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Abstract: Construction of an integrated drought index is a fundamental task to conducting drought
disaster risk management and developing drought resistance planning strategies. Given the evident
non-consistent features during the drought evolution process, firstly, the GAMLSS approach was
utilized to construct multiple combination scenarios of time-variant parameters and corresponding
probability distribution functions. Then, the time-variant comprehensive drought index integrating
the variable characteristics of precipitation and soil moisture was established by means of the copula
function. Finally, the reliability of the time-variant comprehensive drought index was verified through
its application in frequency analysis and return period determination of drought hazard system in
Huaibei Plain, China. The application results demonstrated that: (1) The variation of the time-variant
integrated drought indicator presented strong consistency with both soil moisture and precipitation
during historical years in Huaibei Plain. (2) The overall variation of the drought hazard system
characterized by drought duration and severity presented a gradual mitigation trend from west to
east and north to south in Huaibei Plain, which agrees with the geographic differences and water
resources availability distribution features. (3) Drought recognition results, including the frequency
of drought events and typical drought processes with extreme grades, are in agreement with the
practical statistics and observed data series. On the whole, the proposed time-variant integrated
drought indicator is capable of extracting complex variation characteristics within the drought hazard
evolution process, and can be further applied in drought monitoring, recognition and assessment
research fields.

Keywords: drought hazard system evaluation; drought indicator; time-variant parameters; GAMLSS;
copula function; Huaibei Plain

1. Introduction

Drought disaster, which is usually characterized by long duration, wide influencing
area and severe disaster loss, is regarded as one of the typical and frequently occurring
natural disasters around the world [1–3]. Currently, due to the dual impacts of climate
change and human activities, regional climate and underlying surface conditions have
changed significantly, which will undoubtedly aggravate the uncertainties of hydrological
cycle processes and spatiotemporal variation of extreme hydrological events [4,5]. It has
been determined by the Sixth Assessment Report of the United Nations IPCC that nearly
the entire global drought evolution has presented an obvious and aggravating trend since
2020 [6,7]. In addition, China has been listed as a typical country with high drought
frequencies resulting in severe natural disaster loss [6].

Drought disaster risk evaluation is a fundamental task for the implementation of
drought disaster precautions and controlling strategies [8,9]. The essence of drought disas-
ter risk evaluation is to quantitatively determine the probability distribution of drought
occurrences and potential for disaster losses. These are often determined by drought
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frequency and return period analysis [2]. Moreover, the selection of drought indicators
used to monitor and describe drought process variation is of great significance to con-
struct a reliable drought disaster risk evaluation model. Yuan et al. summarized primary
drought indicators and their application conditions in 2014 and proposed the future re-
search direction of drought indicator analysis [10]. On the whole, in terms of single drought
indicator construction, Xiao et al. (2012) determined the drought risk and return period
of 42 stations in the Pearl River basin of China through standardized precipitation index
(SPI) and multivariate copula function [11]. In 2015, Gao et al. explored the spatiotemporal
variation characteristics of drought events through standardized precipitation index (SPI),
empirical orthogonal function (EOF) and rotated empirical orthogonal function (REOF)
approaches over a historical period of 54 years in Liaoning Province, China [12]. Adnan
et al. (2018) comparatively discussed the differences of 15 drought indicators including SPI,
standardized precipitation evapotranspiration index (SPEI), reconnaissance drought index
(RDI) and improved precipitation z-index, and proposed that SPI, SPEI and RDI are most
suitable to monitor drought process variation in Pakistan [13]. Rashid et al. (2019) con-
structed the nonstationary standardized precipitation index (NSPI) based on a generalized
hydrological modeling framework to capture the nonlinear characteristics of precipitation
during drought evolution processes [14]. Additionally, in terms of the development of
comprehensive drought indicators, Chang et al. proposed an integrated drought index in
2017 that combines hydrological elements of precipitation, runoff and soil moisture through
principal component analysis (PCA), and further discussed its reliability compared to
different single-type drought indicators [15]. Hu et al. (2019) constructed a comprehensive
drought index combining different meteorological, hydrological, agricultural and remote
sensing drought indicators, and verified its effectiveness in drought risk comprehensive
evaluation analysis [16]. The same year, Shen et al. proposed a comprehensive drought
index considering precipitation, potential evapotranspiration, temperature, soil moisture
and vegetation factors, and eventually conducted application research in characteristics
extraction of historical drought risk distribution in Inner Mongolia, China [17].

The abovementioned single-type and integrated drought indicators were all con-
structed based on the consistency hypothesis of drought index variation. Actually, because
of the dual impacts of climate change and human activities, the evolution of observed
drought indicators presents obvious spatiotemporal non-consistency features [18–20]. In
other words, the design of the drought resistance standard of water conservancy project
based on the consistency assumption of drought indicator variation, is not reliable. It will
increase the risk of drought disaster losses. In addition, comprehensive drought indicators
are usually obtained through weight combination, machine learning algorithm and multi-
variate combined distribution estimation approaches [21]. The weight combination method
primarily relies on the estimated weight and linear correlation hypothesis of different single
drought indicators. Machine learning algorithms are incapable of revealing the influencing
mechanics of integrated drought indicators to actual drought evolution. Copula functions
are frequently applied to develop a multi-variable combined distribution function, which
has been widely applied in drought risk frequency analysis. Therefore, in this study, we
applied the generalized additive models for location, scale and shape (GAMLSS) method
and copula function to construct a meteorological (precipitation) and agricultural (soil
moisture) comprehensive drought index (CTVDI) considering the time-variant characteris-
tics of each, then the CTVDI index was utilized to conduct drought frequency analysis and
return period calculation in Huaibei Plain, China to test its reliability and effectiveness. The
main content of the manuscript is organized as follows: In Section 1, the introduction of the
study area and framework of the manuscript were explicitly presented. In Section 2, based
on the brief introduction of methodologies utilized in this study including GAMLSS and
copula functions, the construction procedures of the integrated drought indicator CTVDI
are elaborately presented. In Section 3, the proposed integrated drought indicator CTVDI
is further applied in drought disaster risk analysis to verify its reliability, and the drought
event occurring probability corresponding to different grades of drought duration and
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severity as well as return period of typical historical drought processes in Huaibei Plain,
China are determined. The primary research findings will be beneficial and favorable for
implementation of regional drought resistance schemes and strategies.

2. Study Area and Research Framework
2.1. Study Area and Data Sources

Huaibei Plain, China was utilized as the case study area in this manuscript. Huaibei
Plain, located in the northern Anhui Province and central Huaihe river basin, is bordered
by Shandong Province in the north, Jiangsu Province in the east and Henan Province in
the west. It has jurisdiction over six districts and 27 counties including Bozhou, Fuyang,
Suzhou, Huaibei, Huainan and Bengbu cities. The total area of Huaibei Plain is 37,400 km2,
which includes cultivated land area of 21,400 km2 accounting for more than 50% to the total
area of Anhui Province [22]. For the impacts of subhumid monsoon climate, the annual
average precipitation of Huaibei Plain is approximately 869.6 mm but differs significantly
within and between different years [2,22]. The annual precipitation of a wet year is about
three to four times compared to dry years, and the precipitation during flood season
(from June to September) accounts for more than 75% of the total [2]. In addition, the
annual average runoff of Huaibei Plain is about 7772 million m3, while the annual variation
difference is more obvious compared to precipitation [15,22]. For a long time, because of
inappropriate land resources development, a sharp decrease in vegetation and excessive
deforestation, etc., water and soil resources erosion became serious. The groundwater
levels dropped prominently as well in Huaibei Plain, which resulted in frequent flooding
and drought disasters. Drought disasters have occurred in 48 of the past 60 years, and
drought duration, severity and losses all presented an aggravating trend especially after
the 1990s. For instance, the drought disaster situation of Anhui Province in 2019 was the
most serious during the past 40 years, and drought variation in nearly 51 counties reached
severe grade. Therefore, a great variety of statistics and existing research findings indicate
that it is urgent to conduct integrated drought index construction and practical application
research in Huaibei Plain, Anhui Province.

The primary data series utilized in this study includes historical monthly precipita-
tion and soil moisture data series as well as drought disaster loss statistics of different
cities in Huaibei Plain from 1960 to 2014. We accessed the historical drought disaster loss
statistics through Statistical Yearbook of Anhui Province, EPS statistic data platform of
China (https://www.epsnet.com.cn/index.html#/Index) and China’s economic and social
big data research platform (https://data.cnki.net/) on 10 November 2022. The historical
monthly hydrological data series can be obtained from China Integrated Meteorological
Information Sharing System (CIMISS, http://data.cma.cn, accessed on 10 November 2022)
and land hydrological surface modeling model (Noah-MP). In addition, the original precip-
itation and soil moisture data series is grid data with spatial resolution of 0.25◦, which was
processed to obtain historical monthly hydrological data series of different cities in Huaibei
Plain through spatial kriging interpolation calculation [22].

2.2. Research Framework

The explicit framework and relationship structure of different calculation modules
used in this manuscript are clearly illustrated in Figure 1.

It can be demonstrated from Figure 1 that: (1) The primary task of Methodologies
(top half of the figure) is to introduce the fundamental principles of the approaches ap-
plied in this study, including GAMLSS model and copula function, and then propose the
derivation procedures of meteorological (precipitation) and agricultural (soil moisture)
comprehensive time-variant drought indicator (CTVDI). Specifically, the key steps to estab-
lish the CTVDI comprise the derivation of time-variant probability density function (PDF)
of meteorological and agricultural drought indicators through the GAMLSS model, the
estimation of combined distribution function of the CTVDI through copula function, as
well as the determination of CTVDI data series through inverse operation of combined
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distribution function. (2) In terms of Application (bottom half of the figure), the primary
intention is to test the reliability of the CTVDI through its application in Huaibei Plain,
China. Specifically, the main tasks of this section includes estimation error analysis of
time-variant PDFs of precipitation and soil moisture using the GAMLSS model, drought
process recognition analysis based on CVTDI through run theory and drought characteristic
variables (duration and severity) extraction, multivariable combined frequency and return
period determination through copula function, as well as the reliability verification of
the proposed CVTDI through comparative analysis with the actual observed statistics. In
addition, the application requirements, suggestions, limitations of the proposed index and
future work plans are discussed as well.
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3. Methodologies
3.1. Generalized Additive Models for Location, Scale and Shape (GAMLSS) Method
3.1.1. Introduction to GAMLSS

Generalized additive models for location, scale and shape (GAMLSS), proposed by
Prof. Rigby and Stasinopoulos, is a semiparametric regression model. GAMLSS is fre-
quently applied to derive the functional relationship between the parameters of probability
distribution function of research object (namely response variable) and corresponding
explanatory variables under nonstationary circumstances [23–25]. Assuming the PDF of
observed data series yt (t = 1, 2, . . . , n) of stochastic variable Y is denoted as f (yt|θt), and
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its distribution parameter series varying with time parameter t is denoted as θt = (θt1, θt2,
θt3, θt4) = (µt, σt, νt, τt), in which, variables µ and σ are defined as position parameter
and scale parameter, corresponding to average vector and mean square deviation vector
of stochastic variable Y, respectively. Variables ν and τ are uniformly defined as shape
parameter, corresponding to the skewness vector and kurtosis vector of stochastic variable
Y separately [25,26]. If denoting gm(·) as the monotonic function between parameter θm and
its corresponding explanatory variables Xm as well as random effect items, then it becomes

gm(θm) = Xm·βm +
Jm
∑

j=1
Djm·γjm (1)

where, parameter m = 1, 2, 3 and 4, (Xm)n×Jm is the explanatory variables matrix, βm is the
regression coefficient vector with the length equaling Jm, Jm denotes the number of random
effect variables of the mth parameter, (Djm)n×qjm is the random effect variable matrix, γjm is
normally distributed random variable vector with the length equaling qjm, and qjm is the
number of random factors corresponding to jth random effect variable [26]. Equation (1) is
primarily utilized to describe the linear or nonlinear relationship of explanatory variables
as well as linear relationship of random effect items for different distribution parameters,
if neglecting the influences of random effect items, the original monotonic function of
GAMLSS model can be simplified as follows

gm(θm) = Xm·βm (2)

If assuming the explanatory variable of GAMLSS model satisfies a two-parametric
probability distribution pattern, then the estimated value of two parameters will be ob-
tained through RS algorithm, i.e., taking the maximum likelihood function of regression
coefficient as the objective function [26,27]. Therefore, we primarily discuss the linear
function relationship of distribution parameters vector µt and σt varying with time param-
eter t in this study, and the distribution parameter estimation method of GAMLSS model
can be further simplified as a linear function mode varying with time parameter t [28,29],
as follows {

µ(t) = a0 + a1t
σ(t) = b0 + b1t

(3)

where, parameters a0 and a1 are combined coefficients of position parameter µt, param-
eters b0 and b1 are combined coefficients of scale parameter σt, and parameter t is time
concomitant variable.

3.1.2. Parameter Optimization of GAMLSS

Based on the analysis above, it can be concluded that the primary task of GAMLSS
model is to derive the monotonic function gm(·) between explanatory variable X and its
distribution parameters including time-variant position variable µt and scale variable
σt [28]. Actually, the entire function derivation and simulation analysis of GAMLSS method
is frequently accomplished by the program package of R language software, which can
provide a variety of distribution functions for users. Combining previous application study
findings of GAMLSS model in related meteorological and hydrological fields, we selected
five types of two-parametric distribution functions including standard normal distribution
(NO), log normal distribution (LOGNO), Weibull distribution (WEI), gamma distribution
(GA) and Gumbel distribution (GU), to derive the time-variant PDF of drought indicators
precipitation and soil moisture of different cities in Huaibei Plain [26,28], which is shown
in Table 1.
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Table 1. Five types of two-parametric distribution functions of the GAMLSS model.

Name PDF Determination of Distribution Parameters

NO fX(x|µ, σ) = 1√
2πσ
· exp

[
− (x−µ)2

2σ2

] E(X) = µ
Var(X) = σ2

LOGNO fX(x|µ, σ) = 1√
2πσ
· 1

x · exp
[
− log(x)−µ)

2σ2

] E(X) = exp
(
σ2)1/2 · eµ

Var(X) = exp
(
σ2) · [exp

(
σ2)− 1

]
WEI fX(x|µ, σ) = σxσ−1

µσ · exp
[
−
(

x
µ

)2
] E(X) = µ·G(1/σ)

Var(X) = µ2·
{

G
(

2
σ+1

)
−
[

G
(

1
σ+1

)]2
}

GA fX(x|µ, σ) = 1
(σ2µ)1/σ2 · x1/(σ2−1) ·e−x/(σ2µ)

G(1/σ2)

E(X) = µ
Var(X) = µ2·σ2

GU fX(x|µ, σ) = 1
σ · exp

[(
x−µ

σ

)
− exp

(
x−µ

σ

)] E(X) = µ− µσ ≈ µ− 0.57722σ
Var(X) = π2·σ2/6

Note: G(·) denotes the gamma function.

To fully reveal the nonlinear features of distribution parameters varying with the time
variable, the distribution functions provided by the time-variant GAMLSS program package
of R language software were divided into three categories in this study: Scenario 1, position
variable µt and scale variable σt were all constant, revealing that the variation of distribution
parameters µt and σt all satisfied stationary features. Scenario 2, position variable µt varied
with time variable t while scale variable σt was constant. Scenario 3, position variable µt
and scale variable σt were all varying with time variable t [26,29]. Furthermore, the fitting
performance of different distribution functions was evaluated by a generalized Akaike
information criterion (AIC) [26,27], and the distribution function with minimum AIC value
was recognized as the optimal fitting function of distribution parameters. In other words,
if the AIC value of distribution functions of Scenario 1 was minimum, the variation of
distribution parameters µt and σt did not present nonstationary characteristics.

3.2. Copula Function

Copula function, firstly proposed by Sklar in 1959, has been widely applied in stochas-
tic simulation and statistical analysis fields [30,31]. The primary purpose of copula function
is to derive the multivariate joint distribution function through their univariate probability
distribution functions. The widely applied univariate distribution pattern in hydrological
frequency analysis comprises exponential distribution, normal distribution, gamma dis-
tribution, etc. In terms of the selection of copula joint function to derive the multivariate
combined distribution function, the binary Archimedean copula function, for the advan-
tages of rigorous logic structure, simple calculation formula and less estimated parameter,
has been widely applied [31–33]. Specifically, binary Archimedean copula function pri-
marily includes three types of joint functions, i.e., GH copula, Clayton copula and Frank
copula, and the ultimate purpose of the application of copula function is to derive the joint
probability distribution function of CTVDI based on the determination of PDFs of drought
indicators including precipitation and soil moisture through GAMLSS model. Supposing
U = u(x) and V = v(y) represent the derived PDFs of univariate drought indicators pre-
cipitation and soil moisture separately, and F(x, y) = c(u, v) denotes the joint probability
distribution function of CTVDI, which can be denoted as follows [30,31]

c(u, v) = exp
{
−
[
(− ln(u))θ + (− ln(v))θ

] 1
θ

}
, τ = 1− 1

θ , θ ∈ [1, ∞) (4)

c(u, v) =
[
(u)−θ + (v)−θ − 1

]− 1
θ , τ = 2

2+θ , θ ∈ [0, ∞) (5)

c(u, v) = 1
θ ln
[

1 + (e−θu−1)·(e−θv−1)
e−θ−1

]
, τ = 1 + 4

θ

(
1
θ

∫ ∞
0

t
et−1 dt− 1

)
, θ ∈ R (6)
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where, θ is an unknown parameter to describe the correlationship of precipitation and soil
moisture and can be derived through its relationship with Kendall correlation coefficient
τ [30,32,33]. Afterwards, the final CTVDI could be obtained through the inverse operation
of joint distribution function F(x, y) [34].

3.3. Calculation Procedures of Integrated Index CTVDI

On the basis of the abovementioned discussion, it was obvious that the development
of the CTVDI and its reliability verification analysis could be accomplished through the
following steps:

Step 1: Determination of time-variant PDF of univariate drought indicators precipita-
tion and soil moisture through GAMLSS model. We constructed three scenarios to explore
the stationary or nonstationary relationship features of univariate drought indicators ac-
cording to their different combination of position variable µt and scale variable σt varying
with time variable, and then the optimal time-variant and monthly scale PDF. The u(x) and
v(y) of precipitation and soil moisture were eventually derived under AIC principle for
different cities in Huaibei Plain in this study.

Step 2: Determination of combined distribution function of integrated drought indica-
tor CTVDI through copula function. As indicated in Section 3.2, three types of Archimedean
copula functions, including GH, Clayton and Frank were utilized to derive the time-variant
combined probability distribution function c(u, v) of precipitation and soil moisture in
this manuscript. In addition, the function fitting performance of different cities was also
verified through different error parameters.

Step 3: Derivation of CTVDI series. The CTVDI was determined through inverse
operation of its joint probability distribution function c(u, v), as follows

CTVDI = ϕ−1(c) (7)

where, ϕ presents function inverse operation of standard normal distribution, which was
realized through R language software in this study [34]. Furthermore, the derived CTVDI
series was applied to conduct drought processes recognition during historical years in
different cities of Huaibei Plain through run theory [35]. Run theory is a fundamental
method to recognize drought event processes through single or coupled drought indicators
by means of initial drought identification and drought merging analysis [31], in which,
the determination of threshold values of R1, R2 and R3 are crucial to accurately derive the
starting and end time of drought process [31,35]. In this study, according to Standard for
Hydrological Information and Hydrological Forecasting (GB/T22482-2008), the threshold
values of parameters R1, R2 and R3 are 0, −0.5 and −1, respectively, and then the historical
drought event samples could be obtained based on the proposed CTVDI. Finally, drought
characteristic variables, including drought duration and severity corresponding to different
drought events could be obtained to describe drought variation conditions [35].

Step 4: Drought frequency analysis based on the CTVDI series and its reliability verifi-
cation. The reliability verification of the proposed CTVDI was primarily accomplished by
means of its application in future drought frequency analysis and return period calcula-
tion of typical historical drought events. Generally, drought frequency is defined as the
occurrence probability of drought events with drought characteristic variables of duration
and severity exceeding certain levels in a certain future period [33,35]. Suppose the de-
rived probability distribution function of drought duration D and drought severity S were
denoted as FD(d) and FS(s), respectively, then the drought frequency, i.e., the occurrence
probability of future drought events with drought characteristic variables satisfying D > d
and S > s simultaneously, could be represented as follows [19,35]

P(D > d, S > s) = 1− FD(d)− FS(s) + FD,S(d, s) (8)

where, FD, S(d, s) is the combined probability distribution function of drought duration
and severity derived by copula function as introduced in Section 3.2. In addition, the
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return period of extreme hydrological events is another important concept in the field
of hydraulic engineering designing processes. The return period of drought events with
drought characteristic variables satisfying D > d and S > s, simultaneously, could be denoted
as follows [19,36]

P(D > d, S > s) = E(L)
P(D>d,S>s) =

E(L)
1−FD(d)−FS(s)+FD,S(d,s) (9)

where, E(L) denote the expectation of drought intervals, which could be represented as the
sum of average of drought and non-drought duration.

4. Results and Discussion

To further validate the feasibility for the application of GAMLSS and copula function
approaches in the field of time-variant evolution characteristics exploration of drought sys-
tems, we utilized the proposed CTVDI in Huaibei Plain, Anhui Province, China to conduct
future drought frequency analysis and historical drought return period determination in
this manuscript. Meanwhile, given the length constraint of the manuscript, taking August
as an example, the establishment of the monthly CTVDI is emphatically discussed in this
study, which is the same for other months.

4.1. Performance Analysis of GAMLSS Model

The derivation of time-variant PDF of univariate drought indicator precipitation (P)
and soil moisture (SM) by means of GAMLSS model is the fundamental task for the devel-
opment of integrated CTVDI. According to the AIC principle of time-variant PDF fitting
through GAMLSS model, the variation of global fitting goodness of P and SM for different
distribution patterns under different combination scenarios of position and scale param-
eters for different cities in Huaibei Plain, is indicated in Table 2, then the corresponding
optimal distribution pattern with minimum fitting goodness for precipitation and soil
moisture could be recognized.

Table 2. Variation of fitting goodness under different distribution and scenarios in Huaibei Plain.

Name Type Huaibei Suzhou Bozhou Bengbu Fuyang Huainan

P SM P SM P SM P SM P SM P SM

Scenario 1:
constant µ
and σ

NO 601 266 593 276 602 252 600 259 602 261 592 275
LOGNO 602 268 598 279 596 255 603 264 589 266 604 280
WEI 598 262 591 273 596 247 596 247 595 251 589 259
GA 597 267 592 278 594 254 597 262 590 265 592 278
GU 614 263 606 274 625 248 613 246 625 251 604 257

Scenario 2:
µ = f (t) and
constant σ

NO 602 257 595 263 603 246 601 259 603 256 593 271
LOGNO 603 259 599 266 596 249 604 264 589 261 603 276
WEI 598 253 593 259 598 241 598 243 596 246 591 259
GA 599 258 594 265 595 248 599 262 591 259 593 275
GU 615 254 607 258 627 240 615 241 626 245 606 256

Scenario 3:
µ = f (t) and
σ = s(t)

NO 604 259 597 264 604 248 601 257 605 257 592 271
LOGNO 602 261 595 268 597 251 597 262 590 262 601 277
WEI 599 254 594 259 598 242 596 245 597 247 586 256
GA 599 260 593 267 595 250 595 261 592 260 585 275
GU 617 254 609 260 624 242 613 243 627 246 603 254

Note: the bold and red data represent the minimum goodness of fit.

It can be seen from Table 2 that: (1) The optimal fitting distribution pattern of historical
precipitation and soil moisture data series in August differs significantly for different cities
in Huaibei Plain. The variation of historical precipitation series in Huaibei, Suzhou, Bozhou
and Fuyang, belonging to Scenario 1 with the minimum PDF goodness of fit compared to
other combination scenarios, presents obvious stationary characteristics. The variation of
historical soil moisture series except for Huainan city, belonging to Scenario 2, presents
distinct non-stationary characteristics for position parameter µ. The variation of both
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historical precipitation and soil moisture series in Huainan city, belonging to Scenario
3, present remarkable non-stationary features for both position parameter µ and scale
parameter σ. (2) Compared with previous research findings satisfying the stationary
assumptions for the variation of drought indicators, the derived time-variant PDF of
precipitation and soil moisture in different cities of Huaibei Plain is expected to be more
effective to describe its actual evolution processes.

To further verify whether univariate drought indicators precipitation and soil moisture
satisfy the optimal distribution pattern, the residual distribution corresponding to different
optimal distribution patterns are discussed as well by means of average (AV), variance
(VA), skewness coefficient (SC), kurtosis coefficient (KC) and Filliben coefficient (FC) in
this study, and if the variation of AV approaches 0, VA approaches 1, SC approaches 0, KC
approaches 3 and FC approaches 1, it could be concluded that the residual distribution
satisfies a standard normal distribution pattern and the corresponding optimal distribution
pattern is also more reasonable [26,29]. The statistical results of AV, VA, SC, KC and FC
corresponding to the optimal fitting distribution pattern and time-variant parameters of
univariate drought indicators precipitation and soil moisture are indicated in Table 3.

Table 3. Variation of residual distribution parameters of optimal distribution pattern in Huaibei Plain.

City Name Type Distribution Parameter
Residual Distribution Parameter

AV VA SC KC FC

Huaibei
P GA

µ = exp(4.7862)
0.0018 1.0192 −0.2744 2.5630 0.9929

σ = exp(−0.7287)

SM WEI
µ = exp(3.6082 − 0.0018·t) −0.0019 1.0158 0.0465 2.4647 0.9922
σ = exp(2.8581)

Suzhou
P WEI

µ = exp(4.9376)
0.0003 1.0013 0.1000 2.5842 0.9938

σ = exp(0.9520)

SM GU
µ = (36.8974 − 0.0835·t)

0.0005 0.9956 0.1559 2.4970 0.9908
σ = exp(0.7262)

Bozhou
P GA

µ = exp(4.7933)
0.0000 1.0185 −0.0009 2.8585 0.9966

σ = exp(−0.7785)

SM GU
µ = (34.7393 − 0.0484·t)

0.0007 0.9987 0.1415 2.6827 0.9953
σ = exp(−0.5639)

Bengbu
P GA

µ = (4.6641 − 0.0053·t)
0.0054 1.0252 −0.0231 2.0978 0.9879

σ = exp(−0.4236 − 0.0146·t)

SM GU
µ = (38.3270 − 0.0394·t) −0.0063 1.0873 −0.3833 2.7571 0.9889
σ = exp(0.5237)

Fuyang
P LOGNO

µ = 4.6452
0.0000 1.0185 −0.1165 2.7462 0.9946

σ = exp(− 0.7432)

SM GU
µ = 36.1412 − 0.0461·t −0.0005 1.0271 −0.0491 2.8125 0.9968
σ = exp(0.5921)

Huainan
P GA

µ = exp(4.5209 + 0.0065·t)
0.0061 1.0253 −0.1981 2.3835 0.9901

σ = exp(−0.3317 − 0.0162·t)

SM GU
µ = 37.1387 − 0.0348·t −0.0109 1.1009 −0.4277 2.5492 0.9872
σ = exp(0.2777 + 0.0122·t )

Note: AV, VA, SC, KC and FC represent average, variance, skewness coefficient, kurtosis coefficient and Filliben
coefficient, respectively.

Meanwhile, the normal QQ and normal worm figures were also applied to verify the
reliability of time-variant PDF derivation of precipitation and soil moisture in Huaibei Plain.
The normal QQ figure actually represents quantile scatterplot with the estimated value of
standard normal distribution and practical value of residual distribution as X and Y axis,
respectively, and the normal worm figure is utilized to describe the deviation of practical
residual distribution from critical line of standard normal distribution with confidence
coefficient equaling 95% [25,26,29]. The practical residual distribution of optimal fitting
distribution could be regarded as satisfying normal distribution pattern if the sample
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scatterplot of residual distribution is approximately linear or not exceeding the critical line,
and the residual distribution parameters of AV, VA, SC, KC and FC could also be roughly
estimated from normal QQ and worm figures. The normal QQ and worm figures represent-
ing the residual distribution of optimal fitting distribution patterns of precipitation and soil
moisture in different cities of Huaibei Plain are indicated in Figures 2 and 3, respectively.
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It could be concluded from Table 3 and Figures 2 and 3 that: (1) As for the residual
distribution of optimal fitting distribution patterns of precipitation and soil moisture in
August for different cities in Huaibei Plain, the variation of average (AV), variance (VA),
skewness coefficient (SC) and kurtosis coefficient (KC) was approaching 0, 1, 0 and 3,
respectively, gradually, which revealed that the residual distribution satisfies standard nor-
mal distribution assumption. In addition, the Filliben coefficient (FC) was also approaching
1, which further verified the independence assumption of residual distribution. (2) The
residual samples of both precipitation and soil moisture were all uniformly distributed
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nearing the 45◦ line according to the normal QQ plot of residual sample, and all between
the U-shaped and inverted U-shaped curves as well (i.e., threshold line of confidence
coefficient equaling 95%) according to the normal worm plot of residual sample, indicating
that the corresponding optimal fitting distribution patterns of precipitation and soil mois-
ture all had good fitting performance with historical observed samples. (3) In the same
way, the optimal time-variant fitting patterns of PDF of precipitation and soil moisture
in other months for different cities were also derived using the GAMLSS model, which
could provide better model foundation for the development of time-variant integrated
drought indicator.

4.2. Derivation of CTVDI Series and Its Application in Drought Process Recognition

As presented in Section 3.3, based on the derivation of optimal time-variant PDF of
monthly precipitation and soil moisture series of different cities in Huaibei Plain through
GAMLSS model, the time-variant joint probability distribution function of precipitation and
soil moisture was obtained utilizing three typical copula functions, and the corresponding
time-variant monthly comprehensive drought indicator CTVDI could also be derived
through function inverse operation according to Equation (7). The monthly variation
of CTVDI from 1960 to 2014 of different cities in Huaibei Plain are shown in Figure 4.
Moreover, the linear and Kendall correlation coefficients (denoted as LCC and KCC) were
utilized as well to reveal the correlation features of proposed CTVDI with precipitation and
soil moisture, as indicated in Table 4.
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Table 4. Correlation coefficient between different drought indicators in Huaibei Plain.

Name Type Huaibei Suzhou Bozhou Bengbu Fuyang Huainan Average

P and
CTVDI

LCC 0.68 0.72 0.73 0.77 0.75 0.74 0.73
KCC 0.68 0.67 0.71 0.79 0.68 0.73 0.71

SM and
CTVDI

LCC 0.83 0.82 0.92 0.91 0.88 0.85 0.87
KCC 0.73 0.71 0.87 0.82 0.76 0.77 0.78

Note: LCC and KCC denote linear and Kendall correlation coefficient, respectively.

It could be concluded from Figure 4 and Table 4 that: (1) The CTVDI had strong
correlation with the variation of soil moisture series in comparison with precipitation, the
average of LCC and KCC between historical CTVDI and soil moisture series was 0.87 and
0.78, respectively, for different cities in Huaibei Plain. (2) The average of LCC and KCC
between historical CTVDI and precipitation series was 0.73 and 0.71, separately, in Huaibei
Plain, belonging to strong correlation grade as well. Therefore, it is suggested that the
variation of derived time-variant integrated drought indicator CTVDI is reasonable from
the perspective of correlation analysis and is suitable for its application in drought process
recognition and drought frequency analysis.

Historical drought process recognition is the foremost task of drought frequency
analysis by means of the CTVDI, and the historical drought events recognition based on
CTVDI index from 1960 to 2014 in Huaibei Plain was accomplished through run theory
in this study, and the primary drought characteristic variables were extracted as well, in
which, drought duration is defined as the accumulated length of time from the beginning to
the end of certain drought event, and drought severity is defined as the accumulated value
of drought indicator (i.e., CTVDI in this study) throughout the entire drought process. The
statistical result of historical drought characteristic variable, 1960–2014 in Huaibei Plain, is
given in Table 5.

Table 5. Statistic result of historical drought characteristic variable, 1960–2014 in Huaibei Plain.

Name Huaibei Suzhou Bozhou Bengbu Fuyang Huainan

Drought event amount 91 82 80 80 74 76
Average of drought duration (month) 3.1 3.04 3.19 2.53 3.23 2.88
Average of non-drought duration (month) 4.13 4.37 4.93 5.86 5.04 6.13
Maximum of drought duration (month) 16 12 14 13 14 9
Average of drought severity 4.22 4.05 4.26 3.57 4.4 3.98
Maximum of drought severity 20.89 15.57 18.61 18.95 18.43 15.94
Kendall correlation coefficient of drought
duration and severity 0.78 0.72 0.77 0.7 0.73 0.74

It can be concluded from Table 5 that: (1) The overall variation of drought duration
and severity of historical drought events basically presented a consistent trend in Huaibei
Plain. Further, drought hazard situation mitigated gradually from west to east and north
to south during historical years, which agrees with the geographic differences and water
resources availability distribution. (2) Comparatively, the variation of drought hazard
in Huaibei city was the most severe during historical years with the maximum drought
duration, severity and frequency as well. In addition, the variation of drought characteristic
variables of typical drought events in Huaibei city was consistent with the actual statistic
result [37]. Therefore, the reliability of the CTVDI was verified again from the perspective
of comparative analysis between the variation of drought characteristic variables of typical
drought events and actual historical statistic data, and afterwards, the future occurrence
probability of drought events with different grades of drought duration and severity was
estimated in this study.



Water 2023, 15, 1653 14 of 19

4.3. Drought Frequency and Return Period Determination Analysis

Drought duration and severity are two significant characteristic variables to describe
the variation of drought hazard evolution processes, and a great deal of previous research
has suggested fitting the variation of drought duration and severity through Pearson-
III, exponential and gamma distribution patterns [19,35]. Therefore, to further discuss
the joint probability of future drought events exceeding certain grades of duration and
severity, based on the obtain of samples of duration and drought of historical drought
events according to empirical frequency formulas, the fitting PDFs of duration and severity
in different cities of Huaibei Plain were determined on the assumptions of Pearson-III,
exponential and gamma distribution patterns, as indicated in Figure 5A,B. Ultimately,
based on the matching situation of different frequency curves with the actual sample
scatters of drought duration and severity, the joint probability distribution of different
combination scenarios these variables for different cities were determined by means of
GH copula function, which has better fitting performance for describing the correlation
of upper sample scatters [35], as indicated in Figure 5C, and the occurrence probability of
future drought processes exceeding certain grades of duration and severity could be also
determined according to Equation (8).
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It could be determined from Figure 5 that the exponential and Pearson-III distribution
were preferable to fit the distribution features of drought duration and severity of historical
drought events in Huaibei Plain, with the minimum root mean square error (RMSE) of
0.8934 and 0.8232 compared to Pearson-III and gamma distribution patterns, respectively.
Accordingly, the fitting PDF of drought duration and severity was more reliable to derive
the combined probability distribution function through the GH copula function. In addition,
based on the division of drought hazard grades by means of drought process return period
(T) including light drought (T ≤ 2a), moderate drought (2a < T ≤ 6a), severe drought
(6a < T ≤ 20a) and extreme drought (T > 20a) [38], the variation for the occurrence of
historical drought events with different severity grades in Huaibei Plain was calculated,
as shown in Table 6. In particular, the occurrence of extreme drought events was usually
closely emphasized because of its serious drought disaster loss and socioeconomic impacts
by the government to establish effective drought resistance schemes. Therefore, based
on the estimation of joint frequency of drought duration and severity, the joint frequency,
return period as well as primary drought characteristic variable of extreme drought events
during historical years in different cities of Huaibei Plain were also extracted according to
Equations (8) and (9), which is indicated in Table 7.

Table 6. Frequency of historical drought events, 1960–2014 in Huaibei Plain.

City T ≤ 2a
(Light Drought)

2a < T ≤ 6a
(Moderate Drought)

6a < T ≤ 20a
(Severe Drought)

T > 20a
(Extreme Drought) Total Amount

Huaibei 60 18 8 5 91
Suzhou 52 18 7 5 82
Bozhou 51 16 9 4 80
Bengbu 50 17 9 4 80
Fuyang 46 16 11 6 79

Huainan 45 15 8 3 71

Table 7. Statistic results of extreme drought processes, 1960 to 2016 in Huaibei Plain.

City No. Time of
Drought Event

Drought
Duration/Month

Drought
Severity

Joint
Frequency

Return Period
/Year

Huaibei

1 August 1966–June 1967 11 17.56 0.0094 64.2
2 November 1967–July 1968 9 14.19 0.0239 25.2
3 October 1991–January 1993 16 14.08 0.0038 160.1
4 September 1998–September 1999 12 13.23 0.0152 39.6
5 March 2001–November 2001 9 18.43 0.0074 81.2

Suzhou

1 May 1966–January 1967 9 13.78 0.0183 34.2
2 September 1967–July 1968 11 15.57 0.0088 70.3
3 January 1978–December 1978 12 10.46 0.0074 87.9
4 March 1981–April 1982 12 13.54 0.0215 28.7
5 March 2001–November 2001 9 14.95 0.0133 47.5

Bozhou

1 May 1966–June 1967 14 18.62 0.0056 121.6
2 March 1978–January 1979 11 12.17 0.0202 33.5
3 October 1991–August 1992 11 11.51 0.0203 33.3
4 March 2001–November 2001 9 18.26 0.0084 80.3

Bengbu

1 May 1966–June 1967 13 18.95 0.0044 157.9
2 November 1967–June 1968 8 13.62 0.0206 34.3
3 March 1978–March 1979 13 15.55 0.0064 109.9
4 October 2010–June 2011 9 11.25 0.0253 27.6

Fuyang

1 December 1960–July 1961 8 11.05 0.0275 27.3
2 October 1967–May 1968 8 15.94 0.0072 104.3
3 August 1978–March 1979 8 7.62 0.0304 24.7
4 November 1983–May 1984 7 11.11 0.0363 20.7
5 October 1991–June 1992 9 11.04 0.0168 44.7
6 March 2001–November 2001 9 12.98 0.0153 50.4

Huainan
1 May 1966–June 1967 14 20.89 0.0051 136.1
2 February 1978–March 1979 13 15.6 0.0087 79.1
3 March 2001–November 2001 9 20.49 0.0077 89.1
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It was suggested from Figure 5 and Tables 6 and 7 that: (1) From the perspective
of the frequency of historical drought events, the drought hazard situation mitigated
gradually especially for light and moderate drought grades from north to south, and the
total frequency of drought events decreased from the maximum of 91 in Huaibei city to the
minimum of 71 in Huainan city, which was consistent with the variation trend of drought
duration and severity as shown in Table 5. (2) The difference for the frequency of historical
drought events with extreme grade in Huaibei Plain was not evident. Moreover, the typical
drought process recognition result of extreme grade through time-variant drought indicator
CTVDI, i.e., 1966, 1978 and 2001, was basically consistent with the historical statistics
according to Wen et al., 2007 [37]. For instance, according to historical statistics, the drought
hazard variation in summer, autumn and winter in 1966 was tremendously serious in
Huaibei Plain. The monthly precipitation in August, September and October decreased
approximately 70% compared to the annual average level, and drought influencing area of
Huaibei Plain in 1966 accounted for nearly 60% of the entire Anhui Province. Similarly, the
variation in drought duration, drought-affected area and drought disaster loss of Huaibei
Plain in 1978 was the most serious since the founding of China, and grain production
reduced 714.24 million kg by drought in Huaibei Plain, accounting for 52% of the total
grain reduction of Anhui Province.

In conclusion, the drought hazard variation characteristics of Huaibei Plain during the
historical years derived through the time-variant integrated drought indicator are in good
agreement with the practical statistics and observed data series. This revealed that the
integrated drought indicator can better extract the features of drought evolution processes
than single drought indicators and is suitable for application in the drought disaster risk
management field. In addition, the variation process for the occurrence, development
and mitigation of drought events is extremely complicated. Incorporation of hydraulic
engineering regulation and groundwater resources utilization for the establishment of
comprehensive drought indicator and drought disaster risk management in Huaibei Plain
is indispensable. This represents a limitation of the study as well as a research direction for
future work.

5. Conclusions

In this study, based on the non-consistent characteristics of drought indicators and
deficiencies of drought process identification through single drought indicators, the time-
variant integrated drought indicator, coupling precipitation and soil moisture characteristics
was proposed by means of GAMLSS and copula functions, and the reliability and effective-
ness of the proposed comprehensive drought indicator were verified through its application
in drought hazard frequency and drought return period determination in Huaibei Plain,
Anhui Province. Together, the primary findings of this study can be summarized as follows:

(1) Five types of probability density function and four patterns of combination scenar-
ios of time-variant parameters were utilized to derive the time-variant PDF of precipitation
and soil moisture by GAMLSS method. The optimal PDF of different single-drought indi-
cators was determined based on the comparative analysis of fitting error, normal QQ and
worm figures of fitting residual items. The variation of proposed time-variant comprehen-
sive drought indicator presented strong correlation features with single precipitation and
soil moisture indicator.

(2) According to the total frequency of drought events, drought frequency analysis and
drought return period determination results through time-variant comprehensive drought
indicator, the variation of drought hazard system presented the evident mitigation trend
especially for light and moderate drought grades from north to south in Huaibei Plain. The
typical drought processes of extreme grade occurred in 1966, 1978 and 2001, respectively,
which is consistent with the statistics and observed data series of Anhui Province.

(3) The time-variant integrated drought indicator can better reveal drought evolution
characteristic processes compared to single drought indicators. Determination of time-
variant parameters as well as combination scenarios is crucial for derivation of time-
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variant PDFs of different single drought indicators. These are also difficult using the
GAMLSS approach.

All in all, the time-variant integrated drought index can better reveal the uncertainty
characteristics of the drought evolution process in comparison with different single drought
indexes. Determination of time-variant parameters as well as combination scenarios is
crucial for the derivation of time-variant PDFs of different single drought indicators. This is
also a challenge for the establishment of comprehensive drought index. In addition, much
work has been conducted concentrating on the reliability and applicability discussion of a
new integrated drought index from the perspective of statistics, and further exploration
focusing on the sensitivity analysis of time-variant drought index compared with other
single drought indicators should be conducted in future work.
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