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Abstract: Ant-inspired metaheuristic algorithms known as ant colony optimization (ACO) offer an 

approach that has the ability to solve complex problems in both discrete and continuous domains. 

ACOs have gained significant a�ention in the field of water resources management, since many 

problems in this domain are non-linear, complex, challenging and also demand reliable solutions. 

The aim of this study is to critically review the applications of ACO algorithms specifically in the 

field of hydrology and hydrogeology, which include areas such as reservoir operations, water 

distribution systems, coastal aquifer management, long-term groundwater monitoring, hydraulic 

parameter estimation, and urban drainage and storm network design. Research articles, peer-

reviewed journal papers and conference papers on ACO were critically analyzed to identify the 

arguments and research findings to delineate the scope for future research and to identify the 

drawbacks of ACO. Implementation of ACO variants is also discussed, as hybrid and modified ACO 

techniques prove to be more efficient over traditional ACO algorithms. These algorithms facilitate 

formulation of near-optimal solutions, and they also help improve cost efficiency. Although many 

studies are a�empting to overcome the difficulties faced in the application of ACO, some parts of 

the mathematical analysis remain unsolved. It is also observed that despite its popularity, studies 

have not been successful in incorporating the uncertainty in ACOs and the problems of 

dimensionality, convergence and stability are yet to be resolved. Nevertheless, ACO is a potential 

area for further research as the studies on the applications of these techniques are few. 

Keywords: ant colony optimization (ACO); combinatorial optimization problems; hydrology; 

hydrogeology; nature-inspired algorithm 

 

1. Introduction 

Nature provides simplistic approaches to solve many complex and challenging 

problems encountered in real life. Algorithms that draw inspiration from natural systems 

and processes are called “Nature Inspired Algorithms” [1,2]. These algorithms help in 

arriving at solutions because they easily adapt to the dynamic changes in nature. They 

can be inspired either from biological systems or from natural systems to solve complex 

optimization problems [3]. Nature inspired algorithms mimic nature to solve real-life 

problems and are applied to obtain an optimal solution [4]. 

Optimization techniques have a noteworthy role to play in solving complex 

engineering problems. By far, many nature inspired algorithms have been able to provide 

convincing solutions for many optimization-related engineering problems [1,2,5–7]. 

It is inferred from previous studies that the capabilities of modern techniques and 

advanced problem-solving algorithms have not yet been utilized completely to tackle the 

challenges faced in the field of water resources management [8]. It is important to analyze 

the potential use of available evolutionary algorithms to solve complex optimization 

problems persisting in the domains of hydrology and hydrogeology, considering their 

spatial and temporal complexities. Studies related to hydrology and hydrogeology mainly 
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comprise reservoir operations, water distribution systems, coastal aquifer management, 

long-term groundwater monitoring, parameter estimation, urban drainage and storm 

network design, etc. 

Among the many nature inspired algorithms, swarm-based algorithms are the most 

frequently used approach for complex optimization problems. Especially in solving issues 

related to water resources, swarm-based optimization has been used by researchers on a 

wide scale. Swarm-based optimization algorithms are based on the principle of swarm 

intelligence, which depends on large masses of agents that work based on stochastic 

choices. These agents interact locally within each other and also with the environment. 

The strategy of a swarm system facilitates building complex simulation models that help 

in scheduling, optimization, routing and clustering [6–10]. Out of the many swarm-based 

algorithms, ant colony optimization (ACO) is one such metaheuristic approach that is 

widely used in the field of hydrology and hydrogeology [11]. 

Agarwal et al. [4] studied the applications of ACO for water resources. This study 

was carried out when ACO was still being explored, and hence was not able to fully 

address the advancements made in multiple objective and continuous domain 

applications of the algorithm. Although the a�empt is acknowledged, since different 

variants of ACO and enhancements in constraint handling and convergences were not 

taken into consideration, it demands the need for an elaborate study. Later, another 

review on the applications of ACO for water resources tried to bridge the gap, however, 

it did not include the applications of ACO variants and hybrid ACO algorithms [8]. 

However, there are many algorithms which are not documented properly and 

implementations of them have not been reported. Thus, the researchers are not fully aware 

of the progress across different approaches due to rapid growth of nature inspired 

algorithms. Therefore, awareness of all the algorithms is very much necessary, because 

studies on nature inspired computing are currently skewed toward only a few algorithms. 

Considering these research gaps, this study presents a brief overview of the various ACO 

algorithms and variants that have been used for various hydrology and hydrogeology-

related applications. In addition, as a cu�ing-edge application, hybrid ACOs in 

combination with other deep learning models are being used to increase the accuracy of 

forecasting. This study was carried out with an aim of reviewing the applications of ACO 

algorithms for solving various optimization-related problems in the area of water 

resources management. Further, this study explores the scope of application of ACOs in 

other domains that require large-scale global optimization. The remaining sections of this 

paper explain the methodology adopted, followed by behavior, variants and workflow of 

ACOs and their applications in the field of water resources management. 

2. Methodology 

This study was initiated by systematic search and identification of research articles 

published in renowned journals based on information available on public domains. 

Firefox, Google Chrome and Microsoft Edge are the browsers that were used to establish 

a thorough search on the internet. Further popular scientific literature search tools such 

as Scopus, Google Scholar, Springer Link, ScienceDirect, IEEE, Bielefeld Academic Search 

Engine (BASE), Clarivate Web of Science and Directory of Open Access Journals (DOAJ) 

were also used. The key words that were used to carry out these searches were Nature-

based algorithm in hydrology and hydrogeology, applications of ACO in hydrology and 

hydrogeology, ACO techniques for groundwater and surface water, Groundwater and 

nature-based algorithms (NBA), ACO implemented on various domains, non-

deterministic polynomial-time hard problems (NP-hard), hydrogeological applications of 

NBA, ACO for groundwater, swarm optimization for hydrogeology, hydraulic 

parameters using NBA, ant colony and groundwater, etc. These searches fetched about 

1500 documents, which were thoroughly studied. The results included peer-reviewed 

journals, conference papers, technical reports, short articles, and review papers. The 

reports and conference publications that were available on the open-source platform were 
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not considered for this review. Thus, the scientific and technical reports and conference 

abstracts were excluded. As the authenticity and originality of these documents could not 

be ascertained, it was decided to consider only the peer-reviewed publications in journals 

with an impact factor that are indexed in Web of Science. Examining these publications, it 

was observed that ACO approach has only been used in the field of water resources since 

2001 (Figure 1). The present work reports peer-reviewed publications in the field of 

hydrology, hydrogeology and other related fields from 2001 until April 2023. This effort 

led to only 141 publications, from which 29 publications related to hydrology and water 

resources using ACO were finalized. Figure 1 shows the number of publications and the 

fields of application with respect to year. In the initial stages, ACO was extensively used 

for optimization of water distribution systems, and later was used for other critical 

applications in hydrology such as reservoir optimization, long-term groundwater 

monitoring, etc. After 2006, ACO was also used for optimization of parameters such as 

transmissivity and storage co-efficient, evapotranspiration permeability analysis, spatial 

evaluation of water quality, and in a few groundwater flow modelling applications. It is 

observed that from 2001 to April 2023, ACO has mostly been used for reservoir 

optimization and water distribution systems, followed by optimization problems for 

identifying hydrogeological parameters. 

 

Figure 1. Quantitative analysis of publications in the field of hydrology and hydrogeology. 

3. Ant Colony Optimization 

3.1. Clustering Behavior of Ants 

Ants possess the ability to build cemeteries by gathering dead bodies to a single place 

[12]. They organize the spatial disposition of larvae into clusters in such a manner that the 

young and small larvae occupy a position in the cluster center, while the older ones 

occupy a place at the periphery. This clustering behavior of ants has initiated many 

scientific studies, and many simple probabilistic models inspired from these behaviors 

have been built and tested [7]. Cooperation among ants helps them arrive at good 

solutions for discrete optimization problems [7,10]. 

The behavior of ants to create an optimal trail can be elucidated in four steps (Figure 

2): (i) Initially, the environment is clean and the probability of ants choosing any route is 

the same. (ii) Ants choose different paths, some a shorter path and some longer ones. As 

they move, pheromones are deposited along their path. (iii) When the cycle repeats and 

ants continuously travel along that path, the shorter path will have a stronger pheromone 

trail sooner and faster. To decide the next move, ants use probability function weighted 

according to the number of pheromones deposited on the trail. Hence, more ants opt for 

the shorter trail. (iv) After some time, the initially dropped pheromones evaporate, and 

the shorter trail becomes dominant since more pheromone is collected in this path. Hence, 

it appears as if an intelligent species chose the best path, however the fact is that it evolved 

from the small, simple changes made by individuals. 
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Figure 2. Basic ant colony behavior that facilitates optimization. Step (i) represents equal probability 

of ants choosing any route. Step (ii) shows ants choosing different paths. Step (iii) indicates that the 

shorter path has a stronger pheromone trail and reaches the food source faster. Step (iv) illustrates 

ants following the shorter path with stronger pheromone depositions. 

3.2. Variants of ACO 

The initial system that was inspired from the ant behavior is known as ant systems 

(AS) [12–14], after which max–min ant system was introduced. Since AS had an early 

convergence issue and many times was not able to trace the shortest path, it led to the 

development of other versions of ACO [11–14]. Meanwhile, MMAS is a hybrid algorithm 

that was developed for solving asymmetric travelling salesman problems (TSP). It is 

reported that MMAS follows a greedier search system than AS, and is one of the finest 

performing algorithms for quadratic assignment problem (QAP) and traveling salesman 

problems (TSP) [13,14]. To improve the suitability of the algorithm and computer 

efficiency, especially for dynamic topology optimization problems, the ACO algorithms 

were modified based on a new definition of pheromone and a new collaboration 

mechanism between ants, thus they were termed a modified ant colony optimization 

(MACO) algorithm [13–15]. 

Depending on the nature of the optimization problem and the objective function, 

different variants of ACO were used and are discussed in detail in Table 1. Some of the 

ACO variants used for solving optimization related problems are continuous ACO, 

constrained ACO (CACO), elitist ACO, partially constrained ACO (PCACO), fully 

constrained ACO (FCACO), ant colony system (ACS), ant system (AS), max–min ant 

system (MMAS), elitist rank system (ASrank), ASibest, elitist ant system (EAS), arc based 

ACO (ABACOA), ant colony clustering algorithm (ACCA), ant colony-coupled-

differential evolution (ACDE), discrete ant colony optimization (DACO), elitist 

continuous ant colony optimization (ECACO), fuzzy-CO and hybrid ACO algorithm.  
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Table 1. Variants of ACO, logic, their advantages and disadvantages. 

Method & Logic Advantages Disadvantages 

1. Ant system [10] 

Inspired by the foraging behavior of real 

ant colonies 

Capturing indirect 

communication among the 

individuals of a colony of ants 

–No concrete proof of how many ants 

would be required for convergence  

–Stopping criteria not mentioned 

–Optimal value for the stagnation 

behavior is not clearly specified 

–Getting stuck in local optima 

–How to decide varying the values for 

the various parameters 

2. Ant density model [15,16] 

Leaves a defined trail of Q for unit length in 

its path 

Requires extensive data on ant 

populations 

3. Ant cycle model [16] 

Adaptation of the ant quantity model, 

which basically performs the process of 

reinforcement in accordance with the 

distance travelled 

Limited scalability  

4. Ant quantity model [16] 

Deposits a pheromone quantity of Q on the 

entire path. 

Shorter paths will automatically have 

more pheromone deposits on them 

hence higher desirability 

5. Ant colony system [11,17] 

–Fine-tuned version of ant system 

–The probability rule used to find the 

path to move in next area is different from 

AS 

–Suitable for parallelization  

–The length of route covered is 

given priority 

Convergence speed and solution 

accuracy when dealing with a large 

amount of data is not defined 

6. ACS–3 opt local search 

[18] 

Additional local search heuristics to 

improve the exploitation capability of the 

algorithm 

–Overcomes the problem of 

getting stuck in local optima 

–Provides state transition rule, a 

global update rule and a local 

pheromone update rule 

–Increased computational complexity 

–Risk of getting trapped in local 

optima 

7. Max–min ant system [19] 

Exploits the best solution found during the 

iteration 

Limits the ant when it is about to 

choose an arc to travel by 

eliminating that arc if it does not 

fall between the interval 

Getting stuck in local optima 

aggravates the problem of premature 

stagnation 

8. Elitist ant system [20] 

–Preserves fittest individual of a system to 

save genetic information 

–Additional reinforcement to the parts 

belonging to the best path found since the 

beginning of the solution procedure 

Risk of beginning with poor initial 

solution is less 

–Local search becomes more important 

than global search 

–Effect of emphasizing short paths 

reduces when destination comes 

closer, especially when ants travel on 

good but sub-optimal paths  

9. ASibest (asymmetric best-worst ant 

system) [21] 

Asymmetry in the pheromone updates, 

where ants differentiate between the best 

and worst solutions found so far, and 

update pheromones accordingly. 

Faster convergence and improved 

solution quality compared to the 

basic AS algorithm 

–Potential for over-optimization 

–Limited applicability 

–Asymmetry may cause trade-offs 

between exploitation and exploration 
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10. Elitist ant rank system ASrank [22] 

Elitism and rank used to update trail 

weights considering the best ants’ rank-

based system ranks the resultant paths 

according to their distance travelled and 

provides them with a rank value. 

–Danger of over-emphasized 

pheromone trails using sub-

optimal paths can be avoided 

–Emphasizing good paths and 

good ants equally, hence well 

balanced  

–The results of this approach 

provide a balanced exploration 

and exploitation of the search 

space 

–Getting stuck in local optima 

–Potential premature convergence 

–Lack of diversity in solution 

exploration 

11. Hybrid ant system [23] 

Combines ant system with other 

optimization techniques to leverage their 

strengths  

–Enhanced performance by 

combining the strengths of 

different optimization techniques 

–Increased versatility 

–Robustness to local optima 

–Synergy of multiple algorithms 

–Higher computational cost 

–Increased complexity 

–Difficulty in parameter tuning 

–Increased risk of overfitting 

12. Fast ant system [24] 

Uses re-initialization of pheromones and 

does not consider pheromone evaporation 

–Uses re-initialization of 

pheromones to avoid stagnation 

–Enhanced exploitation–

exploration balance 

Only one ant is used, not the 

population. Hence, becomes a biased 

approach 

13. Cooperative genetic ant system [25] 

Combines both the genetic algorithm and 

ant system 

–Better chance of achieving global 

solution 

–The global best will be chosen 

and then pheromone is updated 

–More solution space is explored 

using GA which yields global 

optimum 

–Iterations give good results only for 

particular parameter values 

–Increased complexity 

14. Improved ant system [26] 

Dynamically adjusts the pheromone density 

values to avoid local optima 

–Pheromone density value set 

dynamically avoids the local 

optima 

–Efficient search 

–Reduced error accumulation 

–Heavy computational burden with 

multiple algorithms 

–Minimal reduction of errors 

compared with previous algorithm 

15. (Hybrid) model induced max–min ant 

system [27] 

Adjusted transition probabilities are 

developed by replacing static biased 

weighting factors with dynamic ones. 

Optimal arcs will be identified at 

each step of tour construction 

using dual information derived 

from solving associated 

assignment problem (AP) and the 

search will be discarded from 

future consideration  

 

 

–Requires additional computational 

overhead 

–Influenced by the bias problem-

specific model 

16. Cunning ant system [28] 

Introduces additional “cunning” behavior 

in ants to improve their search efficiency 

–Improved convergence speed 

–Robustness to local optima 

–Complexity in tuning parameters 

–Potential for bias or overfitting 

17. Population based ACO [29] 

Involves multiple ant colonies or 

populations working concurrently on the 

same problem 

–Enhanced exploration and 

exploitation 

–Improved convergence speed 

 

–Potential for interference among 

colonies 

–Increased computational overhead  
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18. Beam ACO [30] 

Uses limited number of top-ranked ants, 

also known as the “beam width,” for 

pheromone update and solution 

construction. 

–Faster convergence 

–Reduced memory usage 

–Better exploitation 

–Enhanced solution quality 

–Sensitivity to beam width parameter 

–Limited solution diversity 

–Reduced exploration 

19. Hyper cube ACO [31] 

Uses hypercubes to represent the search 

space and facilitate exploration. 

–Enhanced exploration as ants can 

search space concurrently 

–Robust to changes in problem 

characteristics 

–Additional layer of complexity to the 

algorithm 

–Requires careful tuning of hypercube-

related parameters 

 

20. Continuous ACO [32] 

Specifically designed for solving continuous 

optimization problems 

–Can handle a wide range of 

continuous optimization problems

–Robust to noise and can tolerate 

small perturbations in the 

objective function or constraints 

–Capable of performing global 

search in the continuous search 

space 

–May face challenges in fine-tuning 

and exploiting solutions to achieve 

high-quality solutions 

–May have slower convergence speed 

compared to gradient-based 

optimization algorithms 

21. Constrained ACO [33] 

Specifically designed to solve optimization 

problems with constraints, where the 

feasible solution space is restricted. 

–Capable of handling 

optimization problems with 

constraints, making it suitable for 

solving real-world problems 

–Versatile 

–Robust to constraints violations 

during the search process 

–Computationally expensive, 

especially for complex optimization 

problems 

–Needs to strike a balance between 

exploration and exploitation 

–May face challenges in finding high-

quality solutions that satisfy all the 

constraints 

22. Elitist ACO [34] 

Incorporates an elitist strategy to improve 

the exploitation of the best solutions found 

Elitist ACO reinforces the global 

best solution during each 

iteration, thereby enabling faster 

convergence towards the optimal 

solution 

–May converge prematurely to a 

suboptimal solution, especially if the 

elite solutions are not updated or 

diversified effectively 

23. Partially constrained ACO [35] 

Designed to handle optimization problems 

where some constraints are present but not 

strictly enforced 

–Allows for flexibility in handling 

constraints by not strictly 

enforcing them 

–Can explore solutions that 

violate constraints 

–Does not strictly enforce constraints, 

which can result in solutions that 

violate constraints 

–Uses a penalty-based approach to 

handle constraints, where violations 

are penalized 

–May lead to a trade-off between 

convergence speed and solution 

quality 

24. Fully constrained ACO [35] 

Optimization process takes into 

consideration the constraints of the problem 

and generates solutions that strictly adhere 

to all the constraints 

–Guaranteed constraint 

satisfaction 

–Convergence to feasible 

solutions 

–Strictly adheres to constraints, which 

may limit the exploration of the search 

space 

–Sensitivity to constraint changes 

25. Arc based ACO [36] 

Uses arcs, or directed edges, as the building 

blocks for constructing solutions 

–Ants only need to select arcs 

instead of vertices or components, 

hence reduced solution space 

–Improved solution quality 

–Less flexible compared to vertex-

based ACO 

–More complex to implement and 

configure 
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26. Ant colony clustering [37] 

Objective is to group a set of data points 

into clusters based on some similarity or 

distance measure 

–Flexible algorithm that can be 

adapted to various types of 

clustering problems 

–Good scalability 

–Converge to suboptimal clustering 

solutions if the search process becomes 

trapped in local optima 

27. Ant colony coupled differential 

evolution [38] 

Combines the principles of ant colony 

optimization (ACO) and differential 

evolution (DE) to solve optimization 

problems 

–Benefits from the global search 

capability of both ACO and DE 

–Converges to high-quality 

solutions efficiently due to the use 

of both exploitation (DE) and 

exploration (ACO) mechanisms 

–Computational complexity 

–Algorithm complexity 

28. Elitist continuous ACO [8] 

Designed for continuous optimization 

problems where the decision variables are 

continuous instead of discrete 

–Good global search capability 

–Can converge to high-quality 

solutions efficiently 

 

–Requires careful parameter tuning to 

achieve optimal performance 

–Limited exploitation capability 

29. Fuzzy-ACO [39] 

Incorporates fuzzy logic into the ACO 

algorithm. 

–Robustness to uncertainty 

–Good exploitation–exploration 

balance 

–Requires careful parameter tuning 

–Computationally expensive 

30. Hybrid ACO [40] 

Combines ACO with other optimization 

techniques to create a hybrid approach 

–Combines the strengths of 

different optimization techniques 

to provide enhanced optimization 

performance 

–Increased complexity 

–Computationally expensive 

31. Quantum ACO [41] 

Combines ACO with quantum computing 

principles, specifically utilizing quantum 

bits (qubits) and quantum gates to encode 

and manipulate information during the 

optimization process 

–Quantum parallelism 

–Quantum entanglement 

–Overcomes energy barriers and 

access search spaces that are 

inaccessible using quantum 

tunneling 

–High computational overhead 

–Limited quantum computing 

resources 

32. Induced max–min ACO [27] 

Uses additional heuristics and rules to 

update pheromone trails 

–Uses “induced perturbation” 

technique to introduce additional 

randomness in the search process, 

which enhances exploration of the 

solution space 

–Improved convergence speed 

–There is no guarantee that it will 

always find the global optimal solution 

–Induced perturbation technique adds 

additional computational overhead to 

the algorithm 

Apart from these, there are other variants of ACO like quantum ACO and cooperative 

genetic ant system approach, etc., that are used in other fields but not yet in hydrology 

and hydrogeology [42]. ACO variants that are being used for hydrological and 

hydrogeological applications are shown in Figure 3. 
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Figure 3. Variants of ACO used in hydrology and hydrogeology. 

3.3. Workflow 

ACO is a population-based metaheuristic method that functions according to an ant’s 

ability to find the best and the closest path from the nest to a food source [10]. The 

pheromone-based trail-following nature of ants is the motivation for the development of 

ACOs. Ants as a single unit can perform only a limited set of functions, while a colony of 

ants can enslave other ant species, build superhighways of food and information, wage 

war against others, and build bridges [6,7,10,11]. This influence of pheromones is 

mathematically modeled as a weighted random function and the weight is calculated 

using the existing pheromones in the trail. Studies have reported that ACO outperforms 

many other evolutionary algorithms such as genetic algorithms (GA) [7,10,11]. ACO 

algorithms can be used for discrete and continuous domains that have single and multiple 

objectives and have proven to be a metaheuristic approach that can find high-quality 

solutions to NP-hard, significant combinatorial optimization problems within a 

reasonable time [4]. They are also flexible and powerful tools in solving many spatially 

and temporally multifaceted water resources related problems. 

ACOs have been applied to many NP-hard combinatorial optimization problems 

such as QAP, the TSP, etc. A basic workflow of an ACO is depicted in Figure 4. In order 

to perform this task, the process is divided into steps and a pseudocode is developed with 

rules and constraints [10,11] (Figure 5). 
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Figure 4. Workflow of ACO. 

 
Figure 5. Pseudocode for ACO algorithm. 

4. Applications of ACOs 

Applications of ACO with respect to hydrology and hydrogeology include irrigation 

water allocation, urban drainage network design, groundwater long-term monitoring, 

reservoir optimization, watershed management, coastal aquifer management, hydraulic 

parameters stimulation and water distribution systems (Figure 6). 
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Figure 6. Applications of ACO in hydrology and hydrogeology. 

4.1. Reservoir Optimization 

Reservoir optimization is important to a�ain the paramount possible performance of 

a reservoir system [43,44]. It helps in arriving at decisions pertaining to storage over a 

period of time and release from reservoirs, taking into consideration the variations in 

inflows and demands. There are many studies that compare the applications of the 

traditional ACO algorithm to GAs in solving reservoir operations problems (Table 2). 

ACO was applied for optimizing operations of Hirakud Reservoir, which is a multi-

purpose reservoir system situated in Orissa, India, and identifies that ACO outperforms 

genetic algorithms in arriving at global-optimum solution for long-time horizon reservoir 

operation [45]. An improved ACO algorithm helped in refining the estimates of the 

optimal releases of the Dez Reservoir, as compared to the GAs, while the improvised ACO 

algorithm needs fine tuning of the parameters to arrive at expected results [46]. Moeini et 

al. [46] proposed a modified ant colony algorithm to determine optimal reservoir 

operation for continuous domains (ACOR). This algorithm was applied to the Dez 

Reservoir in southern Iran, and the performance has been compared to GAs. The main 

disadvantage of ACO algorithm is the enormous computer runtime, so an efficient 

methodology to decrease the runtime has been developed in this study. The same CACO 

algorithm for multi-reservoir parameter optimization has been used by [46]. Three 

different formulations of ACO, such as partially constrained ACO algorithm, max–min 

ant system, and fully constrained ACO algorithm were used to solve fourteen reservoir 

operation problems, and these techniques are compared to the conventional ACO 

algorithm. It was inferred that the new modified ACO techniques have an upper hand 

when compared to the traditional ACO algorithm to solve large-scale multi-reservoir 

operation problems [47] and can be used for solving complex water resource problems. 

CACO algorithm was used to determine a set of control parameters to identify the optimal 

operation of the Dez Reservoir. It is stated that CACO gave a good performance for global 

minimization of continuous test functions. A normalized squared deviation of the releases 

from the desired demands was assigned as the fitness function. In this study, CACO 

algorithm was compared with the solution obtained by DACO models and nonlinear 

programming (NLP) models. The CACO model is superior to the NLP and DACO models 

as they provide an alternative to the tedious trial and error-based approach by adopting 

an elitist strategy [48]. It is inferred that the previously experienced difficulty in 



Water 2023, 15, 1712 12 of 20 
 

 

substantiating the computational efforts required to execute an ant colony-based 

optimization problem has been resolved by some researchers; however, the techniques to 

overcome difficulties faced while parameter tuning are yet to be addressed seriously by 

researchers. 

Table 2. ACO for reservoir operations. 

Year ACO Variant Application 
Name of the 

Reservoir 
Reference 

2006 Improved ACO Single purpose 

Dez 

Reservoir, 

Iran 

[43] 

2006 ACO Multi-purpose 

Hirakud 

Reservoir, 

India 

[45] 

2008 ACO for continuous domains Single purpose 

Dez 

Reservoir, 

Iran 

[44] 

2013 
CACOA, UCACO, PCACO, 

FCACO, max–min ant system 
Multi-purpose 

Theoretical 

study 
[46] 

2018 CACO & DACO Single purpose 

Dez 

Reservoir, 

Iran 

[47] 

4.2. Water Distribution Systems 

Several studies have been dedicated to the improvement of techniques to optimize 

the capital costs allied to water distribution system (WDS) infrastructure (Table 3). 

Although traditional linear and nonlinear techniques have been used to solve many WDS 

optimization issues, for a constrained minimization problem, variants of ACO have been 

fruitful in managing the trade-off between various conflicting a�ributes [48]. A significant 

aspect of WDS network design is to find the optimum network layout that satisfies power 

consumption, pressure, and also minimizes cost while meeting a performance criterion. 

In their research, Simpson et al. [49] have studied with 14 pipes and have tried to optimize 

the WDS using different combinations of parameters. Global optimum solutions were 

achieved, and the sensitivity of the ACO algorithm performance has been analyzed using 

the optimal range for six parameters. The drawback of this technique is that experience is 

required to decide which parameter needs to be selected, but an alternate method that 

helps in deciding which parameter needs to be selected is lacking. [50]. Two benchmark 

WDS optimization problems were considered and budgeting for the two were studied. 

The findings of this study revealed that ACO algorithms can be considered as an 

alternative to GAs for finding near global optimal solutions and also computational 

efficiency [50]. The cost solutions mentioned in previous literature are not practically 

possible since they seem to be violating the minimum pressure constraints while studying 

using EPANET [51]. The ACO parameters were explained be�er by developing parametric 

guidelines for the application of ACO to WDS optimization using an ACO variant known 

as ASi-best, since it uses an iteration-best pheromone updating scheme [50]. It is observed 

that ASi-best provides the best efficiency and solution quality for the New York Tunnels 

problem but is only partially satisfactory for the Hanoi problem [51]. On the other hand, 

in order to understand the searching behavior of ants, their behavior was characterized 

into three categories: i) searching behavior for feasible and infeasible regions, ii) effective 

search for arriving at optimal or near-optimal regions of the search space, and iii) the 

algorithm exploration extent as it converges to solutions. Variants of ACOs were tested 
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under these conditions, including how internal operators affect each algorithm’s 

searching behavior [52]. 

A comparison between the performances of five ant colony algorithms was 

conducted to study the efficiency in optimization for WDS [52]. The algorithms are EAS, 

ACS, MMAS, and Elitist-ASrank. It was observed that MMAS and ASrank outperform all the 

other ant colony optimization techniques available, particularly in minimizing the design 

costs of WDS. The drawback is that the study has been carried out only for systems that 

are mentioned in the literature, but no real time applications have been carried out yet to 

check the validity of the results. While looking at the application of ACOs for various WDS 

applications, there are a lot of convincing results and satisfactory observations, but most 

of them have been conducted based on literature data, and real-time applications are not 

available. Further, studies involving the sensitivity of ACOAs to the parameters are few, 

and scenarios where ACOAs should be used in preference to GAs are not very convincing. 

To overcome this, a real water distribution network of El-Mostakbal City, Egypt, to 

determine the least-cost design was applied and determined that ACO is suitable only for 

simple networks, while PSO is the best for complex designs and they converge to the best 

solution [53]. In a parallel study for two typical canal irrigation systems in China, ACO 

algorithms yielded reduced leakage loss of delivered water from 7.29% to 5.40%, and 

8.97% to 7.46% [54,55]. In order to optimize scheduled water delivery under water 

shortage conditions from an irrigation canal in Iran, applications of ACO were compared 

with Fuzzy SARSA learning model (FSL) [56]. The FSL method outperformed ACO 

method under three emergency operations and also led to less maximum absolute error 

(MAE) and integral of absolute magnitude of error (IAE) in comparison to the ACO 

method. 

Table 3. ACO for WDS. 

Year ACO Variant Application Reference 

2001 ACO Parameter selection  [49] 

2003 ACO Optimal design  [50] 

2005 ACO, ASi-best Optimal design  [51] 

2012 ACO Metric analysis for ACO search behavior [52] 

2014 
Elitist AS, AS, 

ERAS, MMAS 
Minimize design cost [53] 

2017 
EA, GA, PSO, 

ACO, MA 
Design and rehabilitation  [54] 

2018 ACO Planning of water delivery schedules [55] 

2020 
Fuzzy SARSA 

learning and ACO 

Water delivery scheduling under water shortage 

conditions 
[56] 

4.3. Hydrogeological Parameter Estimation 

Studying movement of water, drinking water quality, transmissivity, storage 

coefficient and water level are of some important hydrogeological parameters that are 

instrumental in se�ing up environmental policies (Figure 7 and Table 4). A hybrid ACO 

algorithm to identify the storage coefficient and transmissivity for a two-dimensional, 

unsteady state groundwater flow model has been used [57]. Hybrid ACO algorithms are 

more advantageous in applications of gradient-based optimization methods [57]. This is 

mainly because ACO algorithms are global search algorithms and possess the ability to 

identify a parameter set in a stable manner. As an added advantage, this study has 

successfully formulated an optimization problem for parameter identification in an 

inverse problem [58]. 

ACO algorithms have the ability to search for a globally optimal solution. Hence, for 

estimating optimum permeability ACO has been used in Mansuri Bangestan Reservoir 
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located in Ahwaz, Iran [58]. A hybrid ACO algorithm along with back propagation 

algorithm (ACA-BP) was used to fasten the evolution of neural networks and improve its 

forecasting precision. The available geophysical well log data was made use of, and it is 

proposed that ACA-BP yields be�er results than using the BP algorithm alone. However, 

while using this methodology, it is reported that identification of optimal neural network 

topology is strenuous, and the validity of these results when compared to the already 

proven GAs do not have any valid proof [58]. 

Since drinking water quality is an important parameter, [59] reported an evaluation 

method for spatial evaluation of drinking water quality by using GIS and ant colony 

clustering algorithm. This method integrates ACCA along with geographical information 

system (GIS). Strategies such as probability conversion functions, average similitude 

degree, and mixed distance function were used to improvise an ACCA algorithm. Various 

water quality grades were developed using ACCA in the GIS environment. The results 

derived from ACCA were compared with competitive Hopfield neural network (CHNN). 

The spatial water quality grades obtained from ACCA possess the upper hand when 

compared to CHNN [59]. Since spatial water quality assessment is an important 

parameter, it is very important that we make maximum use of this intelligent 

methodology. This methodology takes into consideration over 35 parameters, and hence 

it can be considered a valid procedure for evaluating water quality. 

A methodology to assess the movement of water in the unsaturated media has been 

studied, where the ACO algorithm has been used extensively since it is a metaheuristic 

approach [60]. As metaheuristic approaches require parameters to be differentiable or 

continuous, ABACOA is preferred, especially because they have not used gradient or 

Hessian matrix from classic optimization. A modified ACO algorithm estimates Mualem-

van Genuchten unsaturated hydraulic soil parameters for vadose zone using a sequential 

fi�ing. Inferring from the above studies it can be concluded that there is a future scope for 

estimation of parameters in inverse problems for groundwater hydrology. ACOR is 

coupled with ANFIS (ANFIS-ACOR) and used to study spatial salinity distribution. ACO 

is being widely coupled with machine learning algorithms to predict soil salinity in 

different environmental conditions and prediction of groundwater salinity [61]. Electrical 

resistivity imaging is used to reconstruct a conductivity model of subsurface water-

bearing bodies. A priori constrained improved ACO algorithm for 3-D resistivity 

inversion was observed to be good at controlling search direction and improving 

inversion efficiency [62]. The efficacy of ACOs has been positively harnessed in 

combination with Fuzzy logic as well as the recently developing machine learning models 

such as neural networks, support vector regression, etc. in optimizing parameters in water 

quality simulation model, simulating of discharge, and evapotranspiration. ACOs, when 

compared to other optimizing algorithms, offered increased accuracy and be�er 

performance [63–66]. 

Table 4. ACO for hydraulic and hydrogeological parameters. 

Year 
ACO 

Variant 
Application Reference 

2006 
Hybrid 

ACO 

Transmissivity and storage co-efficient for unsteady 

groundwater flow 
[57] 

2012 ACO-BP Permeability analysis [58] 

2014 ACCO Spatial evaluation of water quality [59] 

2016 
Modified 

ACO 
Flow modelling  [60] 

2021 ACOR Water quality management [61] 

2022 
Improved 

ACO 
Earth resistivity [62] 
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2022 ACO Groundwater salinity [63] 

2022 ACO River water level forecasting [64] 

2023 ACO Evapotranspiration [65] 

2023 ACO Discharge [66] 

 

Figure 7. Variants of ACO for hydrogeological parameter optimization. 

4.4. Other Applications 

ACO and its variants are also used for other applications in water resources 

management. A brief description of those applications are described in this section (refer 

Table 5).  

Table 5. ACO for other applications in water resources. 

Year ACO variant Application Reference 

2006 ACO-LTM Groundwater long-term monitoring [67] 

2009 ACDE Water resource problems [68] 

2010 ECACO Seawater intrusion management [69] 

2012 ACO + SWAT Non-point source pollution management [70] 

2016 ABACO-TGA Urban drainage network design [71] 

2018 ACO Water management in irrigation areas [72] 

4.4.1. Long-Term Groundwater Monitoring 

ACO has been incorporated to develop a methodology that optimizes long-term 

monitoring (LTM) of groundwater to help monitor human health risk at post-closure sites 
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where contaminants are still present and to study the performance of groundwater 

remediation [67]. A set of redundant sampling locations was identified by the ACO-LTM 

algorithm, and global optimal or near-optimal solutions were determined. This algorithm 

has been applied to a small network comprising 30 wells; however, it needs to be applied 

to large-scale field sites, and it requires temporal optimization of a long-term monitoring 

network. 

4.4.2. ACDE-Water Resources Problems 

ACO coupled with differential evolution for solving a few real-time water resources 

problems such as water pumping system formulation, parameter estimation of water 

quality model, etc. was studied. To overcome the slow convergence rate and large 

computational time required for optimization of objective function, differential evolution 

was coupled with ACO to develop a modified algorithm known as ACDE [62]. ACDE was 

validated for two real-life problems, and also for a test bed of seven benchmark problems. 

As aimed, the computational effort was reduced, and the global optimal solution was 

a�ained without compromising the quality of the solution. ACDE algorithm also 

outperformed other algorithms in solving a few real-life problems [68]. 

4.4.3. Coastal Aquifer Management–Salt Water Intrusion 

ECACO algorithm was used for optimal control variable management of a coastal 

aquifer to control saltwater intrusion. ECACO was used for maximizing the total water-

pumping rate as well as simultaneously controlling the drawdown limits and protecting 

the wells from saltwater intrusion. In addition, a numerical simulation approach was 

combined with an ECACO algorithm to study potential applicability of the model for 

optimal management of a coastal aquifer [69]. Although this study gave reasonable 

results, there was more scope for integrating the proposed methodology approach, with 

already commercially available simulation tools. This study was carried out for a complex 

aquifer; however, only preliminary studies were conducted. With saltwater intrusion 

being an alarming issue of the hour, the maximum potential of variants of ACOs are yet 

to be utilized by researchers. 

4.4.4. Non-Point Source Pollution Management–Watershed Management 

ACO algorithm was applied on a breakthrough watershed management 

methodology. The ultimate aim of this study was to practice cost allocation among 

landowners in a watershed and control the total sediment yield in the watershed. The 

problem of non-point source pollution management in watershed scale reached a feasible 

solution as ACO algorithm helped in decision making without any additional 

computational burden. ACO coupled with a SWAT model helped in selecting optimum 

decision vectors [70]. Hence, they can help landowners to optimally control the sediment 

release from basins in pre and post development conditions and reach payoffs. 

4.4.5. Urban Drainage and Storm Network Design 

Sewer networks play crucial roles in human protection and environmental health 

management. Hence, it is very important to solve sewer network design optimization 

problems. ACO and its variants were coupled with an appropriate hydraulic simulator in 

a simulation-optimization framework, taking into consideration inter-network effects 

such as surcharge and backwater, and reduced simplification of system representation. 

ACO algorithms were also successfully used to optimize the management of stormwater 

retention tanks. Studies suggest that heuristic approaches solve large-scale sewer network 

design optimization problems be�er when compared to other methods. ACO algorithms 

augmented with tree growing algorithms (TGA) resulted in efficient estimation of 

network design and they are known as ABACOA [71]. Verdaguer et al. [71] have used both 

constrained and unconstrained versions of ABACOA algorithms to determine the nodal 
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cover depths of sewer pipes, by considering the pipe slope. This is mainly because of the 

incremental solution building capability of the ACO algorithms. Constrained ABACOA-

TGA produced be�er results with the same computational effort [71]. This technique 

appears to always be feasible for arriving at a minimum slope constraint. Further research 

and development are necessary in this area of water distribution system by considering 

design efficiency, multiple objectives, integrated design, risks and uncertainties, and 

constraint performance-based design. Applications of ACO algorithms in the area of 

urban drainage and stormwater network design has still not gained popularity and 

importance. 

4.4.6. Optimal Crop and Irrigation Water Allocation 

An improved ACO formulation for the allocation of crops and water to different 

irrigation areas enables dynamic decision variable option adjustment and utilizes domain 

knowledge to bias the search towards selecting crops that give maximum net returns and 

water allocations that result in the largest net return for the selected crop, given a fixed 

total volume of water [72]. The use of visibility factors optimized the ability to identify 

be�er solutions at all stages of the search, especially at smaller events of function 

evaluations. Hence, using ACO to identify near-optimal solutions for detailed irrigation 

scheduling for individual crops is be�er than the computationally costly, mechanistic crop 

growth models. 

5. Conclusions 

ACO algorithms have gained immense a�ention of the researchers in recent years 

since they are nature-based approaches providing solutions to multi-dimensional and 

multi-modal problems. Many researchers have used ACO in the field of manufacturing 

and production, robotics, bioinformatics, telecommunication, water resources 

management, etc. ACOs have gained a�ention of the water resource managers as they are 

one of the most suitable optimization algorithms for non-deterministic polynomial hard 

problems and most of the optimization problems are complex and have multiple 

parameters for optimization. Due to its self-evolved simplicity and natural distribution, 

ACO is prevalent in solving multi-objective optimization problems in hydrology and 

hydrogeology. ACOs have mostly been applied for hydrological applications such as 

optimizing reservoir operations and water distribution and stormwater network design. 

However, the hydrogeological applications are limited only to parameter estimations. 

ACO algorithms have claimed to arrive at be�er results as compared to GAs. It is inferred 

that ACO techniques consume significant computational time, and that ACO algorithms 

have not been able to overcome the problem of dimensionality at a desired level of 

satisfaction. On the other hand, the literature also presents a debate on the stability and 

convergence of these algorithms. In addition, since real-time systems are susceptible to 

uncertainty, the deterministic models seem to be oversimplified versions of real-life 

systems. Hence, incorporating real-life uncertainty in a natural way is needed. 

Nevertheless, ACOs are giving reasonable solutions for complex hydrology and 

hydrogeological applications and have potential for further research. 
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