the blood–brain barrier
in crucian crap, resulting in a significant reduction in acetylcholine enzyme activity in
crucian crap brain [25]. Jaehee et al. found that PS-MPs can also increase the toxicity of
hexavalent chromium to aquatic organisms, resulting in critical inhibition of amphipod
growth, severe necrosis in gill tissue and behavior changes of zebrafish [34]. More and
more research has proved that microplastics pose great threats to animals, human health
and ecosystems [22,35,36], especially after the discovery of quantifiable microplastics in
human blood [37].

In this study, we prepared spontaneously fluorescent polystyrene, which is our team’s
research and development. This fluorescent polystyrene does not release fluorescent dyes
and can be stably tracked in organisms. We investigated the effects of polystyrene on
autotrophs and heterotrophic organisms: algae represented by Nostocaceae and plankton
represented by Daphnia Magna. We analyzed the effects of polystyrene on chlorophyll con-
tent, fresh weight, dry weight of Nostocaceae and on growth and spawning of Daphnia Magna.
The research provides some data on the biological toxicology of polystyrene microplastics.

2. Materials and Methods
2.1. Materials
2.1.1. Nostocaceae

Nostocaceae (FACHB-106), Latin name Nostoc commune Vauch, were purchased from the
Freshwater Algae Culture Collection at the Institute of Hydrobiology (FACHB) and trans-
ferred into a three-necked flask with BG-11 (blue-green medium) under sterile conditions.
The Nostocaceae were cultivated for 20–30 d at 25 ± 1 ◦C and 1000–2000 lux illumination
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with a 12 h/12 h (light/dark) cycle. After 20–30 d of cultivation, we continued to expand
the cultivation for standby.

2.1.2. Daphnia Magna

Daphnia Magna, Latin name Daphnia Magna, was cultivated. Daphnia Magna was
provided by the Microbiology Laboratory of the School of Environmental Science and
Safety Engineering, Tianjin University of Technology. We controlled the water temper-
ature at (22 ± 1) ◦C and put the box containing Daphnia Magna in a bright place with
good ventilation.

2.1.3. Microplastics

Aluminium chloride (AlCl3, AR) and acetyl chloride (AC, AR) were purchased from
the Aladdin reagent website; carbon disulfide (CS2, AR) was purchased from Fuchen
(Tianjin) Chemical Reagent Co., Ltd.; PS was purchased from Chemart (Tianjin) Chemical
Technology Co., Ltd. and separated into different sizes of microplastics with sieves for
standby. The particle size range is shown in Table 1.

Table 1. The sizes of PS microplastics.

Distribution of Size D1 D2 D3 D4 D5 D6 D7

Size (µm) 0–40 4–100 100–150 150–200 200–300 300–450 450+

2.2. Methods
2.2.1. Microplastic Treatment

We acetylated the screened PS-MPs using the method of Yang so that the PS-MPs
could spontaneously fluoresce. First, dry PS-MPs were placed in a three-necked flask,
and CS2 was added to soak the PS-MPs for 12 h. Then, 5.805 g of AlCl3, 175 mL of CS2
and 5.855 g of AC were added. After 10 min of stirring, the cyclic cooling reaction was
carried out in a water bath at 50 ◦C for 5 h. The solvent was removed by vacuum filtration
with a microporous membrane. Subsequently, the product was washed with 3% dilute
hydrochloric acid, deionised water and absolute ethanol. Finally, the product was dried in
a vacuum drying chamber at 40 ◦C for 5 h to obtain acetylated polystyrene [38]. We stored
different-sized spontaneous fluorescent PS-MPs separately for standby.

2.2.2. Nostocaceae

We transferred Nostocaceae into the three-necked flask with BG-11 (blue-green medium)
under sterile conditions. Spontaneously fluorescent PS-MPs were individually added to
the algae cultures to reach concentrations of 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.16 and
0.20 g/25 mL, respectively. The Nostocaceae medium with 0 g/L was used as the blank,
and all operations were carried out under sterile conditions to avoid contamination from
bacteria. The algae were cultivated at 25 ± 1 ◦C and 1000–2000 lux illumination with a
12 h/12 h (light/dark) cycle.

(1) Microscopic observation

After a 24 h exposure experiment, we applied some Nostocaceae solution under the
fluorescent inverted microscope to observe the adsorption of Nostocaceae and PS-MPs.

(2) Chlorophyll content

An aliquot of 2 mL of Nostocaceae solution was added into a centrifuge tube and
centrifuged for 5 min at 12,000 rpm. We put the Nostocaceae in the centrifuge tube with
acetone solution for resuspension and wrapped the centrifuge tube with tin foil; the tube
was then heated in a 55 ◦C water bath for 30 min and centrifugated again at 12,000 rpm for
5 min. Following this, we placed the centrifuged supernatant in a test tube and acetone
(80%) was added to a volume of 5 mL. The ultraviolet spectrophotometer was used to
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measure the absorbance value of the Nostocaceae sample at 663 nm. The measurement
result was used to calculate the content of chlorophyll A according to Equation (1). Since
Cyanobacteria only have chlorophyll A, the measured content of chlorophyll A was the
chlorophyll content of Nostocaceae

CA = OD663/82 (1)

Note: CA is the chlorophyll A content in Equation (1); OD663 is the absorbance value;
82 is the specific absorption coefficient.

(3) Nostocaceae density

Algal density was measured via blood count plate. One drop of shaken Nostocaceae
solution was pipetted onto the blood count plate and covered with a coverslip and the blood
count plate was placed under a microscope to pass through a 40×mirror and counted. Each
sample was counted in three replicates and the average value was used for the calculation
of Nostocaceae solution density, using the Equation (2)

Nostocaceae density = Biomass × 25× 107 (2)

Note: The biomass in Equation (2) is the number of Nostocaceae in one large square.

(4) Fresh and dry weight

The 5 mL centrifuge tube was weighed, and the weight was signed as M0. Two mL of
Nostocaceae solution was added into the centrifuge tube. The tube in which there was 2 mL
of Nostocaceae was centrifugated at 12,000 rpm for 5 min and then weighed. The weight was
signed as M1. The weight of Nostocaceae was M1–M0. After weighing, we put the centrifuge
tube containing Nostocaceae in a drying oven for 2 h and then put it in a drying dish to cool
for 30 min. We then weighed the centrifuge tube containing Nostocaceae signed M2. The
Nostocaceae in the centrifuge tube was cleaned and the tube was placed in a drying oven for
2 h and cooled for 30 min. We then weighed the centrifuge tube signed M3. The dry weight
of Nostocaceae was M2–M3.

2.2.3. Daphnia Magna

Ten young fleas aged 6–24 h were selected and transferred into 50 mL cultivated
medium. Spontaneously fluorescent PS-MPs were individually added to the cultivated
medium to reach concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0 mg/L, respectively. The culti-
vated medium with 0 mg/L was used as blank, and all operations were carried out under
sterile conditions to avoid contamination from bacteria. We sealed the beaker with cling
film and opened 6 holes in the cling film to ensure that there was enough oxygen for the
growth of Daphnia Magna. The beaker with the solution mixture was cultivated in the
shaking incubator for 9 days at a temperature of (22 ± 1) ◦C, pH 7.84 ± 0.46 with natural
light. Fluorescence was observed and we recorded the growth and spawning conditions of
Daphnia Magna every day.

(1) Fluorescence observation

During the exposure experiment, we took the Daphnia Magna on the slide with drop-
pers every day, and the uptake of PS-MPs by Daphnia Magna was observed under the
inverted fluorescent microscope through a 10-times eyepiece and 40-times objective lens.

(2) Growth and spawning conditions

The growth and spawning of Daphnia Magna within 9 days were counted by visual
inspection (excluding the second and third generation) to characterize the toxicity of
fluorescent polystyrene. The criterion for judging the death of Daphnia Magna was a loss
of activity of Daphnia Magna after repeatedly shaking the beaker within 15 s. Then, we
observed the Daphnia Magna under the microscope, and the heart stopped beating, which
was regarded as death.



Water 2023, 15, 1744 5 of 13

3. Results and Discussion
3.1. Effects on Nostocaceae
3.1.1. Observation of Fluorescent PS-MPs and Nostocaceae

By acetylating polystyrene, we obtained stable fluorescent polystyrene, and significant
fluorescence of acetylated polystyrene (see Figure 1) was observed through an inverted
fluorescence microscope.
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Figure 1. Fluorescent microplastics under fluorescence microscope.

The adsorption of PS-MPs by Nostocaceae was observed through an inverted fluores-
cence microscope after exposure to PS-MPs for 24 h (see Figure 2). The blue particles were
PS-MPs, and the yellow particles were Nostocaceae.
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3.1.2. Changes in Chlorophyll Content

In the Nostocaceae experiment, the medium of Nostocaceae with the same concentration
and different particle-sized microplastics demonstrated that the chlorophyll decreased with
a rise in particle size. The chlorophyll reached the minimum value at 150–200 µm when the
Nostocaceae were exposed to the same concentration of PS-MPs with 0–200 µm particle size
(see Figure 3). The chlorophyll increased gradually when the particle size of PS-MPs was
larger than 200 µm, which proved that 150–200 µm PS-MPs had the greatest effect on the
chlorophyll of Nostocaceae.
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Figure 3. Changes in chlorophyll content before and after 24 h exposure of Nostocaceae. Blank 1 was
Nostocaceae chlorophyll content in 0 h without adding polystyrene microplastic. Blank 2 was Nosto-
caceae chlorophyll content in 24 h without adding polystyrene microplastic. The error bar represents
the standard deviation of measurement for chlorophyll content in three separate sample runs.

The change in chlorophyll content was not obvious when the mass of PS-MPs was
0.02 g and the chlorophyll was lower than blank group 2. However, the chlorophyll was
above blank group 1, which proved that the number of Nostocaceae and chlorophyll still
increased when the PS-MP weight was less than 0.02 g. The increase in Nostocaceae number
and chlorophyll in the low-concentration group may be due to the fact that the algae are
resistant to microplastic stress through self-regulation [39].

3.1.3. Changes in Density, Fresh and Dry Weight

The chlorophyll decreased rapidly, and a large number of Nostocaceae died when the
additional mass of PS-MPs was more than 0.08 g. If the PS-MP mass reached 0.12 g, the
chlorophyll decreased by about 50% and half of the Nostocaceae died (see Figure 4). When
the PS-MP mass reached 0.20 g, the content of chlorophyll tended towards 0, and almost all
the Nostocaceae died. The result indicated that high concentrations of PS-MPs had a lethal
effect on Nostocaceae. The reason may be that polystyrene particles adhering to algae can
exacerbate light attenuation and reduce nutrient and gas swapping in algal cells, which
may adversely affect Nostocaceae respiration and photosynthesis [40,41].
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Figure 4. Changes in algal density before and after 24 h exposure of Nostocaceae. Blank 1 was
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in three separate sample runs.

Keeping the concentration constant, the density of Nostocaceae decreased with the
increasing particle size and reached a minimum at 150–200 µm. If the particle size was
greater than 200 µm, the density of Nostocaceae slowly rose by 1–2% compared to the particle
size of 150–200 µm, which proved that the PS-MPs of 150–200 µm had a significant effect
on the density of Nostocaceae. The density of Nostocaceae did not change significantly, which
was 3%, 6% and 15% lower than that of blank 2 after 0.02 g/0.04 g/0.06 g of PS-MPs with
different particle sizes.

After exposure to 0.02–0.08 g of PS-MPs for 24 h, the density of Nostocaceae was
significantly lower than blank 2 but higher than blank 1, which proved that the growth of
Nostocaceae was inhibited when the dosage of PS-MPs was less than 0.08 g. If the mass of
PS-MPs was more than 0.10 g, a large number of Nostocaceae died, indicating that PS-MPs
had a lethal effect on Nostocaceae. The mortality rate of Nostocaceae was about 50% compared
to that before the exposure experiment after 0.12 g of 150–200 µm PS-MPs was added. If
0.20 g of 150–200 µm PS-MPs was added, the Nostocaceae density tended towards 0.

Studies have reported that PS-MPs can inhibit the respiration and photosynthesis
of algae, interfere with the amino acid metabolism pathway of algae, indirectly inhibit
cell division and hinder algae growth [24,28]. When the mass of PS-MPs was more than
0.10 g, the chlorophyll content of Nostocaceae decreased significantly, regardless of the
particle size (see Figure 3), and a large number of Nostocaceae ceased to grow and thus
died, resulting in the fresh and dry weight of Nostocaceae being close to that before the
exposure experiment (see Figures 5 and 6). In addition, polystyrene microplastics and algae
extracellular polymers were able to form heterogeneous aggregates, leading to physical
damage, such as cell wall damage and membrane structure changes [9], which may also
contribute to the death of large numbers of Nostocaceae.
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Figure 6. Changes in dry weight before and after 24 h exposure of Nostocaceae. Blank 1 was non-
dosed polystyrene microplastic 0 h dry weight of Nostocaceae. Blank 2 was non-dosed polystyrene
microplastic 24 h dry weight of Nostocaceae. The error bar represents the standard deviation of
measurement for dry weight in three separate sample runs.

3.2. Effects on Daphnia Magna
3.2.1. Observation of the Intestine of Daphnia Magna

Fluorescent PS-MPs were observed in the intestines of Daphnia Magna with the
0–40 µm group by using a fluorescence inverted microscope (see Figure 7) There was
no fluorescence in the intestines of Daphnia Magna when the particle size was more than
40 µm, indicating that MPs were not easily ingested by Daphnia Magna when the particle
size was too large.
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3.2.2. Changes in the Number of Survivors

According to Figure 8, one or two Daphnia Magna died when the particle size of PS-
MPs was over 0–40 µm and the concentration was higher than 0.6 mg/mL. Fluorescent
PS-MPs were observed in the dead Daphnia Magna, which proved that PS-MPs could be
ingested by Daphnia Magna and gathered in the intestine, causing intestinal obstruction [42].
Larger PS-MP aggregates would cause greater damage to the intestines of organisms [43].
Under high concentrations of PS-MPs, an accumulation of PS-MPs in the intestine and the
death of Daphnia Magna were observed, which may be because the accumulation of PS-MPs
and other substances caused intestinal obstruction of Daphnia Magna and the destruction of
intestinal microvilli and epithelial cells, leading to the death of Daphnia Magna [42].
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Figure 8. The survival number of Daphnia Magna after the addition of different concentrations of
polystyrene with a particle size of 0–40 µm.

3.2.3. Changes in the Egg-Laying Amount

The effect of PS-MPs on the spawning rate of Daphnia Magna was researched. We
maintained the same concentration; the spawning rate of the 0–40 µm group was lower
than other groups (see Figure 9), and the spawning time was delayed, meaning that the
oviposition of Daphnia Magna was inhibited. However, in groups larger than 40 µm, the
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spawning rate was not affected (see Figure 10). At the same particle size, the higher the
concentration, the stronger the inhibitory effect on spawning.
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Figure 9. The egg-laying status of Daphnia Magna with different concentrations of fluorescent
polystyrene particles at a particle size of 0–40 µm. The number of eggs laid by Daphnia Magna was
counted visually. The error bar represents the standard deviation of measurement for egg-laying
amount in three separate sample runs.
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The reasons for the decreased spawning rate of Daphnia Magna were diverse, which
may include the effects of PS-MPs on the nervous system and behavior of Daphnia Magna,
leading to a decrease in spawning rate, and continuous exposure to MPs over generations
could cause population extinction [31]. PS-MPs may influence the Daphnia Magna in the
content of acetyl cholinesterase (Acetylcholinesterase, AchE) to produce neurotoxicity.
AchE is one of the most important enzymes in invertebrates [44,45]. Exposure of Daphnia
Magna to a PS environment can inhibit the activity of AchE, causing oxidative stress and
nervous system disorder [44].

In addition, changes in the behavior of Daphnia Magna may also be responsible for
the decrease in the spawning rate. PS-NPs can break the blood–brain barrier of aquatic
organisms [46] and cause neuritis [47]. After crucian carp was exposed to 100 mg/L PS-NPs
for 64 days, it was found that the crucian carp brain mass decreased, behavior changed and
cerebral gyri enlarged, which proved that PS-MPs produced significant neurotoxicity in the
crucian carp [25]. Although MPs did not block the absorption of nutrients from fish, they
can break down the innate immune system, damage cells, weaken the barrier function of
the gut, lead to more harmful substances and pathogens entering the body [33] and cause
intestinal microbial flora imbalance and inflammatory reaction [48,49]. NPs could cause
oxidative stress, destroy the antioxidant system and inhibit AchE activity after entering
the zebrafish brain [50]. Brain histology showed inflammatory cell infiltration, neuronal
degeneration and necrosis and cytoplasmic vacuoles. Abnormal zebrafish behavior, such
as seizures, was also observed in the large MP group [51,52]. The effects of PS-MPs on the
spawning rate of Daphnia Magna suggested that the high concentration and long-term effect
of MPs on the population of Daphnia Magna cannot be ignored.

4. Conclusions

In conclusion, the toxicity of PS-MPs on autotrophs and heterotrophic organisms in
fresh water was illustrated from the individual level to the population level in this research.
In the test group, the chlorophyll content of Nostocaceae, was significantly reduced, and
the density was gradually decreased or even dead when PS-MPs were more than 0.08 g in
weight. The dry weight and fresh weight of Nostocaceae were close to the levels before the
exposure experiment, and the growth of Nostocaceae was greatly inhibited at the same time.
Fluorescent PS-MPs were observed in the intestine of Daphnia Magna, and with an increase
in the PS-MP concentration, some of the Daphnia Magna died. The test group Daphnia Magna
had adverse reactions, such as a decreased oviposition rate and prolonged spawning time,
under the high PS-MP concentration. In a word, considering these changes, it is necessary
to further study the molecular mechanisms by which polystyrene microplastics affect the
algal chlorophyll content and the resulting neurotoxicity toward Daphnia Magna, to provide
a theoretical reference for further exploring the threat of microplastics to other animals.
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