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Abstract: South Korea’s National Institute of Environmental Research (NIER) operates an algae alert
system to monitor water quality at public water supply source sites. Accurate prediction of dominant
harmful cyanobacterial genera, such as Aphanizomenon, Anabaena, Oscillatoria, and Microcystis, is
crucial for managing water source contamination risks. This study utilized data collected between
January 2017 and December 2022 from Juam Lake and Tamjin Lake, which are representative water
supply source sites at the Yeongsan River and Seomjin River basins. We performed an exploratory
data analysis on the monitored water quality parameters to understand overall fluctuations. Using
data from 2017 to 2021 as training data and 2022 data as test data, we compared the dominant
algal classification accuracy of 11 statistical machine learning algorithms. The results indicated that
the optimal algorithm varied depending on the survey site and evaluation criteria, highlighting
the unique environmental characteristics of each site. By predicting dominant algae in advance,
stakeholders can better prepare for water source contamination accidents. Our findings demonstrate
the applicability of machine learning algorithms as efficient tools for managing water quality in water
supply source systems using monitoring data.

Keywords: water quality; Yeongsan River; Seomjin River; correlation analysis; self-organizing map;
statistical machine learning algorithm; classification

1. Introduction

In South Korea, sites crucial for providing potable water to local residents are desig-
nated and managed as water protection zones. The importance of properly managing
these water sources was underscored by the extreme drought in the Honam region
of South Korea in 2022. To safeguard the water quality of these sources, the Korean
government established an algae alert system in 1998. This system minimizes toxic
effects caused by large numbers of harmful cyanobacteria by issuing alerts based on
harmful cyanobacterial cell counts: Caution (at least 1000 cells mL−1 for 2 consecutive
counts), Warning (at least 10,000 cells mL−1 for 2 consecutive counts), Outbreak (at least
1,000,000 cells mL−1 for 2 consecutive counts), and Release (number of cyanobacterial
cells below the alert threshold for 2 consecutive counts) [1–3]. Specifically, four represen-
tative genera of cyanobacteria, Aphanizomenon, Anabaena, Oscillatoria, and Microcystis,
release harmful toxins causing acute liver disease in humans [4] and threatening the
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stability of aquatic ecosystems [5]. Researchers have explored various methods to reduce
the abundance of these harmful cyanobacteria, including physical methods, such as
algal blocking mats (ABM); chemical methods, such as plant–mineral composite (PMC)
coagulants; and biological methods, such as using Unio douglasiae [6–8]. However, such
methods are predominantly used reactively rather than proactively, i.e., they are used
when water quality is declining or has already declined.

To predict future changes in water quality and, thus, enable more proactive manage-
ment of water sources, recent studies have explored how to predict changes in specific
water quality parameters, with particular focus on statistical machine learning tech-
niques. Such techniques are being investigated because they are capable of processing
large amounts of water quality-related data and can be used to compare the usefulness
of different water quality parameters. In particular, multiple studies have focused on
predicting values of a water quality parameter, chlorophyll-a (Chla). For instance, Kim,
H. G. (2017) assessed the suitability of an artificial neural network technique for pre-
dicting Chla concentration at a midstream location in South Korea’s Nakdong River [9].
Moreover, Lee et al. (2020) investigated the ability of four statistical machine learning
algorithms to predict Chla concentrations [10]. Similarly, Bui et al. (2020) used 16 novel
hybrid machine learning algorithms and various water quality parameters to predict
changes in the Water Quality Index (WQI) [11]. However, this study was limited in
its ability to thoroughly compare the performance of the 16 algorithms. In particular,
this study did not apply the latest algorithms, such as AdaBoost or Gradient boosting.
The primary difference between these previous studies and the current study is that
the former studies focused on accurately predicting the measured values of the water
quality parameter Chla (a continuous variable). In contrast, this study aims to accurately
classify dominant algae (a categorical variable). Algal growth is influenced by many
factors; the most important of which is the availability of nutrients, such as nitrogen
(N) and phosphorus (P), and quality parameters, such as water temperature. However,
hydraulic/hydrological factors, such as water level and water storage capacity, also play
a role, necessitating the consideration of all factors [12].

Therefore, considering the diverse variables related to water quality and hydraulic/
hydrological factors, accurately predicting the dominant algae could enable authorities
to better prepare for and respond to algal water pollution incidents. For this study, we
utilized the water quality monitoring network data, algae alert system data, and hy-
draulic/hydrological data collected from Juam Lake and Tamjin Lake. These representative
water supply sources in the Yeongsan River and Seomjin River systems had measurements
taken at seven-day intervals from January 2017 to December 2022 through the National
Institute Environmental Research (NIER) Water Environment Information System. We
compared and analyzed various statistical machine learning algorithms to determine their
accuracy in classifying the dominant algae. By developing and implementing a predictive
method for dominant algal occurrences, we aim to provide a more efficient approach to
water quality management.

2. Materials and Methods

The methods for this study consisted of three main stages, namely data collection,
exploratory data analysis, and a comparison of the classification performance of 11 selected
algorithms. A flowchart of these key steps for the methodology is shown in Figure 1.

2.1. Study Area

This study focused on Juam Lake and Tamjin Lake, two representative water supply
sources in the Yeongsan River and Seomjin River systems in South Korea. The NIER
Yeongsan River Environment Research Laboratory collects weekly samples to monitor
water quality and respond to the algae alert system from the dam front (J1, 127◦14′26.74′′ E/
35◦03′23.78′′ N) and Shinpyeong Bridge (J2, 127◦13′59.11′′ E/35◦00′50.37′′ N) at Juam Lake,
and the dam front (T1, 126◦52′52.01′′ E/34◦45′07.09′′ N) and Yuchi stream confluence (T2,
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126◦52′11.82′′ E/34◦46′02.99′′ N) at Tamjin Lake. Additionally, the Korea Water Resources
Corporation conducts daily measurements of hydraulic/hydrological variables, such as
water storage capacity.
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Figure 1. Methodological flowchart used in this study.

Juam Lake is an artificial lake formed by the freshwater held back by Juam Dam, which
has a height of 58 m and a length of 330 m. It is located in Daegwang-ri, Juam-myeon,
Suncheon-si, Jeollanam-do, and has a total basin area of 1010 km2 and a total water storage
capacity of 457 × 106 tons. Juam Dam supplies about 640 × 103 tons of potable water to the
western part of Jeollanam-do, including Gwangju, Naju, Mokpo, and Hwasun [13]. Tamjin
Lake is an artificial lake created by the construction of Jangheung Dam, which has a height
of 53 m and a length of 403 m. It has a total basin area of 193 km2 and a total water storage
capacity of 191 × 106 tons. It is located in Yuchi-myeon, Jangheung-gun, Jeollanam-do, and
supplies 73 × 106 tons of potable water to 9 cities in Jeollanam-do [14]. Figure 2 shows the
sampling sites at Juam Lake and Tamjin Lake.
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Figure 2. Sampling sites at Juam Lake and Tamjin Lake.

2.2. Data Collection

To conduct a comprehensive analysis, we collected and organized hydraulic/hydrolo-
gical data, algae alert system data, and water quality monitoring network data from the
survey sites. These data were measured at seven-day intervals from January 2017 to
December 2022 and were obtained through the NIER Water Environment Information
System. The number of observations for each sampling site was as follows: in Juam
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Lake, 307 observations at both the dam front (J1) and Shinpyeong Bridge (J2) sites, and in
Tamjin Lake, 304 observations at both the dam front (T1) and Yuchi Stream Confluence (T2)
sites. Overall, this study comprised a total of 1222 observations. For comparison of the
performance of the statistical machine learning algorithms, the training data consisted of
the measurements from 2017 to 2021 at each survey site, while the test data consisted of the
remaining measurements from 2022. For the J1 site and J2 site for Juam Lake, the number
of observations included in the training data and test data was 257 and 50, respectively. For
the T1 site and T2 site for Tamjin Lake, the number of observations included in the training
data and test data was 255 and 49, respectively. Table 1 shows the data variables used in
this study.

Table 1. Data variables used in this study.

Response Variable (Categorical) Explanatory Variables (Continuous)
Dominant Algae

(Based on Total Cell Count) Water Quality Hydraulic/Hydrological

Cyanophytes
Diatoms

Chlorophytes
Others

Biological Oxygen Demand (BOD), mg L−1

Chemical Oxygen Demand (COD), mg L−1

Total Nitrogen (TN), mg L−1

Total Phosphorus (TP), mg L−1

Total Organic Carbon (TOC), mg L−1

Suspended Solids (SS), mg L−1

Electrical Conductivity (EC), µS L−1

pH
Dissolved Oxygen (DO), mg L−1

Temperature, ◦C
Turbidity, NTU
Transparency, m

Chlorophyll a (Chla), mg m−3

Low Water Level, cm
Inflow Rate (Inflow), cms

Discharge Rate (Discharge), cms
Water Storage Capacity
(Reservoir), 10,000 m3

Of the variables listed in Table 1, biological oxygen demand (BOD), chemical oxygen
demand (COD), total nitrogen (TN), total phosphorous (TP), total organic carbon (TOC),
suspended solids (SS), and electrical conductivity (EC) were collected from the water
quality monitoring network data, while pH, dissolved oxygen (DO), temperature, turbidity,
transparency, Chla, and dominant algae were obtained from the algae alert system data.
The remaining variables, including low water level, inflow, discharge, and reservoir, were
collected from the National Water Resources Management Information System (http://
www.wamis.go.kr/ (accessed on 5 February 2023)). The genera of algae that were found
from the data collection at the sampling sites are presented in Table 2. Figure 3 shows
line graphs of the monthly mean number of algal cells sampled during the survey period,
categorized according to the survey site and algal genus. Based on the results in Table 2
and Figure 3, during the survey period, chlorophytes or diatoms tended to dominate in
spring, cyanophytes in early summer and summer, and chlorophytes along with diatoms in
autumn and early winter [15]. For clarity, in South Korea, the period from 25 June to 19 July
is considered early summer, and the period from 20 July to 7 September is considered
summer. All data analyses in this study were performed using the statistical software R,
version 4.2.1.

http://www.wamis.go.kr/
http://www.wamis.go.kr/
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Table 2. Genera of algae that were identified in the water samples collected from the sampling sites.

Cyanophytes
Diatoms Chlorophytes Others

Normal Harmful

Aphanocapsa
Chroococcus

Merismopedia
Phormidium

Pseudanabaena
Worinochinia

Anabaena
Aphanizomenon

Microcystis
Oscillatoria

Acanthoceras
Achnanthes
Asterionella

Attheya
Aulacoseira
Coccoineis
Cyclotella
Cymbella
Fragilaria

Gomphonema
Melosira
Navicula
Nitzschia

Rhizosolenia
Stephanodiscus

Surirella
Synedra

Actinastrum
Ankistrodesmus

Ankyra
Chlamydomonas

Chlorella
Chodatella

Closteriopsis
Closterium
Coelastrum

Coenochloris
Cosmarium
Crucigenia

Dictyosphaerium
Dimorphococcus

Elakatothrix
Euastrum
Eudorina
Eunotia

Gloeocystis
Golenkinia

Gonium
Kirchnerionella
Micractinium

Monoraphidium
Mougeotia

Nephrocystium
Oocystis

Pandorina
Pectodictyon
Pediastrum

Scenedesmus
Schroederia
Selenastrum
Sphaerocystis
Spondylosium
Staurastrum
Tetraedron
Tetrastrum
Treubaria

Ceratium
Cryptomonas

Dinobryon
Euglena

Kephyrion
Mallomonas
Peridinium

Phacus
Strombomonas
Trachelomonas

2.3. Data Analysis Methods

This section describes the data analysis methods employed in this study, starting
with exploratory data analysis. This includes correlation analysis and pattern analysis
using a self-organizing map (SOM) to examine the overall distribution of water quality
parameters and the hydraulic/hydrological variables included in the data. We also
briefly explain the principles of the 11 statistical machine learning algorithms, which we
compared against each other to assess their relative predictive power in classifying the
dominant algae.
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2.3.1. Exploratory Data Analysis

Before analyzing the data, an exploratory data analysis was performed to investigate
the overall characteristics of the variables in the data, including descriptive statistics,
such as mean or variance, and distribution [16]. While no specific analytical method or
process exists, researchers may prefer different methods depending on their objectives.
Generally, the first step is to determine whether the variables included in the data are
continuous or categorical. The mean, standard deviation, density, and other distributional
characteristics were calculated for continuous variables. For categorical variables, the
number of categories and the number of observations for each category were examined.
In this study, we employed correlation analysis to investigate the relationship between
water quality parameters and hydraulic/hydrological parameters, and we applied pattern
analysis using an SOM to visually confirm the results.
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1. Correlation analysis

Correlation is a widely used statistical analysis method for investigating the relation-
ships between continuous variables in a dataset. For this purpose, the Pearson correlation
coefficient was calculated as shown in Equation (1), and a significance test was conducted
on the resultant coefficient. Generally, the validity of the analytical results can be con-
firmed only when normality is assumed to be satisfied through a normality test, such as
the Shapiro–Wilk (SW) test [17]. However, this method is limited because it can only be
applied when variables have the properties of random variables that satisfy independency.
Since all measurement variables in this study are time series data measured over a given
time period rather than random variables that satisfy independence, the Jarque–Bera (JB)
test method was deemed more appropriate [18].

rxy =
∑n

i=1(xi −
−
x)
(

yi −
−
y
)

√
∑n

i=1 (xi −
−
x)

2
√

∑n
i=1 (yi −

−
y)

2
(1)

However, environment-related measurement variables typically do not satisfy normal-
ity and instead fluctuate considerably. Consequently, the analytical results lose reliability if
conducted using a Pearson correlation coefficient for data with such variables. Therefore, we
performed correlation analysis using the Spearman correlation coefficient, a non-parametric
method that analyzes correlation based on ranks, as expressed in Equation (2):

rs = 1− 6 ∑n
i=1 di

2

n(n2 − 1)
, di = rank(xi)− rank(yi) (2)

2. Pattern analysis using SOM

An SOM is an artificial neural network technique that simultaneously performs di-
mension reduction and clustering [19]. With this technique, numerous nodes in high-
dimensional data are clustered through competition. Based on the winning node that
emerges from this competition, the learning results that preserve similarity as much as
possible in the reduced dimensions are obtained. This principle is illustrated in Figure 4.
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This process repeats the algorithm shown in Equation (3) until convergence, and the
jth lattice vector at time t is updated:

wj
t+1 = wj

t + ηtλx
j,t(x−wj

t) (3)
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In the above Equation (3), η is a learning rate parameter that reduces the learning rate
to prevent overfitting, and λ is a parameter that makes the neighborhood size larger for the
winning node and smaller for the distant nodes.

Through SOMs, Jung et al. (2020) performed a pattern analysis based on the water
quality parameters measured at 28 sampling sites in the Nakdong River system in South
Korea [20]. To determine which branches should be prioritized for management, they
used a grading process through cluster analysis based on the characteristics of each site.
From these findings, they were able to propose policy recommendations. In this study, we
performed a pattern analysis on 17 measurement variables using this method and identified
the correlations between them.

2.3.2. Statistical Machine Learning Algorithms for Dominant Algal Classification

We compared the performance of 11 statistical machine learning algorithms for classi-
fying the dominant algae at each survey site. Detailed explanations of the principles of the
applied algorithms can be found in the literature [21,22].

1. Three tree-based methods

A decision tree (DT) is a method for creating a decision model with a tree-like structure.
The impurity of nodes is reviewed to select the optimal separation criteria for pruning.
Mean squared error, calculated using Equation (4), is used for regression, and the Gini
coefficient, calculated using Equation (5), or the entropy coefficient, calculated using
Equation (6), is used for classification. Compared to other algorithms, decision trees are
visually simple and relatively easy to interpret [23].

MSE(t) =
1
nt

nt

∑
i=1

[yi(t)− yt]
2 (4)

Gini(t) = 1−
J

∑
j=1

pj
2(t) (5)

Entropy(t) = −
J

∑
j=1

pj(t) log2 pj(t) (6)

In contrast to the decision tree method, the bagging (Bag) method involves sam-
pling with replacement. This allows observations extracted from the analysis data to
be re-extracted in multiple samples (Lb, b = 1, 2, . . . , B) for analysis. This analysis
first creates multiple decision tree models (ϕ(x, Lb), b = 1, 2, . . . , B) and then averages

(ϕB(x) = 1
B

B
∑

b=1
ϕ(x, Lb)) the prediction results obtained through this, or performs multiple

voting (ϕB(x) = Mode ϕ(x, Lb)) based on the classification results. “Mode” refers to the
value with the highest frequency. Since the bagging technique uses survey data with the
replacement method, it greatly reduces the variance of the created model compared to that
of the decision tree model which is created once [24,25]. Figure 5 illustrates the principle of
the bagging method.

Thirdly, the random forest (RF) method was proposed to address the shortcomings of
bagging, such as a correlation between multiple decision tree models made by multiple
samples. Similar to bagging, RF involves extracting multiple samples with replacement
from the training data and fitting multiple decision tree models through them. However,
in random forest, only a subset of the variables is randomly selected and used for each
sample. This results in a better prediction or classification performance compared to
bagging. Moreover, the types of variables selected for each sample differ, reducing the
erroneous correlation between each sample that can occur with bagging [26].



Water 2023, 15, 1738 9 of 29

Water 2023, 15, x FOR PEER REVIEW 9 of 31 
 

 

bagging. Moreover, the types of variables selected for each sample differ, reducing the 

erroneous correlation between each sample that can occur with bagging [26]. 

 

Figure 5. Schematic diagram of the bagging method. 

2. AdaBoost (Ada) 

AdaBoost is a boosting algorithm that creates a strong learner by taking a weighted 

linear combination of multiple weak learners, as shown in Equation (7). By correcting or 

supplementing incorrectly predicted or classified instances from previous steps, it can 

yield more accurate results than possible through the three tree-based methods:  

H(x) = w1h1(x) + w2h2(x) + ⋯ + wThT(x) = ∑ wt
T
t=1 ht(x)   (7) 

where H(x)  is the final strong learner obtained, ht(x),  t = 1,2, . . . , T  are the T  weak 

learners, and wt,  t = 1,2, . . . , T are the weights of the weak learners. Figure 6 illustrates 

the principle of AdaBoost. A more detailed explanation can be found in the literature [27]. 

 

Figure 6. Schematic diagram of the AdaBoost method. 

3. Two gradient boosting methods 

Gradient boosting (GB) involves iteratively using a gradient to create a model, and 

then using the residual from this to create another model. This process reduces the portion 

of variation that the previous model could not explain, thereby reducing bias. If a given 

training dataset is (xi, yi),  i = 1,2, . . . , n  and the previously created model is Gold , then 

Figure 5. Schematic diagram of the bagging method.

2. AdaBoost (Ada)

AdaBoost is a boosting algorithm that creates a strong learner by taking a weighted
linear combination of multiple weak learners, as shown in Equation (7). By correcting or
supplementing incorrectly predicted or classified instances from previous steps, it can yield
more accurate results than possible through the three tree-based methods:

H(x) = w1h1(x) + w2h2(x) + · · ·+ wThT(x) = ∑T
t=1 wtht(x) (7)

where H(x) is the final strong learner obtained, ht(x), t = 1, 2, . . . , T are the T weak learners,
and wt, t = 1, 2, . . . , T are the weights of the weak learners. Figure 6 illustrates the principle
of AdaBoost. A more detailed explanation can be found in the literature [27].
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3. Two gradient boosting methods

Gradient boosting (GB) involves iteratively using a gradient to create a model, and
then using the residual from this to create another model. This process reduces the portion
of variation that the previous model could not explain, thereby reducing bias. If a given
training dataset is (xi, yi), i = 1, 2, . . . , n and the previously created model is Gold, then
gradient boosting gradually finds the function r that models the residual, which is the
difference between the actual value and the predicted value, as shown in Equation (8):
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yi = Gold(xi) + r(xi), i = 1, 2, . . . , n (8)

After the function r is found in this process, the new model is updated as shown in
Equation (9):

Gupdate(x) = Gold(x) + λr(x), 0 < λ < 1 (9)

where parameter λ is the learning rate. This process reduces the risk of overfitting. Figure 7
illustrates the principle of gradient boosting. A more detailed explanation can be found in
the study by Natekin et al. [28].
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Extreme gradient boosting (XGB) is an improved method that addresses the slow
execution time and overfitting risks of gradient boosting by supporting parallel learning. It
has a self-regulating function that makes it more stable and durable. Traditionally, after
randomly dividing the training data into n parts, n− 1 data parts are used as new training
data and the remaining 1 data part are used as new test data to evaluate the performance
of the algorithm. The cross-validation test performs this process on all n parts of the data,
as shown in Figure 8. A detailed explanation can be found in a paper by Chen et al. [29].
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4. Three discriminant analysis methods

Linear discriminant analysis (LDA) is a classification method using R. A. Fisher’s
linear decision boundary. The given data are projected onto a specific one-dimensional
axis, followed by a process that finds the optimal straight line that properly distinguishes
the categories. This process makes it possible to find the linear decision boundary, as
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shown in Figure 9. A more detailed explanation can be found in an article by Izenman,
A. J. [30].
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Flexible discriminant analysis (FDA) is a method that addresses the limitations of
linear discriminant analysis. Instead of relying on linear decision boundaries, FDA uses
splines to create a non-linear decision boundary for classification. This allows non-linear
relationships to be captured and improves the overall classification accuracy [31].

Finally, when the data contain many explanatory variables, regularized discriminant
analysis (RDA) improves the estimation of the covariance matrix through regularization
(e.g., shrinkage) to create a decision boundary with better classification performance. For
this, the optimal parameter α is estimated based on the training data; if α = 1, then linear
discriminant analysis is performed, and if α = 0, then quadratic discriminant analysis is
performed. Here, 0 ≤ α ≤ 1, which serves as the weight for the linear decision boundary
and quadratic curved decision boundary [32].

5. Support Vector Machine (SVM)

SVM is a classification algorithm that maximizes the margin, i.e., the distance between
the decision boundary and the support vectors. To move the original data in an input
space with a complex non-linear distribution to a high-dimensional feature space, SVM
uses the kernel method. This technique applies a mapping function without setting a
transformation function beforehand. The kernel method converts the data into a linear
distribution and makes it easier to find the decision boundary [33]. Figure 10 illustrates this
concept. This study used the radial basis kernel, shown in Equation (10), which is known to
be the most flexible kernel type for all data distributions. Figure 11 illustrates the principle
of the support vector machine, and a detailed explanation can be found in the study by
Pisner et al. [34].

k(u, v) = 〈ϕ(u), ϕ(v)〉 = exp
[
−γ || u− v ||2

]
(10)
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6. Deep Neural Network (DNN)

A deep neural network is a model in the form of a neural network created by con-
structing multiple hidden layers between the input and output layers. The model is trained
through a backpropagation algorithm that updates the weights through stochastic gradient
descent, as shown in Equation (11).

wij(t + 1) = wij(t) + η
∂C

∂wij(t)
(11)

where η is the parameter that controls the learning rate, and C is the cost function. Typically,
before executing a deep neural network, the appropriate activation function and cost
function are determined according to the analysis conditions. In multiclass classification,
the activation function is set to a softmax function, as shown in Equation (12), and the
cost function is set to a cross-entropy function, as shown in Equation (13). A detailed
explanation of deep neural networks can be found in a paper by Montavon et al. [35].

pj =
exp

(
xj
)

∑K
k=1 exp(xk)

(12)

C = −∑
j

pj log
(

pj

)
(13)

2.3.3. Evaluation Indexes

To evaluate the classification accuracy of the statistical machine learning algorithms,
three representative criteria were used: accuracy, sensitivity, and specificity [36]. These
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criteria were calculated using a confusion matrix that organized the actual correct answers
and those answers predicted from the classification, as shown in Table 3.

Table 3. Confusion matrix of dominant algal classification.

Predicted

Cyanophytes Diatoms Chlorophytes Others

Actual

Cyanophytes n1 n2 n3 n4
Diatom n5 n6 n7 n8

Chlorophytes n9 n10 n11 n12
Others n13 n14 n15 n16

“Accuracy” simply refers to the ratio of observations that match the correct answer
through classification among all observations and can be calculated as shown in Equa-
tion (14) using the table above.

acc =
n1 + n6 + n11 + n16

∑16
i=1 ni

(14)

The advantages of accuracy are that it is easy to calculate and can be understood
intuitively. However, as it simply takes the arithmetic average, the imbalance between
each class can be severe when using imbalanced data. To compensate for this shortcoming,
we also calculated sensitivity and specificity for the four algae categories (cyanophytes,
diatoms, chlorophytes, and others). Specifically, we calculated weighted sensitivity and
weighted specificity by taking the weighted average of the data, and we used these two
metrics as additional criteria to evaluate the algorithms. Sensitivity and specificity can be
understood through the binary confusion matrix shown in Table 4.

Table 4. Binary confusion matrix.

Predicted

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Sensitivity is the ratio of observations properly classified as positive compared to those
that are actually positive, whilst specificity is the ratio of observations properly classified
as negative compared to those that are actually negative [37]. Both ratios range from 0 to
1, with values closer to 1 indicating better algorithm performance. This is expressed in
Equation (15):

sen =
TP

TP + FN
, spe =

TN
TN + FP

(15)

For multiclass classification with at least three classes of categorical variables, as in
this study, sensitivity and specificity are calculated using the binary confusion matrix
for each class. For weighted sensitivity and weighted specificity, the weighted average
of each class is used [38]. Hence, to create a binary confusion matrix for the diatom
category, we can set diatoms to “positive” and the remaining categories (cyanophytes,
chlorophytes, and others) to “negative”. The weighted sensitivity and weighted specificity
are expressed in Equation (16). i, pi, seni, and spei are the serial number for each category,
the probability of being included in each category, and the sensitivity and specificity for
each category, respectively.

senw = ∑4
i=1 pi × seni, spew = ∑4

i=1 pi × spei (16)
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Moreover, there is a trade-off relationship between sensitivity and specificity, where
one decreases if the other increases [39]. Therefore, we additionally defined G mean, which
can serve as a suitable supplementary point for these two metrics. This was obtained by
taking the square root of the product of weighted sensitivity and weighted specificity as in
Equation (17). We applied this form because the measurement data are imbalanced toward
the diatom category.

Gm =
√

senw × spew (17)

3. Results
3.1. Data Analysis
3.1.1. Exploratory Data Analysis for Monitoring Data

The descriptive statistics of the variables for each sampling site are presented in
Table 5. This shows an overview of the distributions of measurement variables for each
sampling site [40]. We also calculated the JB test p-value for each variable to determine
the normality test results. To identify the overall distribution of each explanatory variable,
seven descriptive statistics were calculated: mean, standard deviation, median, minimum,
maximum, skewness, and kurtosis. Skewness has a positive value when the tail is long
toward the right and a negative value when the tail is long toward the left. A kurtosis
value > 0 indicates that the center of the distribution is sharp, and a value < 0 suggests that
the center of the distribution is smooth [41]. According to Table 5, none of the measurement
variables show a value of zero for skewness or kurtosis at any of the sampling sites.

Furthermore, except for pH at all sampling sites, the JB test p-value is significantly
lower than the significance level of 0.05. Hence, since normality is often violated, the
Spearman correlation coefficient needed to be used instead of the Pearson correlation
coefficient in the correlation analysis [42].

To better visualize the results, Figure 12 presents the boxplots of the parameters at each
survey site. In general, the Tamjin Lake sampling sites have higher water quality parameter
values and hydraulic/hydrological data values than those in Tamjin Lake. However, the
turbidity and transparency values are higher at the Juam Lake sampling sites than those
at Tamjin Lake, while DO and temperature show similar trends for the sampling sites of
both lakes.

Table 6 presents a contingency table of the variable “Dominant Algae”, a categorical
variable. The table indicates that diatoms are dominant at all sampling sites during the
monitoring period, followed by chlorophytes, cyanophytes, and other algae.
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Table 5. Descriptive statistics of the water quality and hydraulic/hydrological parameters at each survey site.

Survey
Site Statistics BOD

(mg L−1)
COD

(mg L−1)
TN

(mg L−1)
TP

(mg L−1)
TOC

(mg L−1)
SS

(mg L−1)
EC

(µS cm−1) pH DO
(mg L−1)

Temperature
(◦C)

Turbidity
(NTU)

Transparency
(m)

Chla
(mg m−3)

Low Water
Level
(cm)

Inflow
(cms)

Discharge
(cms)

Reservoir
(10,000 m3)

J1

mean 0.9500 3.3000 0.6800 0.0100 2.3400 1.8000 81.8000 7.2600 8.6200 14.1600 2.3200 3.1700 3.3300 7260.4900 3.6100 4.1200 9945.4800
sd 0.3800 0.4300 0.1300 0.0100 0.4100 1.0400 8.8200 0.4300 2.2200 5.6300 2.0100 1.0000 2.6900 620.7500 11.3300 7.7000 3298.5100

median 0.9000 3.3000 0.6600 0.0100 2.3000 1.5000 80.0000 7.2000 8.5000 14.7000 1.7000 3.2000 2.7000 7238.0000 0.8000 2.7000 9968.0000
min 0.4000 2.4000 0.4400 0.0000 1.4000 0.5000 62.0000 6.1000 4.6000 2.1000 0.1000 0.7000 0.3000 6167.0000 0.0000 1.7000 3552.0000
max 2.6000 4.7000 1.0800 0.0500 3.5000 10.6000 101.0000 8.8000 12.9000 24.6000 15.4000 7.2000 25.2000 9638.6200 162.6300 93.2100 16947.0000

skewness 1.3100 0.5900 0.3800 1.1300 0.8600 3.1000 0.4500 0.1200 0.0700 −0.0900 3.0800 0.2700 3.6000 1.4300 9.9200 8.2600 0.0500
kurtosis 2.4400 0.1900 −0.4500 2.4900 0.4700 17.9200 −0.7600 0.0300 −1.3300 −1.3000 14.7300 0.4000 19.1600 4.0500 127.3000 78.2200 −0.6800

JB test
p-value 0.0000 0.0001 0.0071 0.0000 0.0000 0.0000 0.0002 0.6839 0.0000 0.0000 0.0000 0.0517 0.0000 0.0000 0.0000 0.0000 0.0536

J2

mean 0.9500 3.3000 0.6800 0.0100 2.3400 1.8000 81.8000 7.3100 8.8000 14.8300 2.4300 3.1200 3.7200 7260.4900 3.6100 4.1200 9945.4800
sd 0.3800 0.4300 0.1300 0.0100 0.4100 1.0400 8.8200 0.4500 2.1700 6.0000 3.5800 0.9300 2.1600 620.7500 11.3300 7.7000 3298.5100

median 0.9000 3.3000 0.6600 0.0100 2.3000 1.5000 80.0000 7.3000 8.8000 15.2000 1.6000 3.0000 3.4000 7238.0000 0.8000 2.7000 9968.0000
min 0.4000 2.4000 0.4400 0.0000 1.4000 0.5000 62.0000 5.8000 4.1000 2.1000 0.1000 0.7000 0.2000 6167.0000 0.0000 1.7000 3552.0000
max 2.6000 4.7000 1.0800 0.0500 3.5000 10.6000 101.0000 8.6000 12.9000 25.9000 34.6000 6.0000 22.2000 9638.6200 162.6300 93.2100 16947.0000

skewness 1.3100 0.5900 0.3800 1.1300 0.8600 3.1000 0.4500 −0.1600 −0.0700 −0.0800 5.6000 0.3400 2.9700 1.4300 9.9200 8.2600 0.0500
kurtosis 2.4400 0.1900 −0.4500 2.4900 0.4700 17.9200 −0.7600 0.4200 −1.1100 −1.3100 38.0000 0.4300 18.6800 4.0500 127.3000 78.2200 −0.6800

JB test
p-value 0.0000 0.0001 0.0071 0.0000 0.0000 0.0000 0.0002 0.1423 0.0004 0.0000 0.0000 0.0137 0.0000 0.0000 0.0000 0.0000 0.0536

T1

mean 2.2700 5.4100 1.6300 0.1000 3.8700 10.6300 185.9900 7.2700 9.1700 13.8100 2.4200 2.6300 5.1600 9908.6600 15.0100 17.0300 23247.5400
sd 1.3600 1.5700 0.6600 0.0400 1.0000 11.0200 65.1200 0.4200 2.1900 5.4700 2.8400 0.7300 2.9300 724.5500 39.1100 37.2400 8015.6200

median 2.0000 5.0000 1.4700 0.0900 3.7000 8.4000 178.0000 7.3000 9.1000 14.5000 1.7000 2.6000 4.4000 10063.0000 3.7000 11.3800 23560.0000
min 0.5000 2.6000 0.6400 0.0300 1.9000 1.3000 68.0000 6.1000 4.8000 1.5000 0.1000 1.0000 0.4000 6805.0000 0.0000 1.9400 7105.0000
max 8.8000 13.0000 4.9400 0.2300 6.7000 93.2000 600.0000 8.6000 13.6000 24.8000 36.0000 7.0000 19.0000 10704.0000 310.6300 464.6000 37807.0000

skewness 2.0100 1.3200 1.7500 0.9100 0.4900 4.0800 1.5300 0.1700 0.0300 −0.1900 6.6500 1.0100 1.4100 −2.5200 4.5800 8.5400 −0.0800
kurtosis 5.4200 2.5300 4.6100 0.1400 −0.2500 20.9300 5.7900 −0.0500 −1.1300 −1.0800 66.1100 3.8700 2.8500 8.1000 23.3700 83.5000 −0.9600

JB test
p-value 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.4793 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029

T2

mean 2.2700 5.4100 1.6300 0.1000 3.8700 10.6300 185.9900 7.3900 8.8400 13.7200 2.4100 2.5600 4.8700 9908.6600 15.0100 17.0300 23247.5400
sd 1.3600 1.5700 0.6600 0.0400 1.0000 11.0200 65.1200 0.5900 2.3400 5.5100 2.2400 0.7300 3.0400 724.5500 39.1100 37.2400 8015.6200

median 2.0000 5.0000 1.4700 0.0900 3.7000 8.4000 178.0000 7.3000 8.7000 14.1500 1.8000 2.5000 4.1000 10063.0000 3.7000 11.3800 23560.0000
min 0.5000 2.6000 0.6400 0.0300 1.9000 1.3000 68.0000 5.6000 4.1000 1.7000 0.1000 1.0000 0.0000 6805.0000 0.0000 1.9400 7105.0000
max 8.8000 13.0000 4.9400 0.2300 6.7000 93.2000 600.0000 9.0000 13.2000 28.0000 20.7000 7.0000 17.6000 10704.0000 310.6300 464.6000 37807.0000

skewness 2.0100 1.3200 1.7500 0.9100 0.4900 4.0800 1.5300 −0.0100 0.0300 −0.0400 4.0500 1.0900 1.2600 −2.5200 4.5800 8.5400 −0.0800
kurtosis 5.4200 2.5300 4.6100 0.1400 −0.2500 20.9300 5.7900 0.0300 −1.1700 −0.9600 23.3800 4.2200 1.7600 8.1000 23.3700 83.5000 −0.9600

JB test
p-value 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.9832 0.0002 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029
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Table 6. Contingency table of the variable “Dominant Algae”.

Survey Site Cyanophytes Diatoms Chlorophytes Others

J1 23 215 52 17
J2 31 218 49 9
T1 14 250 36 4
T2 12 250 33 9

3.1.2. Correlation Analysis and SOM Pattern Analysis

In Section 3.1.1, we confirmed that the Spearman correlation coefficient, a non-parametric
measure of rank correlation, must be applied for the correlation analysis. Using this, we
performed a correlation analysis for each sampling site; the results of which are shown in
Figure 13. The figures for each sampling site show the calculated Spearman correlation
coefficients. According to the results of the correlation analysis, there are variations in the
results at each survey site; however, in general, the water quality parameters that are mutually
related (BOD, COD, TN, TP, etc.) show positive correlations, while the water quality and
hydraulic/hydrological variables show negative correlations. The pattern analysis of the
SOMs supports these results, as shown in Figures 14–17. This analysis helped identify the
overall movement of the measurement variables at each survey site during the survey period.
The water quality parameters that exhibit significant positive correlations in the correlation
analysis show similar patterns, while the water quality and hydraulic/hydrological variables
that exhibit significant negative correlations show opposite patterns. However, it should be
noted that this study used time series data, which are measured over a certain period and
are not independent. As such, calculating the normality test p-value for each time-dependent
measurement variable and performing a correlation analysis and interpretation based on this
have limitations [43].
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3.2. Comparison of the Performance of the Statistical Machine Learning Algorithms

This section presents the results of the analysis of the dominant algal classification
accuracy using 11 statistical machine learning algorithms.
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3.2.1. Tree-Based Algorithm for Assessing Variable Importance

In this study, the classification performance of five tree-based algorithms, namely
random forest, bagging, AdaBoost, gradient boosting, and extreme gradient boosting,
was compared. Each algorithm computes the importance of each variable to determine
which explanatory variable has the most influence on the response variable [44]. Variable
importance increases as the reduction in the Gini coefficient or the sum of squared errors
increases. In extreme gradient boosting, variable importance is calculated using three
measurement criteria: gain, cover, and frequency.

Figure 18 presents the graphs of the error calculated when applying the random forest
algorithm based on the training data at each sampling site. The OOB (out-of-bag) error in the
legend refers to the error obtained by using the remaining data not included in the sampling
with replacement, which allows duplication, from the training data as validation data [45].
The other items in the legend indicate the probability of an incorrect answer calculated as
the error for each category when the dominant algae are classified as either cyanophytes,
diatoms, chlorophytes, or other algae. Figure 18 demonstrates that each error converges to a
specific value as the number of tree models used in random forest increases. The probability
of error is the lowest when probabilistically judging that the dominant algae are diatoms.
This confirms that the most frequent time points during the survey period were those when
diatoms dominated. Figure 19 presents the cross-validation tests conducted by extreme
gradient boosting, where the point indicating the smallest mlogloss error value is deemed the
best iteration. As illustrated in Figure 19, the mlogloss error value progressively decreases
with each iteration for the training data, but it increases after a certain point for the test data,
indicating overfitting [46]. Therefore, one of the advantages of extreme gradient boosting is
that it reduces the risk of overfitting through cross-validation.
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Using this process, the variable importance of each algorithm for the training data by
survey site was calculated, with the results shown in Tables 7 and 8. Based on the results,
the variable importance calculations vary depending on the survey site and algorithm.
Overall, temperature and DO are more important than other measurement variables in
determining and classifying the dominant algae at a specific point for each survey site. This
observation suggests a high correlation between water temperature and oxygen in terms of
the possibility of algal occurrence.

These results align with the findings of Woo et al. (2020), who reported that the
amount of harmful cyanobacteria occurring at nine water supply source sites in the main
stream of the Nakdong River in South Korea from 2012 to 2019 was highly correlated with
water temperature and dissolved oxygen [47]. However, at the Tamjin Lake–Yuchi River
confluence (T2) site, the variable importance of nutrient-related measurement variables,
such as BOD, TN, and Chla, is relatively high, surpassing that of DO. In turn, the variable
importance of EC is relatively high at the Tamjin Lake dam front (T1) site. This indicates
that nutrients, such as nitrogen and phosphorus, have a more significant influence on algal
growth at the Tamjin Lake site compared to the Juam Lake site.
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Table 7. Variable importance of explanatory variables for dominant algal classification (bagging, AdaBoost, gradient boosting, and random forest). The top three
measurement variable values, based on variable importance for each survey site and algorithm, are bolded. In instances where identical values are present, both
variables are bolded.

Algorithm Bagging AdaBoost Gradient Boosting Random Forest
Site J1 J2 T1 T2 J1 J2 T1 T2 J1 J2 T1 T2 J1 J2 T1 T2
BOD 1.5151 1.2076 1.4199 10.9415 5.3688 2.3051 3.2752 6.1182 4.4015 3.5559 3.6883 8.5063 5.9707 4.3431 3.6987 5.0601
COD 3.9329 0.6218 3.3253 0.9804 3.8681 4.3541 5.9501 6.1057 3.4951 2.4247 2.3878 3.2978 4.6970 3.5746 3.0373 2.7818
TN 7.6162 3.3504 4.7121 6.3081 7.1730 7.1124 4.8650 12.1125 6.8504 4.5037 3.9922 7.0974 6.9187 4.7123 5.0819 7.0660
TP 1.4593 0.9727 1.4096 1.7724 5.2335 5.1272 4.5811 5.5618 3.4535 2.7191 2.9967 3.0749 5.2055 4.1090 3.5175 3.0822

TOC 1.5957 1.0353 3.9916 2.2245 2.9938 3.6203 3.6343 5.8841 2.1803 2.9575 3.4477 4.5815 3.9918 4.1497 3.5106 3.6138
SS 1.7521 1.6342 2.6280 3.3955 6.5863 5.8286 7.2618 5.5634 4.9319 3.1961 5.3275 8.4605 6.3064 3.9993 3.9027 4.3123
EC 4.7823 3.7292 4.7572 2.3607 5.4583 4.9772 8.4684 6.4223 4.1840 3.5315 5.1276 4.0014 6.4564 4.5444 4.7248 3.4153
pH 4.7826 4.8354 0.6660 0.5151 4.7689 9.6268 3.5256 5.3030 5.3392 5.3432 1.4144 1.7538 5.1586 5.6326 2.6790 3.1063
DO 28.3646 3.9285 37.4578 1.2421 10.3830 7.9277 9.3204 3.2858 18.9131 11.9789 22.1672 3.7293 14.9578 12.9253 10.5199 4.7113

Temperature 26.6748 57.0166 4.5654 40.1099 8.7429 15.3805 11.5727 8.2058 15.4682 29.3555 8.6348 24.7510 14.2645 20.5988 6.3262 9.8519
Turbidity 1.3844 5.6681 1.8321 1.0291 5.9557 4.3917 7.1061 7.4450 3.7155 5.8834 3.8942 2.7514 5.3849 6.3450 3.1732 3.5382

Transparency 0.9296 0.8488 0.6438 6.6063 4.8024 3.5518 2.8340 3.3015 2.6789 1.4298 2.2568 3.0288 3.8831 3.3025 2.1322 2.5311
Chla 2.9024 2.9814 2.5859 10.6339 6.1437 6.5267 7.3452 11.5679 4.5390 5.3894 8.4450 8.2374 5.5247 4.8334 4.2982 5.5031

Low Water
Level 5.4858 8.8656 24.4891 6.2134 8.3114 8.8755 6.2390 4.1642 6.4153 7.5803 11.3711 5.7199 6.4287 7.0199 6.3847 4.3711
Inflow 2.6177 1.5479 1.4467 1.2481 6.6966 5.5075 8.0738 3.6056 6.0363 5.1891 5.8343 3.6946 5.3530 4.3713 4.1482 2.3601

Discharge 3.9374 1.7066 2.8512 4.3660 7.0177 4.7818 5.0124 5.2433 6.4306 2.5860 7.2105 6.5851 7.6860 5.9045 5.4156 4.0187
Reservoir 0.2672 0.0500 1.2183 0.0531 0.4960 0.1051 0.9349 0.1097 0.9672 2.3757 1.8039 0.7290 6.6168 6.8222 6.0186 4.5432
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Table 8. Variable importance of explanatory variables for dominant algal classification using extreme gradient boosting. The top three measurement variable values,
based on variable importance for each survey site and algorithm, are bolded. In instances where identical values are present, both variables are bolded.

Method Gain Cover Frequency

Site J1 J2 T1 T2 J1 J2 T1 T2 J1 J2 T1 T2

BOD 0.0437 0.0191 0.0168 0.0817 0.0409 0.0394 0.0100 0.0332 0.0501 0.0487 0.0365 0.0601
COD 0.0447 0.0168 0.0361 0.0549 0.0324 0.0096 0.0621 0.1455 0.0537 0.0254 0.0547 0.1148
TN 0.0623 0.0515 0.0527 0.0951 0.0569 0.0350 0.0502 0.1691 0.0590 0.0742 0.0833 0.1257
TP 0.0284 0.0217 0.0264 0.0380 0.0747 0.0108 0.0259 0.0222 0.0555 0.0318 0.0547 0.0437

TOC 0.0201 0.0199 0.0669 0.0731 0.0240 0.0188 0.0936 0.0384 0.0358 0.0424 0.0781 0.0738
SS 0.0460 0.0276 0.0190 0.0604 0.0625 0.0251 0.0198 0.1181 0.0537 0.0403 0.0469 0.0902
EC 0.0546 0.0592 0.0774 0.0411 0.0445 0.0328 0.1580 0.0173 0.0644 0.0657 0.1016 0.0574
pH 0.0613 0.0626 0.0333 0.0130 0.0857 0.1221 0.0202 0.0580 0.0698 0.0869 0.0443 0.0410
DO 0.2037 0.1009 0.2566 0.0059 0.1660 0.1083 0.2462 0.0034 0.1002 0.1102 0.1224 0.0164

Temperature 0.1870 0.3645 0.0880 0.2813 0.1396 0.1797 0.0584 0.2365 0.1091 0.0890 0.0599 0.1175
Turbidity 0.0416 0.0593 0.0236 0.0304 0.0210 0.0682 0.0328 0.0185 0.0519 0.0678 0.0469 0.0492

Transparency 0.0196 0.0125 0.0097 0.0341 0.0193 0.0465 0.0061 0.0168 0.0358 0.0318 0.0234 0.0301
Chla 0.0247 0.0586 0.0516 0.1026 0.0462 0.0809 0.0441 0.0550 0.0465 0.1017 0.0677 0.0984

Low Water
Level 0.0650 0.0693 0.1378 0.0090 0.0500 0.1382 0.0480 0.0093 0.0751 0.0742 0.0443 0.0164

Inflow 0.0304 0.0306 0.0602 0.0148 0.0460 0.0305 0.0569 0.0110 0.0608 0.0508 0.0833 0.0219
Discharge 0.0581 0.0258 0.0203 0.0644 0.0809 0.0541 0.0354 0.0478 0.0680 0.0593 0.0339 0.0437
Reservoir 0.0089 0.0000 0.0234 0.0000 0.0092 0.0000 0.0323 0.0000 0.0107 0.0000 0.0182 0.0000
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3.2.2. Comparison of Algorithms Based on Four Criteria

To compare the dominant algal classification performance of the 11 statistical machine
learning algorithms described in Section 2.3.2, we used the measurements at each survey
site from 2017 to 2021 as the training data and the remaining measurements from 2022 as
the test data. Each algorithm was trained using the training data, and the classification
performance was compared based on accuracy, weighted sensitivity, weighted specificity,
and G mean according to the test data. Table 9 presents the calculations of these four criteria
for each algorithm based on the classification results by survey site. In this table, for each
survey site, the criterion value for the algorithm that shows the best performance based on
each of the four criteria is highlighted in bold.

The results show that the optimal algorithm varies depending on the survey site
and evaluation criteria. Moreover, our findings indicate that algorithms with complex
structures and training processes do not always yield optimal performance, and even
simple algorithms can sometimes sufficiently analyze the given data. The data used in this
study are imbalanced, with diatoms being the dominant algae in most cases. As such, it is
most desirable to select the optimal algorithm based on the G mean, which appropriately
combines the harmonic average of weighted sensitivity and weighted specificity rather
than accuracy.

Accordingly, the best algorithms for classifying the dominant algae are as follows:
decision tree for the Juam Lake dam front (J1) site, random forest for the Juam Lake
Shinpyeong Bridge (J2) site, support vector machine for the Tamjin Lake dam front (T1) site,
and gradient boosting for the Tamjin Lake–Yuchi River confluence (T2) site. The fact that the
best algorithm differs for each survey site suggests that the environmental characteristics
of each survey site also vary. This is because the statistical and distributional characteristics
of the measured variables investigated for each survey site affect the operation of the
algorithm, such as the optimal parameter estimation. As a result, the algorithm that shows
the best performance for each survey site is different.
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Table 9. Result of dominant algal classification using 11 statistical machine learning algorithms (values in bold represent the criterion for which each algorithm
shows the best performance, at each of the four sites).

Site Criterion
Algorithm

DT Bag Ada GB RF XGB LDA FDA RDA SVM DNN

J1

Accuracy 0.7000 0.6200 0.6000 0.5400 0.6200 0.6200 0.4000 0.4000 0.4200 0.6600 0.5800
Weighted Sensitivity 0.7000 0.6200 0.6000 0.5400 0.6200 0.6200 0.4000 0.4000 0.4200 0.6600 0.5800
Weighted Specificity 0.6239 0.6431 0.6949 0.7010 0.6699 0.6948 0.8791 0.8791 0.9046 0.6257 0.4200

G mean 0.6609 0.6314 0.6462 0.6153 0.6445 0.6563 0.5930 0.5930 0.6164 0.6426 0.4936

J2

Accuracy 0.5800 0.5400 0.5400 0.5200 0.6600 0.5600 0.5800 0.5800 0.5400 0.6200 0.5400
Weighted Sensitivity 0.5800 0.5400 0.5400 0.5200 0.6600 0.5600 0.5800 0.5800 0.5400 0.6200 0.5400
Weighted Specificity 0.7620 0.7385 0.7046 0.7087 0.7179 0.8067 0.7131 0.7131 0.4600 0.6583 0.4600

G mean 0.6648 0.6315 0.6168 0.6071 0.6883 0.6721 0.6431 0.6431 0.4984 0.6389 0.4984

T1

Accuracy 0.7551 0.8163 0.8367 0.8776 0.9184 0.7959 0.5918 0.5918 0.8367 0.8980 0.8367
Weighted Sensitivity 0.7551 0.8164 0.8368 0.8775 0.9184 0.7960 0.5919 0.5919 0.8367 0.8980 0.8367
Weighted Specificity 0.8641 0.7709 0.7762 0.7843 0.6834 0.8698 0.8801 0.8801 0.1633 0.7823 0.1633

G mean 0.8078 0.7933 0.8059 0.8296 0.7922 0.8321 0.7218 0.7218 0.3696 0.8382 0.3696

T2

Accuracy 0.7551 0.7551 0.7551 0.7755 0.7551 0.7551 0.7143 0.7143 0.7551 0.7551 0.7551
Weighted Sensitivity 0.7552 0.7552 0.7552 0.7756 0.7552 0.7552 0.7143 0.7143 0.7552 0.7552 0.7552
Weighted Specificity 0.2448 0.2448 0.3043 0.3673 0.2448 0.3698 0.2439 0.2439 0.2448 0.2448 0.2448

G mean 0.4300 0.4300 0.4794 0.5337 0.4300 0.5285 0.4174 0.4174 0.4300 0.4300 0.4300
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4. Discussion

In this study, we analyzed the dominant algae from 2017 to 2022 at various sites
in Juam Lake and Tamjin Lake, which are representative water supply sources in the
Yeongsan River and Seomjin River systems in South Korea. We also briefly examined
the seasonal characteristics of the dominant algae. Additionally, water quality and hy-
draulic/hydrological parameters related to algal occurrence were collected based on water
quality monitoring network data, algae alert system data, and hydraulic/hydrological data
to construct the data needed for analysis. We then performed an exploratory data analysis,
including correlation analysis and pattern analysis of the SOM for each measurement
variable according to the four survey sites, to investigate the overall relationships between
the variables and their distributional characteristics. Based on four algorithm evaluation cri-
teria, we also examined the dominant algal classification accuracy of 11 statistical machine
learning algorithms for each survey site.

Through evaluating the algorithms, we found that the best one differs for each survey
site, indicating that the environmental characteristics of each survey site also differ. In
contrast to previous studies [48,49], which mainly used traditional multivariate statistical
analysis techniques, such as principal component analysis (PCA) or clustering analysis
(CA), to evaluate the environmental characteristics of a survey site, our study attempted
to evaluate the environmental characteristics of each survey site using the latest versions
of statistical machine learning algorithms. The main results of this study are as follows:
chlorophytes or diatoms tended to dominate in spring, cyanophytes in early summer and
summer, and chlorophytes and diatoms in autumn and early winter. These results are
based on the monthly average number of cells for each algal type measured during the
survey period from 2017 to 2022 at the Juam Lake and Tamjin Lake sites.

Through an exploratory data analysis using correlation analysis and pattern analysis
of the SOM of the monitoring data, we analyzed the water quality parameters and hy-
draulic/hydrological variables measured at the Juam Lake and Tamjin Lake sites from
2017 to 2022. This revealed that, overall, mutually related water quality parameters (BOD,
COD, TN, TP, etc.) showed positive correlations, while the water quality variables and
hydraulic/hydrological variables showed negative correlations.

Using the data from 2017 to 2022 at the Juam Lake and Tamjin Lake monitoring sites
of this study, we identified the best algorithms for classifying dominant algae. Based on the
G mean, the following algorithms yielded the best performance and were selected: decision
tree for the Juam Lake dam front (J1) site, random forest for the Juam Lake Shinpyeong
Bridge (J2) site, support vector machine for the Tamjin Lake dam front (T1) site, and
gradient boosting for the Tamjin Lake–Yuchi River confluence (T2) site.

This study presents rigorous analyses of water quality data from four survey sites
to predict the dominant algae using machine learning algorithms. However, the limited
number of survey sites in our study may limit the generalizability of these findings to other
water sources, especially those in very different environments. Future research should,
therefore, explore the prediction of dominant algae across a larger number of investigation
sites to obtain more universal results. This would facilitate the development of a way to
evaluate generalized environmental characteristics of water quality. Overall, this study
provides valuable insights into the use of statistical machine learning algorithms for water
quality management, highlighting the need for further research in this area.

5. Conclusions

The results presented in Section 4 were based solely on data collected from the Juam
Lake and Tamjin Lake sites. It is important to note that incorporating additional mea-
surement variables, such as precipitation, and extending the survey period, or analyzing
data from water supply sources outside of the Yeongsan River and Seomjin River system,
may give different results. As the amount of data increases, so does the prior knowledge
obtained, which can then be used to train the algorithms further. This iterative process can
potentially improve algorithm performance. Additionally, different water systems have
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unique water quality and hydraulic/hydrological characteristics, meaning that even the
same algorithms may produce varying results when applied to different water systems.
Therefore, more research investigating and comparing a wide range of water source points
is necessary. This research approach can support stakeholders and authorities to more
accurately classify dominant algal occurrences and, thus, more efficiently manage the
quality of important water sources.
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