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Abstract: Knowledge of crop water requirements is important in supporting irrigation management.
Evapotranspiration (ET) is commonly measured with a variety of instruments and field procedures,
but it is also typically computed or modeled using the FAO56 or FAO66 methods. The adoption of
this approach requires the assessment of the crop coefficients. Some data are available for own-rooted
hazelnut trees, but no data have been reported for young and grafted hazelnut trees. There is a need
to update nut-tree crop coefficients, especially considering modern cultivars and production systems,
such as those with a high tree density per ha—!. In this paper, the FAO66 crop transpiration coefficient
K. 1r and the FAO56 dual crop coefficients K, were assessed for the mid-growing season of a young
grafted hazelnut orchard. The field data were acquired manually and using UAV. The coefficients
were determined for three tree densities and for two growing seasons. The crop coefficients, obtained
using the FAO66 method, agreed with the literature data referring to low densities, while the FAO56
method could allow us to better define the crop coefficients for high-density hazelnut orchards.

®
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1. Introduction

Water scarcity, in relation to climate change, has become the main barrier to maintain-
ing crop production, especially in Mediterranean areas [1-4]. Therefore, it is important
to develop sensible irrigation strategies to reduce water use while maintaining adequate
yields [5]. Many studies on the crop water requirements of vegetables have been pro-
duced since the publication of the FAO56 guidelines in 1998 [6] and FAO66 guidelines in
2012 [7] for the yield response to the water of fruit trees and vines. A recent review has
shown that the determination of crop evapotranspiration (ET.), using the crop coefficient
K.—the reference evapotranspiration ETy approach—is the most widely used method for
irrigation water management [8]. Another recent study reviewed [9] the research on the
FAOS56 crop coefficients of fruit trees and vines performed over the past twenty years. It
showed that many studies have been published for table and wine grapes, oranges, and
olives. In addition, a few recent studies have been conducted on almonds (Prunus dulcis
Mill. D. A. Webb) [9].

To date, there is a lack of studies on the crop coefficients of hazelnuts (Corylus avellana
L.), pecans (Carya illinoinensis L.), pistachios (Pistacia vera L.), and walnuts (Juglans regia
L.) and their application in irrigation management. For hazelnut trees, only two recent
studies have been identified [10,11]. The first one [10] was conducted on young trees from
the “Itarski Dugi” cultivar in a micro-sprinkler orchard (833 plants ha~!) in Serbia. In this
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work, the soil water balance (SWB) was used to measure the reference evapotranspiration
(ETp). The second [11] was conducted on hazelnut trees from the “Tonda Giffoni” cultivar
in a drip-irrigated orchard (333 plants ha~!) in the Maule region in Chile. In this work,
the eddy covariance system was used to determine the K.. Past works used lysimeters
to determine the hazelnut coefficients K. of the cultivar “Negret”, grown in a Spanish
orchard with 500 plants ha~!, and of the cultivars “Barcellona” and “Ennis”, which were
grown in a French orchard with 416 plants ha~! [12,13]. However, in the FAO56 [6]
tabulated single basal crop coefficients for use with the FAO Penman—Monteith ETy, K,
values are not reported for hazelnuts, but only for walnuts and pistachios. In addition, all
the aforementioned studies were carried out on own-rooted bush-trained hazelnut trees,
produced by layering, with a low tree-planting density. Based on our knowledge, until
now, no studies have been conducted on hazelnut trees grafted on not-suckering rootstock,
such as “Corylus colurna” L., with a single trunk and a vase training system. A recent
study showed that grafted plants may access deeper soil water layers in comparison with
own-rooted ones and have the potential to more effectively tolerate thermal variations and
drought conditions during the vegetative and productive seasons [14]. In light of the above
factors, as already stressed by [9], there is a need to update nut trees’ crop coefficients,
in particular for hazelnuts, while considering modern cultivars and production systems,
especially those with increasing tree density.

The aim of this work was to assess and compare the FAO66 crop transpiration coeffi-
cient K, 1, and the FAO56 dual crop coefficients, K, for the mid-growing season of young,
grafted hazelnuts from a new, recently patented cultivar (n. EU52157). We make reference
to three tree densities, ranging from one that is more common in traditional growing areas
(lowest density) to those with many more trees, which are common in modern hazelnut
orchards, highly mechanized, and always irrigated [15].

2. Materials and Methods
2.1. Study Site Description and Tree Sampling

The research was carried out in an experimental orchard of the Department of Agri-
cultural, Food, and Environmental Sciences of the University of Perugia, located in Central
Italy (42°58/22.82'" N, 12°24/13.02" E), 161 m a.s.l., during the growing season of 2021 and
2022. The orchard has an area of about 2300 m?, and it is composed of 6 rows 4 m away
from each other, each containing 43 trees divided into 3 plantation densities as follows:

e 625 trees ha~ 1, spaced 4 m between rows and 4 m on the row, used as a control
treatment (the common density used by farmers);

e 1250 trees ha 1, spaced 4 m x 2 m;

e 2500 treesha~!, spaced 4m x 1 m.

The tree densities were chosen according to the past literature [12,16]. The low tree
density is representative of traditional hazelnut orchards, while the medium and high
densities are currently used in the new cultivation areas. Specifically, on the same row, the
first 25 plants are spaced 1 m from each other, the next 12 are spaced 2 m apart, and the last
6 are placed 4 m apart. Each tree density is replicated three times, once per row.

All trees, grafted on no-suckering rootstock, were trained as single trunks with four
main branches each.

The orchard is made up of trees belonging to two of the main Italian hazelnut cultivars,
chosen for their higher productivity and early production: Tonda di Giffoni in the first
three rows and Tonda Francescana® in the next three rows.

In this paper, the trees studied belonged only to the hazelnut cultivar Tonda Francescana®.
The meteorological data were monitored using a Spectrum (Thayer Court, Aurora) Watch-
Dog 2000 Series Weather Station [17] located within the experimental site and were recorded
at a time resolution of 5 min.

The DJI (Shenzhen, China) Phantom 4 (P4) multispectral unmanned aerial vehicle UAV
was used to assess the tree canopy and ground cover characteristics according to [18,19].
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Moreover, the FAO66 procedure described in Section 2.3, calibrated for olives, was used to
parametrize the K, ;- coefficients for the hazelnut orchard.

2.2. Manual Measurements

The following data were acquired to fill the equations reported in Section 2.3.

In other tree crops, corn (Zea mays L.), cotton (Gossypium arboretum L.), peanuts [20],
soybean (Glycine max (L.) Merr.), and wheat (Triticum aestivum L.) LAI was remotely es-
timated using photogrammetry and UAVs; studies have been performed to extract the
LAI [21]. Very few studies have been carried out on tree crops, mainly on vineyards using
higher spatial resolution remote sensing. This species is trained with the vertical shoot
position trellis system or pergola system with horizontal shoot position [21,22], while
hazelnut plant has a unique plant architecture with bush growth habit and dense foliage,
three or four main branches, and canopy shape similar to the cylinder; all of this makes it
more difficult to implement LAI models using UAV. For these reasons, in the present study;,
data determined using UAV referred only to canopy characteristics such as tree height.

LALjqy (the leaf area index, that is, the ratio of the plant leaf area to the canopy cross-
sectional area), LAlypqrq (the ratio of the plant leaf area to the tree distance area), and
LAD or DAF (the leaf area density) were measured and calculated following the procedure
reported by [23] for 9 trees per growing season.

The LAI values were manually measured using an iron bar (2.5 m long, 0.1 m wide,
0.1 m thick) with holes, for a total of 25 measurements, positioned 10 cm apart when a
metal rod is inserted at a perpendicular angle; the iron bar is equipped with a level to keep
the rods perpendicular to the ground. The iron bar is moved from the trunk to the inter-row
by an operator, who inserts the metal rods and counts the leaves at the intersection points
on a grid set up in the canopy. Measurements with this instrument were performed in two
canopy directions, to the east side and the west side. The mean leaf area per tree density
plantation was calculated with SigmaScan Pro5 (Richmond, CA, USA) program [24] by
measuring the area of 30 leaves (5 for each tree) collected from the whole canopy.

Moreover, ground cover was obtained as the ratio between the average canopy cross-
sectional area and the ground area for each plant, equal to 16 m2, 8 m2, and 4 m?, re-
spectively, from the highest to the lowest tree density plantation. The average canopy
cross-sectional areas were calculated as reported by [19].

The radiation intercepted from the tree Q; was measured manually using a luxmeter;
this is a kind of ceptometer but is larger in size, as it consists of metal bars: a fixed one
that is planted on the ground and horizontal to it, which is 150 cm long, and another piece
of furniture perpendicular to the first, which is 100 cm long. The latter has a support on
top to hold a special bar equipped with a photosensitive sensor, which generally consists
of a transducer (a photovoltaic cell). When reacting to light intensity, it generates an
electric current that is detected by a specific galvanometer equipped with a screen and
connected with cables calibrated in lux. The movable bar can therefore slide in different
positions along the horizontal bar, from 0 cm (ground) to 50 cm or 100 cm, and it can also
be increased in height by means of a screw, from 0 cm (ground) to 100 cm. In this way;,
the intensity of light is detected at different heights of the plant and is compared with the
light measured in full sunlight, revealing the light interception by the tree canopy. This
parameter is important because there is a direct relationship between cumulative ET and
PAR (photosynthetically active radiation) light interception by the tree canopy; a higher
PAR light interception value corresponds to higher ET [25]. To obtain an estimation of the
light interception by the whole tree canopy, the canopy light interception is expressed as
the mean value of all data recorded at different distances from the trunk and tree heights.
A completely randomized design (CRD) is the model used so that each experimental unit
has the same chance of receiving any one treatment. For the CRD, any difference among
experimental units receiving the same treatment is considered an experimental error.
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2.3. Evaluation of the Hazelnut Orchard’s Crop Coefficients Using the FAO66 Method

As assessed by FAO66 [7], the canopy size and stomatal conductance are the two
main parameters that determine tree transpiration Tr. Therefore, the models needed to
calculate Tr in different orchards, as a function of the size and conductance of the tree
canopy, must be specific for each tree species. Orchard ET. is considered the net irrigation
requirement and, in well-managed irrigation systems, is the major component of the
irrigation requirements. Orchard ET, may be calculated using crop coefficients and ET),
or by estimating its individual components, namely, transpiration and evaporation from
the soil.

Orchard or vineyard ET. may be calculated as the sum of four components [7]:

ET, =Tr+ Trcc + Eyw; + Ey; 1

where Tr is tree transpiration, T, is cover crop (or actively growing weed) transpiration,
Ey is the surface evaporation from the soil wetted by the emitters, and E; is the surface
evaporation from the rest of the soil surface outside the emitter wetting pattern.

Evaluation of Tree Transpiration Tr

Steduto et al. [7] proposed a method to derive the tree transpiration Tr for an orchard,
as follows:
Tr = ETo-K¢,1y (2)

where Tr is the tree transpiration (mm); ET) is the reference evapotranspiration (mm); and
K. 1+ is the transpiration coefficient, as follows:

Kot = (Q4-F1)-F2 ®)

F1 depends on tree density, i.e., F1 = 0.66 for tree densities > 250 trees/ha. F2 is
the monthly tabulated coefficient; in this case, F2 = 1.25 for June and July, and F2 = 1.20
for August.
The parameter Q; is the radiation intercepted by the tree (fraction), calculated
as follows:
Qp =1— ¢ Kol @)

with
Kext = 0.52 +0.00079-dp — 0.76-e — 1.25-DAF 5)

Keyt is the radiation extinction coefficient; dp is the tree density (trees/ha); and DAF is
the leaf area density:

DAF =2 —0.53:(V, —0.5), (note : DAF must be < 2) (6)

with p
— .. p
Vu=" <10000) @

where V, is the canopy volume per unit ground surface (m®/m?), and V is the canopy

volume (m?3/tree):

Vo = %~7‘[-D2-H (8)

where D is the canopy’s average diameter (m), H is the canopy height (m), and e is the
exponent equal to 2.718.

The coefficients of Equations (5) and (6) were calibrated and tested for olives in a
Mediterranean environment [26,27].

For a preliminary evaluation of the method, Equations (5) and (6) were applied to the
hazelnut orchard.
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In Equation (7), the canopy volume V) was substituted with the volume V,, evaluated
using the procedure described by [18,19]. Briefly, volume V, was calculated considering
the shape of the canopy obtained from the 3D point cloud reconstruction using a UAV
survey. From the raster file of the canopy, the volume was obtained in a GIS environment
by evaluating the volume between the DSM and a horizontal plane passing through the
lowest point of the same. Thus, the evaluation of the canopy volume per unit ground
surface V! (m3/m?) was made by substituting Equation (7) with the following formula:

dp
e .

Vi = Ve 70000 )
The tree density, dp, was set to be equal to 625 trees/ha, 1250 trees/ha, and 2500 trees/ha.
The leaf area density, DAFgs0, was evaluated using Equation (6) with V,:

DAFga0 =2 —0.53- (V) — 0.5) (10)

The DAFr40 was used for Equation (5), and by applying Equations (3) and (4), the
K. 1+ was obtained.

As described above, the coefficients of Equations (5) and (6) were derived for the
olive orchards. Using manual measurements of the leaf area density for each tree density
and for the whole growing season (reported later), the coefficients of Equation (6) were
derived. Therefore, manual measurements of the radiation intercepted by the tree, Q; ,,,
were available. Thus, these were used in two ways:

1.  To calculate the K, 1+ using Equation (3);

2. To derive the values of the product (Kex-V;,) from Equation (4). Substituting the V;,
values, obtained from Equation (9), the radiation extinction coefficients K.,; were eval-
uated, and the coefficients of Equation (5) were determined for the hazelnut orchard.

Student’s t-test was conducted to evaluate the significant differences between results
obtained for the different plant densities.

2.4. Estimation of the Hazelnut Orchard’s Crop Coefficients from the Fraction of Ground Cover and
Height (Allen and Pereira [16])

The FAO56 procedure for the estimation of the dual crop coefficient K, shows that
it is largely affected by the fraction of the soil surface covered by vegetation. Recently,
Allen and Pereira [6,15] suggested using a density coefficient K; as function of tree heights.
Focusing on orchards, Allen et al. [28] and Allen and Pereira [15] combined the influence
of crop density with standardized values for K i, Kemin, and Kep coper to compute a Ky,
value for orchards for both bare soil and active ground cover. This modification provided
flexibility in adjusting the value for K, and K, according to the fraction of ground shaded
by canopy, which is highly variable between orchards [29].

The single K. approach is not the most appropriate procedure for estimating crop ET
for conditions with variable wetting of the soil surface, particularly when the ground cover
is minimal. Changes in soil surface wetness are influenced by the frequency and duration
of rainfall and irrigation events, as well as by the type of irrigation system or strategy
employed, and these cannot be entirely accounted for using canopy cover estimates. This is
particularly noticeable under the conditions of partial canopy cover, when soil evaporation
(Es) is expected to be a considerable component of ET because increased energy reaches the
soil’s surface. Due to this limitation, a dual K. approach was developed to estimate crop
ET., which splits the K, into a T (K.;) component and an Es (K,) component [6]:

ET. = (Kg + K.)-ET (11)

The basal crop coefficient K, is defined as the ratio of the crop evapotranspiration over
the reference evapotranspiration (ET./ET() when the soil surface is dry, but transpiration
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chfull =F-

7

is occurring at a potential rate, i.e., water is not limiting transpiration. Therefore, ‘K, - ETy
primarily represents the transpiration component of ET,.

The basal K is correlated with the amount of vegetation because it mostly represents
transpiration. It can be expressed in terms of a density coefficient K;, where [15]

Keb = Kemin + Ka (Kepgur = Koin (12)

where K, is the approximation for conditions represented by the density coefficient K,
Kep funt 1s the estimated basal K. during peak plant growth under the condition of nearly full
ground cover (or LAI > 3), and K, ;,, is the minimum basal K. for bare soil (K ,;;, = 0.05
for orchards [30]). The coefficient K, s, represents a general upper limit for tall vegetation
with full ground cover and LAI > 3 under a full water supply; K s, for use with ET,
can be approximated as a function of the mean plant height and adjusted for climate
following [6]:

0.3
(min(l.O + kj,-h,1.20) 4 [0.04- (11 — 2) — 0.004: (RH 5, — 45)]- (Z) > (13)
where & is the mean maximum plant height (m), u; is the mean value for wind speed at
the height of 2 m during the midseason (m/s), RH,,;, is the mean value for the minimum
daily relative humidity during the midseason (%), and F, is an adjustment factor relative to
crop stomatal control, described below. As assessed by Pereira et al. [31], the effects of crop
height are considered through the sum (1.0 + kj,-11), with kj, = 0.1 for tree crops.

For trees and vines, the parameter F, is high when crops exhibit significant vegetative
vigor and decreases with pruning and training, as well as with limited water supplies [29].
Adopting the definition in [6] for F,, considering the variability of leaf resistance between
annual and perennial crops, it is assumed that

A+ (1 +0.34uy)
F =

= (14)
A+ 7(1 + 0.34u2,r%)

where 7; and 7y, are, respectively, the mean leaf resistance and the typical leaf resistance
[s m~!] for the vegetation in question, A is the slope of the saturation vapor pressure
vs. the air temperature curve [kPa °C~!], and v is the psychrometric constant, kPa °C~1,
both relative to the period when K, is computed. The original F, was developed to
empirically consider the effects of stomatal adjustment on K, 5,y and, therefore, on K, in
response to water stress [6], since stomatal closure causes a decrease in transpiration and
thus decreases K, and K.. The stomatal adjustment process is well known for annual crops,
while, for fruit trees, as for hazelnut orchards, it was less well known or unknown. Thus,
the effect of the stomatal adjustment processes on transpiration could be characterized by
the empirical adjustment of F,. Some default F, values were indicated by [15] for tree and
vine crops.

The density coefficient K; can be estimated as a function of the measured leaf area
index, LAI [m? m~?2], defined as the area of leaves per area of ground surface averaged over
a large area:

K, = (1 _ 6[70.7<LAI]> (15)

As described by [13], where estimates of the fraction of the ground surface covered by
vegetation, f,, are available, the density coefficient K; can be estimated as follows:

1
K, — min(l, MLfceff,fceff(m)) (16)

where f. . is the effective fraction of ground covered or shaded by vegetation [0.01-1] near
solar noon, M, is a multiplier of f; . that describes the effect of the canopy density on
shading and on the maximum relative ET per fraction of ground shaded [1.0-2.0], and /
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is the mean vegetation height (m). Thus, using the K; values obtained from Equation (15)
and the measurement data of f. off and &, the M|, coefficient was estimated.

3. Results
3.1. Application of the FAO66 Method

Using the measurements of the canopy’s average diameter D, the canopy height H,
and the canopy volume obtained from the UAV survey [18,19], V;,, the equations from (3)
to (6) were applied to the hazelnut orchard for each plant density (Figure S1). The mean
value for the midseason (June, July, and August) of the coefficients K, 1;, evaluated using
the coefficients tested for olive orchards [7] are reported in the first row of Table 1. The
resulting coefficients were significantly different for all the densities; in fact, Student’s t-test
showed that the means were significantly different ( = 0.05).

Table 1. Values of the K 1, coefficients derived from the FAO66 method [7] and using the coefficients
derived from the hazelnut orchard.

625 Trees/ha 1250 Trees/ha 2500 Trees/ha
Equations (3)—(8) 041 c 0.64 a 0.61b
Equations (3), (4), (17) and (18) 0.61b 0.65 ab 0.74 a

Note: In each row, means followed by different letters are significantly different, with p < 0.05.

For a tree density of 625 trees/ha, the values of DAFr40 were always higher than
2, and Equation (6) was set for DAF values lower than 2; as such, an adjustment of the
coefficients of Equation (6) seems to be necessary. Using manual measurements of the
leaf area density DAF,, for each tree density, as reported in Table 2, and for the whole
mid-growing season, the coefficients of Equation (6) were derived:

DAF,, =179 +2.83-V/ (17)

therefore, as described above, the manual measurements of the radiation intercepted by
the tree, Qj ,,,, were available (Figure S2). Therefore, Equation (5) could be modified for the
evaluation of the radiation extinction coefficient, K.y, as follows:

K., = 0.385 + 0.0047-dp + 4.67-¢ — 0.909-DAF (18)

where dp is the tree density (trees/ha), DAF is the leaf area density, and e is equal to 2.718.
From the application of Equations (3), (4), (17) and (18), the coefficients K, 1, were
evaluated and are reported in the second row of Table 1.
The coefficients were significantly different only between the densities of 625 trees/ha
and 2500 trees/ha and between the densities of 1250 trees/ha and 2500 trees/ha, since
Student’s t-test showed that the mean was significantly different from 0 ( = 0.05).

3.2. Application of the Allen and Pereira Method [15]

The procedure detailed in [15] was used to derive the K. Equation (14) was not
applicable because the value of the mean leaf resistance (r;) is not available in the literature
for hazelnut orchards. Due to these missing data, in this study, assuming a similarity in the
water sensibility behaviors of hazelnut and walnut orchards [32], the F, value of walnuts
reported in Table 2 of [15] was used (F; = 0.90). The values of the mean tree height measured
using the UAV surveys [18,19] were used for the evaluation of K, ,y using Equation (13).
The density coefficient K; was calculated using the measurements of LAI conducted during
the midseason and applied to Equation (15) (Figure S3). Thus, Equation (12) was used to
estimate the values of K, with K, ;;; = 0.05 [31]. The values obtained for the three tree
densities (625 trees/ha, 1250 trees/ha, and 2500 trees/ha) are reported in Table 3.
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Table 2. Values of the manual measurements of leaf area density DAF,;, the intercepted radiation Q;,
and the ground fraction cover f..

DAF,, Qu fe
1.56 0.535
2.54 0.635
2.78 0.837
2.66 0.835
2.49 0.856
625 trees/ha 2.38 0.799 0.74
1.60 0.882
247 0.856
5.63 0.768
3.99 0.644
4.56 0.535
3.13 0.863
1.47 0.828
1.48 0.714
1.96 0.856
2.35 0.737
1250 trees/ha 1.80 0.844 0.795
2.40 0.934
241 0.806
5.89 0.532
3.26 0.889
7.01 0.748
4.50 0.829
6.41 0.858
2.58 0.895
4.48 0.902
5.06 0.885
3.51 0.912
2500 trees/ha 281 0.920 0.895
4.26 0.943
3.85 0.936
4.09 0.935
4.53 0.897
3.62 0.824

Table 3. Values of the coefficients K, derived from the application of the Allen and Pereira [13]
method (K., A&P).

625 trees/ha 1250 trees/ha 2500 trees/ha

Equation (13) 0.98b 098b 1.04a
Note: Means followed by different letters are significantly different for p < 0.05.

From the values of the density coefficients K;, calculated using Equation (15),
Equation (16) was inverted to estimate the M coefficient as described by [8]. In particular,
the f. . values were obtained from the following equation:

fe
= l
where f is the mean angle of the sun above the horizon during the period of maximum
ET, evaluated using the procedure described by [6]; f. is the fraction of the surface cov-
ered by the vegetation, measured from the UAV surveys, described in Vinci et al. [18,19].
The coefficients were significantly different only between the densities 625 trees/ha and
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2500 trees/ha and between the densities 1250 trees/ha and 2500 trees/ha, since Student’s
t-test showed that the mean was significantly different from 0 (o« = 0.05).

The values of M| obtained were M; =1.17 for 625 trees/ha, M; =1.09 for 1250 trees/ha,
and M; = 1.01 for 2500 trees/ha.

4. Discussion

Pereira et al. [8] suggest that the selection of F, and M, values is performed through a
numerical search for the values of the parameters that make K, match the tabulated K,
TAB values. However, as noted by Rallo et al. [9], studies for hazelnut trees are lacking, and
K tabulated values are not available for hazelnut orchards. The values of f, measured and
used for the analysis were in accordance with the values of f. reported for walnut by [8],
and for these values, the K, ,,;;; was around 1 (Figure 1).

1300
Ak *
1200
A KcTr, (FAO n. 66)
10d 4 Y Kc,Tr, (this paper)
1000 4 Y Kcb (this paper)
= @ Kc (Silvestri et., 2021)
g 900 -+ [ Kc (Mingeau and Rousseau, 1994)
Ty : Kc (Mackic et al., 2016) &®
= Kc (Ortega-Farias et al., 2020)
i 700 - ‘ Kc Walnut (Rallo et al., 2021)
2 600 4 A *
)
O 500 4
400 1 O

300 ~ ‘
200 ‘

T T T T T T T T T T T

00 01 02 03 04 05 06 07 08 09 10 11 12

Crop coefficients

Figure 1. Crop coefficients reported for hazelnut and for walnut in the literature [7,9-13] and those
determined in this research, for several tree densities.

Figure 1 shows the crop coefficients reported for hazelnuts and for walnuts in the
literature and those determined in this research, for several tree densities. The highest tree
density of 2500 trees ha~?!, used in this study, was not reported in Figure 1 since it has never
been used by farmers, and no data are available.

The K, 1, determined in this research for 625 trees ha~! density was similar to that
reported by Silvestri et al. [12] for 500 trees ha~! for own-rooted young hazelnuts. On the
other hand, it was higher than that suggested by FAO66 [7]; this may be because the K.
used was calibrated and tested for olives. In fact, olive trees are an evergreen and resilient
species that are well adapted to the Mediterranean environment [26,27,33]; meanwhile,
hazelnut is sensitive to water stress and prefers cooler and more humid environmental
conditions [34,35]. However, for the medium density (1250 trees ha~1), the K, 1y determined
for hazelnut in this research was very similar to that of FAO66 [7]. This could be related to
the species-specific physiological responses under changing light absorption conditions
and nutrient availability. The values of the coefficients K, determined in this study by
using the Allen and Pereira method [6] resulted in the highest values among those reported
in the literature for hazelnuts (Figure 1). We suppose that, in applying this method, we
overestimated the K, values for hazelnuts, with values very similar to those reported for
walnuts (Figure 1).
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Allen and Pereira [6] suggested a relationship between K. and plant height in connec-
tion with the net radiation increment. However, we did not find any differences between
the K, values of the two plant densities shown in Figure 1. This could be due to the
specific training shape of hazelnut trees, which have four branches and no single axis.
Therefore, the hazelnut tree’s height does not reflect the actual tree shape and canopy
volume, especially in young trees. On the other hand, the K, 7 determined in this research
for both crop densities was lower than the values reported in the literature for hazelnuts
(Figure 1). The higher K. values reported by Macki¢ et al. [10] were probably due to the
higher planting density and the specific orchard irrigation method. The higher K, values
reported by Mingeau and Rousseau [13] and by Ortega-Farias et al. [11] could be related to
the specific orchard characteristics and management practices.

However, since the K, 1 determined in this research for grafted plants turned out to be
lower (0.61-0.65), albeit with a higher planting density, than those reported in the literature
for own-rooted plants (Figure 1), we cannot overlook the effect of grafting on hazelnut
crop coefficients. In fact, as reported by Portarena et al. [14], the deeper root systems of
grafted plants compared with own-rooted plants lead to differences in the depth of the
root water uptake and in physiological functioning at the whole-plant level. It is likely that
grafted hazelnut trees also have better radiation interception with a lower LAI (Figure S3)
compared to those recorded for own-rooted trees of the same age by other authors [36]. All
these factors reflect the stomatal control capacity of trees and the entire orchard’s water
requirements, improving orchard sustainability.

5. Conclusions

For the first time for grafted hazelnut trees on non-suckering rootstock, K.,,;; has
been assessed for the evaluation of the water demand of young hazelnut trees in a high-
density orchard.

The values of the density coefficient K; did not differ among the three tested densities,
a result that conflicted with the method of Allen and Pereira (2009), who suggested a rela-
tionship between K; and the tree height. Moreover, the K, estimated in our grafted orchard
was lower than the values reported in the literature for own-rooted hazelnuts. These lower
values could be primarily related to the specific local environmental conditions, the cultivar,
and the orchard management system, including the grafting practices employed.

Further studies are needed to determine the K, for grafted adult hazelnut trees.
Against this background, further research will be conducted to evaluate the K, ;,,; and K, ¢4
values of grafted hazelnut trees in order to schedule a well-planned and efficient irrigation
practice based on the orchard’s water requirements.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w15091683/s1. Figure S1: Canopy volume (V) in the three plant
densities (means =+ s.e.); Figure S2: Intercepted radiation by the tree, expressed as percentage of the
external radiation, in the three plant densities (means =+ s.e.); Figure S3: Leaf area index (LAI) in the
three plant densities (means + s.e.).
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