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Abstract: The first impoundment of a super-high dam is a crucial period from dam construction to
operation, in which the prediction of the dam deformation is vital for the continued safety of the dam.
Therefore, a multi-head attention model based on Pearson K-means clustering is proposed, which is
shortened to PKMA. The inputs of the PKMA include measurements of the displacements of plumb
lines, water levels, air temperatures, dam body temperatures, water temperatures, and foundation
temperatures. Among these inputs, variables related to displacements are regarded as the dominant
explanatory factors. Hence, the K-means clustering based on the Pearson index is utilised to increase
the weights of displacements in the PKMA. To involve the interactions between inputs, the MA
mechanism of neural networks is used to simulate the relationship between inputs and deformation
targets. The PKMA model had a maximum MSE of 1.2518 and a maximum MAE of 0.9017 for the
model performance metrics at the study measurement points. Compared to the comparison models
MA, HST, and LSTM, the performance metrics of the PKMA model are an improvement of an average
of 87.02%, 72.42%, and 69.24%.

Keywords: PKMA; first impoundment; super-high arch dams; deformation prediction;
Pearson; K-means

1. Introduction

The initial impoundment of a super-high arch dam is the transition from dam construc-
tion to operation. As the dam body, bedrock, and abutments are under water pressure from
the upstream reservoir for the first time, creeping, extrusion, and plastic deformation often
occur [1,2]. Due to the lack of early warnings and treatments, the Vajont and Malpasset
dams experienced serious accidents during their first impoundments [3–7]. Therefore, dam
deformation prediction in terms of the first impoundment is critical for long-term dam
safety. In addition, the increments in water pressure imposed on high dams at various levels
remain different, which results in extra challenges in comparison with the operation period.
Unfortunately, few studies have been conducted regarding the initial impoundment.

Deterministic, statistical, mixed, hybrid, and machine learning models are the com-
monly approved approaches for the study of dam behaviours [8–11]. In recent years,
data-driven models have been broadly used for the safety assessment and deformation
prediction of super-high dams [12,13]. However, the construction of data-driven models is
strongly dependent on the application of in situ monitoring data. Hydraulic monitoring
data have the following characteristics: a wide variety of monitoring types, slow new data
acquisition, and substantial data availability [14]. The monitoring data sets to be used
for prediction modelling are, therefore, becoming extensive, which poses high challenges
to data-driven model construction. For example, the data obtained from the Baihetan
arch dam are detailed in Table 1. In addition, the complexity of the bedrock structures of
newly planned super-high arch dams is increasing. Therefore, the deformation prediction
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of super-high dams based on traditional methods is subject to limitations. Moreover, a
super-high dam during its first impoundment stays in a non-stable environment compared
to the operation period. Hence, the relationship between dam behaviour and its impacting
factors contains strong nonlinearity. Therefore, dam deformation models should be in line
with these features mentioned above.

Table 1. Monitoring data of the Baihetan dam regarding various instruments from June 2022.

Monitoring Types Number of Monitoring Instruments Number of Monitoring Data Values

Normal and inverted plumb lines 51 33,762
Observation piers located in the catwalk 40 1360

Gallery benchmarks 162 8910

The selection of the inputs of the data-driven model plays an essential role in increasing
the prediction accuracy [15]. According to Wu et al. [16], water levels of the dam reservoir,
temperatures, and time components contribute to dam deformation. It is important to note
that the interactions between every possible pair of inputs should not be ignored.

1.1. Literature Review

Statistical models and neural network models are the most-used data-driven models
for the deformation prediction of super-high dams nowadays. Statistical models are based
on multiple regression. The hydrostatic seasonal time (HST) model is one of the most classic
methods. It simulates the deformation development by incorporating the effects of water
level, seasonal function, and time [16]. Hu introduced the crack opening component into
the HST model to explain the crest travelling of the Chencun arch dam [17,18]. Wang et al.
added the hysteresis effect to HST to establish the HHST model, by which the continuous
deformation of the Jinping I arch dam in the downstream direction was analysed [19]. The
HHST method quantitatively shows that the deformation is caused by both the viscoelastic
hysteresis water pressure and the periodic drop in ambient temperature. Statistical models
are widely used in practical engineering problems due to the flexible and simplified
mapping equation. Unfortunately, statistical models are often unique to the specific project,
and transferring them for application in other projects likely leads to poor results. Moreover,
the performance of statistical models becomes less competitive when addressing complex
engineering problems.

In recent years, more and more researchers have utilised artificial neural networks
(ANN) to build deformation monitoring models of high arch dams. Yang et al. used the
long- and short-term memory (LSTM) model combined with the attention mechanism to
build a deformation monitoring model of an arch dam [20]. The results showed that the
accuracy of the LSTM model was 20% higher than that of the traditional recurrent neural
network (RNN) model and 61% higher than that of the conventional LSTM model. Chen
et al. developed the bilateral slope-based distance and dynamic time warping algorithm
(BSD-DTW) to cluster arch dam measurement points and avoid data compensation [21].

1.2. Problem Statement

The current deformation prediction models for super-high dams are generally subject
to limitations as follows:

1. Traditional statistical models show poor robustness and transfer learning ability. In
addition, they are frequently tailored to a specific project, which leads to less flexibility.

2. The missing data in the dam monitoring system are normally compensated for through
interpolation methods, which can generate misleading information.

3. Deep learning models, such as LSTM and RNN, generally have poor interpretability.
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1.3. Proposed Solution

For predicting the dam deformation of the first impoundment, this paper proposes a
Pearson K-mean (PK) multi-head attention (MA) model, abbreviated as PKMA. The PKMA
combines the MA mechanism with K-means clustering based on the Pearson index. The
approach is designed to evaluate the weights of different influence factors and mechanisms
of dam deformation. The application of the MA method increases the calculation speed by
searching the optimal from several parameter spaces at the same time relative to single-head
models.

The main work and innovation points of this paper are as follows:

1. The attention mechanism of the deformation monitoring model for the first impound-
ment of super-high arch dams has been improved. Our proposed model not only
enables the redistribution of the influence weights of environmental factors, but also
visualisation operations. The model can also calculate the degree of interaction be-
tween the factors at each moment, which is more in line with the mechanics of dam
deformation during the first renewal period of a very high arch dam.

2. After the deformation measurement points are clustered and partitioned, when the
deformation prediction model is constructed for a particular measurement point,
the model imports the deformation data from the measurement points in the same
partition, in addition to the traditional water level, temperature, and time-dependent
factors. This allows the model to learn more accurate information.

3. We have optimised the MultiheadAttention model to better match the deformation
monitoring data for the first impoundment of a super-high arch dam. To the best
of our knowledge, this is the first time that the MultiheadAttention model has been
introduced into a first impoundment deformation prediction model for a super-high
arch dam. The MultiheadAttention mechanism improves the optimisation of model
parameters, enhances model performance, and increases model interpretability.

In this paper, the PKMA model is trained on the data collected from the Baihetan dam,
and robustness is verified through the monitoring data of the Xiluodu arch dam. Moreover,
the LSTM model and MA models are established in comparison with the performance of
the PKMA model. This paper is divided into five sections. Section 1 states the engineering
problems and available data-driven models. Section 2 describes the procedures for estab-
lishing the PKMA model. Section 3 verifies the feasibility of the PKMA model by using a
case study. Section 4 gives research results and model comparisons. Section 5 concludes
the contributions of the paper.

1.4. Symbols and Abbreviations

The meanings of the symbols in the equations used in this paper are as follows:

(1) n is the number of samples.
(2) yi are the actual measurements.
(3) ŷi are the model predictions of the prediction.
(4) xi are the normalised monitoring data series.
(5) rij are the Pearson correlation coefficients.
(6) σx and σj are, respectively, standard deviations of the centroid and remaining vari-

ables.
(7) ai, are the t input variables of the MA mechanism.

The following abbreviations apply to this paper:

(1) Multi-head attention—MA;
(2) Pearson K-mean multi-head attention model—PKMA;
(3) Long- and short-term memory—LSTM;
(4) Mean absolute error—MAE;
(5) Root mean square error—RMSE;
(6) Mean square error—MSE;
(7) Hydrostatic seasonal time—HST.
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2. The Construction of the PKMA Model

The PKMA model is developed to perform deformation predictions for the first
impoundment of super-high dams. The procedures for establishing the PKMA model
are summarised in Section 2.1. It is structured through the combination of K-means
clustering based on the Pearson index and the multi-head attention mechanism, which are,
respectively, described in Sections 2.2 and 2.3.

2.1. The PKMA Model

Beginning with the inputs of the model, the implementation of the PKMA is in five
steps, as shown in Figure 1.
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Figure 1. Process of establishing the PKMA model.

Step 1: Input collection. As suggested by Wu et al. [8], the inputs of the PKMA include
monitoring values of the displacements, temperatures, and water levels. These data are
regarded as the candidates of the inputs of the PKMA model.

Step 2: Input selection. A PKMA model is established for predicting an individual
target. However, only the effective variable, that play important roles in the development
of the target should be considered as the inputs of the model. Therefore, the candidate
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inputs around a certain range of the target are selected. The range is determined by using
the K-means algorithm based on Pearson, whose details are illustrated in Section 2.2.

Step 3: Data normalisation. To balance the magnitudes of different inputs, the input
variables should be normalised before they are used. The z-score method is adopted in this
paper [22].

Step 4: Application of the MA mechanism. For each objective variable, a PKMA model
is established to train the relations between the standardised inputs and the target. The
modelling detail is shown in Section 2.3.

The mean absolute error (MAE) [23] and the root mean square error (RMSE) [24] are
introduced to assess the performance of the PKMA:

MAE =
1
n∑n

i=1|yi − ŷi| (1)

RMSE =

√
1
n∑n

i=1 (yi − ŷi)
2 (2)

where n is the number of samples and yi and ŷi are, respectively, the actual measurements
and model predictions of the prediction target.

2.2. K-means Clustering Based on Pearson Index

The data sets from the dam monitoring system are time series, many of which show
strong similarities [25,26]. The feature can be used to increase the weights of dominant
types of input variables by including similar variables in the input set. The dominant input
variable in the dam prediction model is referred to as displacement observations. This
paper uses K-means clustering based on the Pearson correlation coefficient [27] to perform
the input selection [28].

(1) Let the data from candidate monitoring sets be x1, x2, . . . , xn after standardization,
and the clustering procedures are given as follows:

(2) Randomly select k variables from x1, x2, . . . , xn as centroids, which behave as the
predefined clusters.

(3) Assign each of the remaining variables, based on its Pearson correlation coefficients
rij from different centroids, to the centroid where rij is the highest.

ri,j =
cov(xi, xj)

σxi σxj

, i = 1 . . . n, j = 1 . . . k, i 6= j (3)

where σx and σj are, respectively, standard deviations of the centroid and remaining
variables.

1. Place a new centroid for each cluster by calculating the sum of Pearson coefficients
between the specific variable and the remaining variables in the cluster. The variable
that contains the maximum sum is assigned as the new centroid.

2. Repeat steps (2)–(3) until the centroids are no longer changed.

The number k of clusters is decided through the elbow theory. Let k = 1, . . . , n, then
plot the average Pearson index of variables from their respective centroid. This will give an
elbow line whose horizontal axis is the number of clusters and vertical axis is the average
of Pearson indices. The optimal k should be taken at the turning point.

2.3. Multi-Head Self-Attention Mechanism

As shown in Figures 2 and 3, the multi-head self-attention (MA) mechanism [29] is
constructed of four steps as follows:
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1. Let ai, i = 1, . . . , t be the t input variables of the MA mechanism. Multiply a1, a2, . . . , at

by weight matrix WQ
headh

for queries, WK
headh

for keys, and WV
headh

for values, respec-
tively:

qi = WQ
headh
·ai

ki = WK
headh
·ai

vi = WV
headh
·ai

(4)

where h = 1, 2, . . . , l. l is the number of heads used in the MA.
2. For each head, calculate the weight matrix A by using the softmax function:

A = softmax

(
[q1 q2 . . . qt]·[k1 k2 . . . kt]

T
√

d

)
(5)

where d is the dimension of qi and ki.
3. Thereby, head bheadh

i is obtained by summing the multiplication of A and vi:

bheadh
i = A·vi (6)

4. The output bi of the MA is the multiplication of the concatenation of bheadh
i and the

coefficient matrix WO.

bi =
[
bhead1

i bhead2
i . . . bheadl

i

]
·WO (7)
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3. Case Study
3.1. Collection of the Candidate Inputs

The Baihetan and Xiluodu dams are both located on the Jinsha River in southwest
China, and they are, respectively, 289 m and 285.5 m high. The monitoring data collected
from the first impoundment of the Baihetan dam are used for the establishment of the
PKMA model. Subsequently, the transferability of the PKMA model is verified by using the
first impoundment data from the Xiluodu dam. The inputs of the PKMA from the Baihetan
dam include displacements along the river, temperatures of the dam body and foundation,
air temperatures, and reservoir water levels.

3.1.1. Displacements along the River

The displacement data are collected from the normal plumb lines, which have an
accuracy of 0.01 mm. Their layout is shown in Figure 4. The displacements are from
27 monitoring sets (represented by black dots), and each set contains 212 temporal values,
as shown in Figure 5.
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3.1.2. Temperatures of the Dam Body and Foundation

The temperatures are measured using thermometers placed in the Baihetan dam body
and foundation. Their layouts are shown in Figures 6 and 7. The temperature measure-
ments in the dam body and foundation are, respectively, from 201 and 24 monitoring points,
and each point produces 30 observations during the first impoundment. Figures 8 and 9
demonstrate the temperature values from all thermometers in the dam body and founda-
tion, respectively, on 1 April 2021, 30 June 2021, and 31 October 2021. The measurement
accuracy is 0.1 ◦C.
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3.1.3. Air Temperature and Water Levels

As well as dam temperatures and displacements, the local environmental temperatures
and reservoir water levels also play important roles in explanting dam deformation. The
daily average air temperatures and reservoir water levels obtained are shown in Figure 10.
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As the dimension of the temperature variables varies from the dimension of the water
level variable, polynomial interpolation is used to fill in the missing data [30]. The same
strategy has been used in similar scenarios in this paper.

3.2. Selection of Inputs of the PKMA

To predict an individual target of the dam deformation, a particular PKMA model is
built. However, while all air temperatures and water levels are used as inputs for all PKMA
models, the inputs of the displacements of normal plumb lines, dam temperatures, and
foundation temperatures are only selected from within the vicinity of the target.

3.2.1. Selection of Displacement of Plumb Lines

The displacement inputs of the PKMA are measured from the Baihetan normal plumb
lines, which are the dominant factors in explaining the dam deformation. Therefore, the PK
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has been applied to all monitoring points of displacement in Figure 11. The monitoring
points clustered into the same zone are considered to share the same deformation mecha-
nism. Therefore, the influences of the displacement variable on the prediction target can be
increased by involving all variables in the zone. In order to determine the number of the PK
clustering, the plot of the elbow line is drawn in Figure 11a. It is noticeable that the curve
increases rapidly along with the increasing number of clusters before 8, then becomes a
flat line. Therefore, the 22 monitoring points of displacements are clustered into 8 zones as
shown in Figure 11b. The variances among different zones are in line with the geological
structures of the valley. For example, the locations of PLdb7-2, PLdb7-5, PLdb28-2, and
PLdb28-5 are close to faults embedded in the dam slopes.
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3.2.2. Selection of Dam Temperatures

For each target variable, the average temperature of the joint grouting zone where it is
situated is regarded as the dam temperature input of the PKMA. The examples shown in
Figure 12, PLdb7-4 and PLdb28-2, are, respectively, located in the grouting zones of green
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boxes, and the average temperatures of the two zones are used to establish PKMAs for
network training.

Water 2023, 15, 1734 13 of 29 
 

 

3.2.2. Selection of Dam Temperatures 
For each target variable, the average temperature of the joint grouting zone where it 

is situated is regarded as the dam temperature input of the PKMA. The examples shown 
in Figure 12, PLdb7-4 and PLdb28-2, are, respectively, located in the grouting zones of 
green boxes, and the average temperatures of the two zones are used to establish PKMAs 
for network training.  

 
Figure 12. Joint grouting zones of the Baihetan dam. 

3.2.3. Selection of Foundation Temperatures 
As shown in , the distances between each target and the four groups of foundation 

thermometers are different. Thus, the group of thermometers that are located nearest to 
the target are considered the input of the PKMA. Each group contains 6 thermometers, 
which are, respectively, installed at the depths of 0.2 m, 10 m, 20 m, 30 m, 40 m, and 50 m 
from the dam body bottom. Only the thermometer that can maximise the performance of 
the PKMA model is selected. Therefore, a selection test in terms of different depths of 
thermometers has been conducted. Let PLdb7-3, PLdb18-4, and PLdb28-4 be the predic-
tion targets of the PKMA models. the input variables of these PKMA models are the same 
except for temperature variables at different depths. The test result is given , in which the 
vertical axis represents the improvement degree. It is defined by the proportion of model 
errors between the situation involving the foundation temperatures and the one not in-
volving these temperatures. At the same time, Figure 13 also shows that the involvement 
of the foundation temperatures does improve the fitting accuracy of the PKMA. The situ-
ations involving 20 m and 30 m depths of thermometers improve the model performance 
more than others; hence, the average of the two is taken into account as the input variables 
of the PKMA model. As a result, the 4 time series used as the foundation temperatures of 
the PKMA inputs are given in Figure 14. 

Figure 12. Joint grouting zones of the Baihetan dam.

3.2.3. Selection of Foundation Temperatures

As shown in, the distances between each target and the four groups of foundation
thermometers are different. Thus, the group of thermometers that are located nearest to the
target are considered the input of the PKMA. Each group contains 6 thermometers, which
are, respectively, installed at the depths of 0.2 m, 10 m, 20 m, 30 m, 40 m, and 50 m from the
dam body bottom. Only the thermometer that can maximise the performance of the PKMA
model is selected. Therefore, a selection test in terms of different depths of thermometers
has been conducted. Let PLdb7-3, PLdb18-4, and PLdb28-4 be the prediction targets of
the PKMA models. the input variables of these PKMA models are the same except for
temperature variables at different depths. The test result is given, in which the vertical
axis represents the improvement degree. It is defined by the proportion of model errors
between the situation involving the foundation temperatures and the one not involving
these temperatures. At the same time, Figure 13 also shows that the involvement of the
foundation temperatures does improve the fitting accuracy of the PKMA. The situations
involving 20 m and 30 m depths of thermometers improve the model performance more
than others; hence, the average of the two is taken into account as the input variables of
the PKMA model. As a result, the 4 time series used as the foundation temperatures of the
PKMA inputs are given in Figure 14.

3.3. Hyperparameter Configuration

The implementation of the PKMA model is based on the karas framework in Ten-
sorFlow. The hyperparameters include the number of epochs, size of batches, learning
rate (lr), and number of heads. Due to the rule of thumb, the maximum epoch is set to
500 [31]. The optimisation algorithm, JAYA, is used to determine other hyperparameters.
The optimisation results are shown in Table 2, in which hyperparameters for the LSTM
and MA models are required in Section 4.2 as comparisons. The results comply with the
range suggested in similar research studies [32–40]. In addition, the prediction outcomes
are always calculated using training samples from the previous 7 days.
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Table 2. Optimisation results of model hyperparameters from JAYA algorithm.

Model Hyperparameters

LSTM batch size = 5, lr = 0.001
MA batch size = 5, lr = 0.001, heads = 3

PKMA batch size = 5, lr = 0.001, heads = 3

4. Results and Discussion

The performance of the PKMA model is represented by predicting the target variables
of PLdb7-4, PLdb18-4, and PLdb28-3.
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4.1. Model Performance

The converging curves of training the PKMA models are shown in Figure 15. The
MSEs of the three models decrease rapidly with the increasing iterations, and then yield
small values. When the difference in MSEs between two consecutive iterations is less than
0.005, the training process of each model is regarded as complete. The curve of PLdb7-4
converges after 439 iterations, as shown in Figure 15a, in which converging point Cp = 439.
The curve of PLdb18-4 converges after 462 iterations, as shown in Figure 15b, in which
Cp = 462. The curve of PLdb28-3 converges after 412 iterations, as shown in Figure 15c, in
which Cp = 412.

Water 2023, 15, 1734 15 of 29 
 

 

Table 2. Optimisation results of model hyperparameters from JAYA algorithm. 
Model Hyperparameters 
LSTM batch size = 5, lr = 0.001 
MA batch size = 5, lr = 0.001, heads = 3 

PKMA batch size = 5, lr = 0.001, heads = 3 

4. Results and Discussion  
The performance of the PKMA model is represented by predicting the target varia-

bles of PLdb7-4, PLdb18-4, and PLdb28-3.  

4.1. Model Performance 
The converging curves of training the PKMA models are shown in Figure 15. The 

MSEs of the three models decrease rapidly with the increasing iterations, and then yield 
small values. When the difference in MSEs between two consecutive iterations is less than 
0.005, the training process of each model is regarded as complete. The curve of PLdb7-4 
converges after 439 iterations, as shown in Figure 15a, in which converging point 𝐶 =439 . The curve of PLdb18-4 converges after 462 iterations, as shown in Figure 15b, in 
which 𝐶 = 462. The curve of PLdb28-3 converges after 412 iterations, as shown in Figure 
15c, in which 𝐶 = 412. 

 

(a) 

Water 2023, 15, 1734 16 of 29 
 

 

 

(b) 

 
(c) 

Figure 15. Cont.



Water 2023, 15, 1734 15 of 27

Water 2023, 15, 1734 16 of 29 
 

 

 

(b) 

 
(c) 

Figure 15. Converging curve of the PKMA on Baihetan data. (a) Curve of PLdb7-4; (b) Curve of
PLdb18-4; (c) The curve of PLdb28-3.

The model performance is shown in Figure 16, in which the black dotted lines repre-
sent the estimations of the PKMA models and the red dotted lines correspond to actual
measurements. It can be seen that the estimated values largely match the measurements, as
represented by the quantitative evaluation in Figure 16, which shows the performance of
the PKMA models.
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Figure 16. Performance of the PKMA models. (a) Results of PLdb7-4; (b) Results of PLdb18-4;
(c) Results of PLdb28-3.

Though the data samples from the Baihetan impoundment are relatively few compared
to the conventional sample usage of the MA network, Figure 16 shows that the MA model
can be used to study dam data successfully. Table 3 gives the test set model evaluation
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index values for the PKMA model. In addition, the PKMA models give positive predictions
of the maximum deformation. The prediction performance of the PKMA model on first
impoundment data is acceptable by dam engineering standards. Therefore, the effectiveness
and feasibility of the PKMA model are verified.

Table 3. Evaluation of the PKMA model performance on the testing set.

Measuring Points RMSE (mm) MAE (mm) MSE (mm)

PLdb7-4 0.3711 0.5010 0.6092
PLdb18-4 1.1027 0.9017 1.2518
PLdb28-3 0.2296 0.4189 0.4792

4.2. Model Interpretability

The average correlations of all inputs of the PKMA are visually illustrated in Figure 17.
By analysing the statistics, the following conclusions are obtained:

1. The influences of the water level and temperature on the dam deformation are similar;
the correlation coefficients between any two of them range from 0.075 to 0.18.

2. The left bank measurement points, such as PLdb7-3, PLdb7-4, PLdb7-5, and PLdb12-3,
are more sensitive to environmental factors than other measurement points.

3. Compared to the temperatures of the water, air, and foundation, dam body tempera-
ture has a stronger impact on the dam deformation.

4. The dam temperature, air temperature, water temperature, and bedrock temperature
interact with each other, and their calculated weights are approximately the same.
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Figure 17. Average colourations of inputs of the PKMA. (a) Results of PLdb7-4; (b) Results of 
PLdb18-4; (c) Results of PLdb28-3. 
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4.3. Prediction Comparisons

The performance of the proposed PKMA model is compared with the LSTM [41]
model, MA [27] model, and HST model [42], as shown in Figure 18. Compared with the
results of the PKMA model in Figure 11, the three models manage to roughly simulate
the general trend of the dam deformation, but the fitting degrees are lower than that of
the PKMA model. The prediction power of the LSTM, HST and MA are less competitive
in comparison with the PKMA, and the quantitative evaluation is given in Table 4. The
MAE, MSE, and RMSE calculated from the PKMA are always lower than the ones from the
LSTM, HST, and MA. Therefore, the superiority of PKMA in handling dam deformation
data during the first impoundment is demonstrated.

The performance improvement rates of the PKMA model compared to the other three
models are shown in Table 5. As can be seen from Table 5, the PKMA improved the MSE
by 34.82% and MAE by 30.82% compared to the MA model, the PKMA improved the MSE
by 68.36% and MAE by 54.07% compared to the LSTM model, and the PKMA improved
the MSE by 59.61% and MAE by 44.64% compared to the HST model. It can be seen that
the PKMA model has good performance in terms of dealing with the deformation of the
dam during the first storage period of a very high arch dam.

Although the computational speed of the base linear model was significantly better
than that of several DL models, the performance of the base linear model was poor. This is
mainly because the base linear model is data-driven and the linear principle used to fit the
deformation value of the super-high arch dam cannot fully consider the nonlinear factors
of the deformation of the dam itself. Additionally, fixed parameters, i.e., static calculation,
were used to analyse the deformation value of the dam, which is not consistent with the
working principle of the first storage period of the super-high arch dam; consequently, the
model will afford large errors.
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Figure 18. Prediction comparisons from different models. (a) Results of PLdb7-4; (b) Results of 
PLdb18-4; (c) Results of PLdb28-3. 
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Table 4. Model performance improvement rate.

Model RMSE (mm) MAE (mm) MSE (mm)

PLdb7-4
LSTM vs. PKMA 40.58% 68.97% 64.69%
MA vs. PKMA 4.79% 11.57% 9.35%
HST vs. PKMA 57.59% 72.42% 82.01%

PLdb18-4
LSTM vs. PKMA 63.98% 47.64% 87.02%
MA vs. PKMA 50.62% 69.02% 75.61%
HST vs. PKMA 48.15% 55.81% 73.12%

PLdb28-3
LSTM vs. PKMA 31.72% 45.61% 53.38%
MA vs. PKMA 10.28% 11.86% 19.50%
HST vs. PKMA 12.66% 5.69% 23.71%

Table 5. Performance evaluations regarding different prediction models on the testing set.

Model RMSE (mm) MAE (mm) MSE (mm)

PLdb7-4

LSTM 1.1650 1.3501 1.3573
MA 0.7270 0.4737 0.5286
HST 1.6323 1.5191 2.6643

PKMA 0.6922 0.4189 0.4792

PLdb18-4

LSTM 3.1057 1.7220 9.6455
MA 2.2656 2.9108 5.1330
HST 2.1579 2.0404 4.6565

PKMA 1.1188 0.9017 1.2518

PLdb28-3

LSTM 1.5639 1.8199 2.4457
MA 1.1902 1.1230 1.4165
HST 1.2226 1.0495 1.4947

PKMA 1.0678 0.9898 1.1403

4.4. Transferability

To verify the transferability of the PKMA model, the model parameters trained on the
Baihetan data were used to estimate the targets of similar locations in the Xiluodu dam.
As shown in Figure 19, the PKMA model parameters of point PLdb5-4 were adopted to
initialise the PKMA model of point PLdb7-4, PLdb15-4 for PLdb18-4, and PLdb27-3 for
PLdb28-3. The time series of the first impoundment of Xiluodu dam contains 671 samples,
of which 480 were used as training data and the rest were testing data. The training curves
of the PKMA models for Xiluodu data with pre-training and without pre-training on
Baihetan data are given in Figure 20. By taking the same termination rule as in Section 4.1,
the training processes of the Xiluodu PKMA models appear to be faster than that without
pre-training. Therefore, the training time of the PKMA on a new project is largely shortened,
benefiting from its strong transferability.
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The advantages of the PKMA model in terms of the transferability can also be verified,
as shown in Figure 21. The black lines with squares represent the actual measurements,
respectively, from PLdb5-4, PLdb15-4, and PLdb27-3, the red lines with dots correspond
to the PKMA performances without using the pre-training model parameters, and the
blue lines with triangles are equal to the PKMA performances using the pre-training
model parameters with Baihetan data. The predictive power of the PKMAs without pre-
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training parameters is poorer compared to the PKMAs with pre-training parameters. Their
quantitative evaluations are shown in Table 6. The MAE, MSE, and RMSE calculated
from the PKMAs with pre-training parameters are always lower than those of the PKMAs
without pre-training parameters. Therefore, the PKMA model is considered to possess
satisfying transferability.
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Table 6. Comparisons of errors of the PKMA models on the testing set.

Prediction Targets Model RMSE
(mm)

MAE
(mm)

MSE
(mm)

PLdb5-4
PKMA with pre-training parameters 1.094121 0.8339 1.1971

PKMA without pre-training parameters 1.155465 0.9619 1.3351

PLdb15-4
PKMA with pre-training parameters 1.070841 0.8375 1.1467

PKMA without pre-training parameters 1.176648 0.9926 1.3845

PLdb27-3
PKMA with pre-training parameters 1.740029 0.9745 3.0277

PKMA without pre-training parameters 2.025537 1.0575 4.1028

5. Conclusions

To incorporate the physical mechanism of the dam deformation of the first impound-
ment into data-driven models, a PKMA model is proposed. The inputs of the PKMA model
are from the displacements, temperatures, and water levels, of which displacements are
regarded as the dominant factors. Therefore, the PK method is applied to increase the
importance of the displacement variables by including more similar variables. Furthermore,
the correlations between different variables are considered in the PKMA model by using
the MA mechanism.

(1) The K-means clustering method based on Pearson metrics allows for the similarity
in shape of the individual time-series curves to be taken into account, which leads
to the method being able to further consider the deformation mechanism of each
measurement point. This is because the reason for the slightly different time series
curves of deformation at each measurement point is that the environmental factors
at the location of each measurement point have different degrees of influence on
their deformation. From the clustering results in this paper, the method succeeds in
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separately partitioning the measurement points in the shoreline dam section close to
the structural weaknesses, which is more in line with the engineering reality and the
deformation mechanism.

(2) The PK clustering results adhere to the actual deformation mechanisms of different
zones.

(3) The application of the PK increases the fitting and prediction accuracy of the MA
model, which makes the PKMA a satisfying solution for super-high dam deformation
of the first impoundments.

(4) The usage of the MA mechanism provides a way to explore the interactions between
different inputs.

(5) In addition to improving the accuracy of the model prediction for the first storage
period of a very high arch dam, the multi-headed attention mechanism adopted in this
paper also improves the interpretability of the model. Specifically, the multi-headed
attention mechanism quantifies and visualizes the weights of each calculation step,
providing a new way of thinking about the deformation-driven mechanism of the
first storage period of a very high arch dam.

(6) The PKMA model has superior transferability regarding training speed and prediction
accuracy.

(7) Given the powerful capabilities of the PKMA model proposed in this paper, we believe
that it can be extended to other health monitoring problems for full-size structures
with multi-factor effects, such as bridges, high-rise buildings, etc., in addition to its
application to prediction models for dam deformation during the first storage period
of extra-high arch dams.

(8) The set of causal factors influencing the deformation during the first storage period of
extra-high arch dams can be further determined in subsequent work, and more valid
influencing factors can be accurately introduced into the model calculations.

(9) Follow-up work should combine as many projects as possible, and a more compre-
hensive and systematic monitoring data mining system is expected in the future.

Author Contributions: Conceptualization, Y.W. (Yilun Wei) and C.L.; Methodology, Y.W. (Yilun Wei);
Software, Y.W. (Yilun Wei), C.L. and X.Z.; Validation, C.L. and Y.H.; Formal analysis, Y.W. (Yilun Wei);
Resources, H.D. and Y.H.; Data curation, Y.W. (Yilun Wei); Writing—original draft, Y.W. (Yilun Wei);
Writing—review & editing, Y.W. (Yilun Wei); Visualization, Y.W. (Yajun Wang); Project administration,
Y.H.; Funding acquisition, Y.T. and L.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 518390
07) and the China Three Gorges Corporation Research Project (No. BHT/0809).

Acknowledgments: The authors are grateful for the financial support of the National Natural Science
Foundation of China (No. 51839007) and the China Three Gorges Corporation Research Project
(No. BHT/0809).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, B.; Liu, G.; Wu, Z. Analysis of dam foundation deformation characteristics during the first storage period of Xiaowan

extra-high arch dam based on prototype monitoring. Hydropower Autom. Dam Monit. 2012, 36, 14–20.
2. Wei, Y.; Hu, Y.; Wang, Y.; Tan, Y.; Liu, C.; Pei, L. A hybrid model approach for predicting deformation during the first storage

period of Baihetan. J. Hydropower Gener. 2022, 41, 84–92.
3. Zhang, X.L. Collection of typical cases of dam failures and accidents at hydropower stations. Dam Saf. 2015, 8, 13–16.
4. Londe, P. The Malpasset Dam failure. Eng. Geol. 1987, 24, 295–329. [CrossRef]
5. Alcrudo, F.; Gil, E. The malpasset dam-break case study. In Proceedings of the 4th Concerted Action on Dambreak Modelling

Workshop, Zaragoza, Spain, 18 November 1999.
6. Erpicum, S.; Archambeau, P.; Dewals, B.; Pirotton, M. Computation of the Malpasset dam break with a 2D conservative flow

solver on a multiblock structured grid. In Proceedings of the 6th International Conference of Hydroinformatics, Singapore, 21–24
June 2004.

https://doi.org/10.1016/0013-7952(87)90069-X


Water 2023, 15, 1734 26 of 27

7. Pan, J. Danger of arch dam. Knowl. Is Power 2003, 5, 53–55.
8. Ghatak, A. Machine Learning with R; Springer: Singapore, 2017.
9. Belmokre, A.; Mihoubi, M.K.; Santillán, D. Analysis of Dam Behavior by Statistical Models: Application of the Random Forest

Approach. KSCE J. Civ. Eng. 2019, 23, 4800–4811. [CrossRef]
10. Salazar, F.; Toledo, M.A.; Oñate, E.; Morán, R. An empirical comparison of machine learning techniques for dam behaviour

modelling. Struct. Saf. 2015, 56, 9–17. [CrossRef]
11. Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning; O’Reilly Media: Sebastopol, CA, USA,

2019.
12. Li, B.; Yang, J.; Hu, D. Dam monitoring data analysis methods: A literature review. Struct. Control. Health Monit. 2019, 27, e2501.

[CrossRef]
13. Marius, B. Statistical Methods for Dam Behaviour Analysis; ETH Zurich: Zurich, Switzerland, 2018.
14. Ren, Q.; Li, M.; Li, H.; Shen, Y. A novel deep learning prediction model for concrete dam displacements using interpretable mixed

attention mechanism. Adv. Eng. Inform. 2021, 50, 101407. [CrossRef]
15. Liu, C. Man-machine model: Pattern recognition and forecasts for complex structures supervised by multi-model ensembles.

Struct. Saf. 2021, 88, 102022. [CrossRef]
16. Gu, C.; Wu, Z. Theory and Method of Dam and Dam Foundation Safety Monitoring and Its Application; Hohai University Press: Nanjing,

China, 2006.
17. Hu, J.; Ma, F. Statistical modelling for high arch dam deformation during the initial impoundment period. Struct Control. Health

Monit. 2020, 27, e2638. [CrossRef]
18. Hu, J. Influence of Regenerated Crack to Arch Dam Deformation and Displacement Forecast. Water Resour. Power 2008, 6, 96–100.
19. Wang, S.; Xu, C.; Gu, C.; Su, H.; Hu, K.; Xia, Q. Displacement monitoring model of concrete dams using the shape feature

clustering-based temperature principal component factor. Struct Control Health Monit. 2020, 27, e2603. [CrossRef]
20. Xu, C.; Wang, S.; Liu, Y.; Sui, X. Monitoring Model for Displacement of Arch Dams Considering Viscoelastic Hysteretic Effect. J.

Yangtze River Sci. Res. Inst. 2022, 39, 67–72.
21. Ren, Q.; Shen, Y.; Li, M.; Kong, R.; Li, H. Safety monitoring model of hydraulic structures and its optimization based on deep

learning analysis. J. Hydraul. Eng. 2021, 52, 71–80.
22. Chen, H.; Chen, X.; Guan, J.; Zhang, X.; Guo, J.; Yang, G.; Xu, B. A combination model for evaluating deformation regional

characteristics of arch dams using time series clustering and residual correction. Mech. Syst. Signal Process. 2022, 179, 109397.
[CrossRef]

23. Ray, W.C. Advanced Engineering Mathematics; Mcgraw-Hill Book Company, Inc.: New York, NY, USA, 1960.
24. Wu, Y. Exponential convergence rate of conditional mean absolute error for nonparametric regression kernel estimation. J. Jilin

Univ. Med. Ed. 1986, 6, 186–194.
25. Zhang, J. Probability Theory and Mathematical Statistics Tutorial; Zhejiang University Press: Hangzhou, China, 2006.
26. Ren, Q.; Li, M.; Bai, S.; Shen, Y. A multiple-point monitoring model for concrete dam displacements based on correlated

multiple-output support vector regression. Struct. Health Monit. 2022, 21, 2768–2785. [CrossRef]
27. Penghai, H. Pearson correlation coefficient is applied to medical signal correlation measurement. Electron. World 2017, 1, 163.
28. Neal, M. Bayesian Methods for Machine Learning. Nips Tutor. 2004, 13, 1–67.
29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
30. Shen, X. Polynomial interpolation (I)-Lagrange interpolation. Prog. Math. 1983, 12, 193–214.
31. Jaggi, R.; Morris, S. Rule of thumb. Can. Fam. Physician 2007, 1, 1309–1310.
32. Zhou, L.; Gong, J.; He, J. Study on the expression of reasonable factor of time-dependent deformation of concrete dams. In

Proceedings of the Technical Information Exchange Meeting of National Dam Safety Monitoring Technology Information Network National
Dam Safety Monitoring Technology Information Network; 2007. Available online: https://www.fema.gov/sites/default/files/
documents/fema_ndsp-report-congress-fy18-fy19.pdf (accessed on 5 April 2023).

33. Pan, C. Experimental and Theoretical Study on Time-Dependent Deformation and Shear Performance of Concrete Structures; Southeast
University: Dacca, Bangladesh, 2011.

34. He, J.; Shi, Y.; Gong, J. Study on time-dependent deformation characteristics of concrete dams. J. Chang. Acad. Sci. 2010, 27, 5.
35. Xu, C.; Wang, S.; Gu, C.; Su, H. A Probabilistic Prediction Model for Displacement of Super High Arch Dams Considering the Deformation

Spatial Association; Geomatics and Information Science of Wuhan University: Wuhan, China, 2021. [CrossRef]
36. Ren, Q.; Li, M.; Shen, Y.; Li, M. Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation

characteristics. J. Hydroelectr. Eng. 2021, 40, 160–172.
37. Zhang, J.; Cao, X.; Xie, J.; Kou, P. An Improved Long Short-Term Memory Model for Dam Displacement Prediction. Math. Probl.

Eng. 2019, 2019, 6792189. [CrossRef]
38. Qu, X.; Yang, J.; Chang, M. A deep learning model for concrete dam deformation prediction based on RS-LSTM. J. Sens. 2019,

2019, 4581672. [CrossRef]
39. Hu, J. Deformationforecasting model and its modeling method of super high arch dams during initial operation periods. Hydro-Sci.

Eng. 2020, 5, 63–71. (In Chinese)

https://doi.org/10.1007/s12205-019-0339-0
https://doi.org/10.1016/j.strusafe.2015.05.001
https://doi.org/10.1002/stc.2501
https://doi.org/10.1016/j.aei.2021.101407
https://doi.org/10.1016/j.strusafe.2020.102022
https://doi.org/10.1002/stc.2638
https://doi.org/10.1002/stc.2603
https://doi.org/10.1016/j.ymssp.2022.109397
https://doi.org/10.1177/14759217211069639
https://www.fema.gov/sites/default/files/documents/fema_ndsp-report-congress-fy18-fy19.pdf
https://www.fema.gov/sites/default/files/documents/fema_ndsp-report-congress-fy18-fy19.pdf
https://doi.org/10.13203/j.whugis20200508
https://doi.org/10.1155/2019/6792189
https://doi.org/10.1155/2019/4581672


Water 2023, 15, 1734 27 of 27

40. Hu, B.; Liu, G.; Wu, Z. Study on deformation characteristics of dam foundation during the first storage period of Xiaowan
extra-high arch dam based on prototype monitoring and numerical simulation tests. In Technical Advances in Reservoir Dam
Construction and Management, Proceedings of the 2012 Annual Academic Conference of the China Dam Association, Denver, CO, USA,
16–20 September 2012; 2012; pp. 339–349. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=19a62e7
25bdffad616e01ed0cdc14fac&site=xueshu_se (accessed on 18 March 2023).

41. Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM Neural Networks for Language Modeling. In Proceedings of the Thirteenth Annual
Conference of the International Speech Communication Association 2012 Interspeech, Portland, OR, USA, 9–13 September 2012.

42. Mata, J.; Castro, A.T.D.; Costa, J.S.D. Constructing statistical models for arch dam deformation. Struct. Control Health Monit. 2014,
21, 423–437. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://xueshu.baidu.com/usercenter/paper/show?paperid=19a62e725bdffad616e01ed0cdc14fac&site=xueshu_se
https://xueshu.baidu.com/usercenter/paper/show?paperid=19a62e725bdffad616e01ed0cdc14fac&site=xueshu_se
https://doi.org/10.1002/stc.1575

	Introduction 
	Literature Review 
	Problem Statement 
	Proposed Solution 
	Symbols and Abbreviations 

	The Construction of the PKMA Model 
	The PKMA Model 
	K-means Clustering Based on Pearson Index 
	Multi-Head Self-Attention Mechanism 

	Case Study 
	Collection of the Candidate Inputs 
	Displacements along the River 
	Temperatures of the Dam Body and Foundation 
	Air Temperature and Water Levels 

	Selection of Inputs of the PKMA 
	Selection of Displacement of Plumb Lines 
	Selection of Dam Temperatures 
	Selection of Foundation Temperatures 

	Hyperparameter Configuration 

	Results and Discussion 
	Model Performance 
	Model Interpretability 
	Prediction Comparisons 
	Transferability 

	Conclusions 
	References

