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Abstract: The spatiotemporal patterns of key hydrological variables across China were illustrated
based on the developed Water and Energy Transfer Processes model in China (WEP-CN model).
Time series of four key hydrological variables, namely, precipitation (P), runoff (R), infiltration (Inf ),
and actual evapotranspiration (ETa), were obtained over 60 years. Then, the temporal trends and
spatial differences of these variables were analyzed using the Mann-Kendall and linear methods on
a national scale and on the water resource regional scale. Moreover, we explored the drivers and
constraints for changes in R, Inf, and ETa. The results showed: (1) Based on the coefficient of variations
of P (5.24%), R (11.80%), Inf (2.57%), and ETa (3.77%), R was more fluctuating than the other variables.
(2) These variables followed a similar trend of gradually decreasing from the southeast coast to the
northwest inland. (3) Changes in R and Inf were caused mainly by P, having correlation coefficients
with precipitation of 0.74 and 0.73, respectively. The ETa was constrained by a combination of P
and energy. The results improved the refined and quantitative research on hydrological processes
in China, identified the differences in hydrological variables between water-resource regions, and
provided a useful supplement to the research of the large-scale hydrological process.

Keywords: hydrological variables; large-scale modeling; temporal trend; spatial patterns; WEP-CN
model

1. Introduction

Climate change is not only disrupting the production systems and ecosystem [1] but
also causing changes in resource availability, such as natural hydrological resources [2–4]. Thus, it
is necessary to explore large-scale hydrological variable patterns within the framework of
long-term time series. The natural hydrological cycle controls the formation and evolution
of renewable freshwater resources for human survival and development [5,6]. Obviously,
the appropriate planning and management of water resources require a solid understand-
ing of the hydrological process and its dynamics. Oki and Kanae [6] stated that “if the
water cycle is managed wisely, renewable freshwater resources (RFWRs) can cover human
demand far into the future”. Consequently, numerous studies have attempted to quantify
and predict the changing characteristics of key hydrological variables dominated by pre-
cipitation, evaporation, and runoff. Traditional hydrological research, however, often is
focused on the catchment scale [7,8]. The hydrological model is valued as a tool. It was
developed from the previous lumped models to the physically based distributed model,
such as the TOPMODEL, MIKESHE, and soil and water assessment tool model [9]. In recent
years, increasing pressure on water use at regional and national scales has forced people to
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advance their understanding of hydrological processes from a macroscopic view. Conse-
quently, large-scale hydrological research with multiple catchments has become a popular
research area. As pointed out by Kingston [10], “taking a large-scale perspective can bring
significant benefits to our understanding of hydrological processes under change”.

Two main approaches, the statistics-based and model-based methods, are widely used
to understand the large-scale hydrological cycle and its variables. The statistics-based
method generally uses satellite remote sensing data on precipitation, evaporation, and
water resources at the continental and even global scale. For example, a large number of
satellite/reanalysis-based precipitation products have been applied in global meteorologi-
cal and hydrological analyses [11,12]. The reference evapotranspiration has been estimated
from remote sensing–based surface temperature and local standard meteorological data [13].
An application of the Gravity Recovery and Climate Experiment (GRACE) satellites re-
vealed regional depletion of groundwater resources [14,15]. Despite the advantages of these
satellite products over gauge-based observations in terms of spatial coverage, they have
large uncertainties and errors arising from sensor deficiencies, retrieval algorithms, and
discordant data resolution [16,17]. The model-based methods rely mainly on large-scale
hydrological modeling, which has made significant progress and has turned into an inter-
esting field. Numerous large-scale land surface hydrological models also have emerged
to investigate changes in hydrological characteristics, including the variable infiltration
capacity (VIC) [18], WaterGAP [19], WASMODM [20], the mesoscale Hydrologic Model
(mHM) [21], and E-HYPE [22]. Typically, a grid with a resolution of tens or even hundreds
of kilometers has been used as the computation unit in these models, which has resulted
in the distortion of the river network, flow path, and land cover. Consequently, we have
failed to achieve a refined understanding of the spatiotemporal variation characteristics of
hydrological variables in large-scale areas. Therefore, many researchers have attempted to
improve computation units and parameters of the existing physically based hydrological
models to extend their applications from small- and medium-scale regions to large-scale
regions [23–25].

China covers a land area of about 9.6 million km2, including many river basins and
various geophysical and climatic zones. The hydrological variables in China, however,
have not yet been comprehensively investigated because of the lack of a detailed national
hydrological model and operating environment. Some studies have examined a single
variable in China, such as estimating actual evapotranspiration [26,27], analyzing refer-
ence evapotranspiration [28], and discussing the spatial patterns of precipitation [29,30].
Feng et al. [31] and Bai et al. [32] used GRACE data to present the spatiotemporal patterns
of groundwater storage in China. Analysis of runoff characteristics on a large scale with
different spatiotemporal resolutions continues to be a popular research topic [33–35]. Using
the VIC model, Miao and Wang [36] produced a flux database of the key hydrological
variables in China from 1961 to 2017, including runoff, evapotranspiration, soil moisture,
and water storage. This study calculated only the runoff flux of the nine largest rivers in
China, and low-resolution data constrained the investigation of the spatial heterogeneity
of runoff flux. Sun et al. [37] examined spatiotemporal shifts of evapotranspiration and
runoff across 9 Class I Water Resource Regions of China, which is unsatisfactory in terms
of spatial coverage and the number of hydrological variables.

To comprehensively describe and analyze the spatial heterogeneity of hydrological
processes in China, we developed the Water and Energy Transfer Processes model in
China (WEP-CN), a high-resolution, physically based hydrological model (see details in
Section 2.3). The model better implements the simulation of the hydrological variables on a
national scale. In this study, we applied this model and combined statistical methods to
answer several questions: (1) what are the temporal trends in key hydrological variables
of China in recent decades? (2) Where are the spatial differences in these variables among
hundreds of water resource regions? (3) What are the drivers and constraints that affect the
changes in these hydrological variables? We effectively realized the high-resolution display
of key hydrological cycle variables, including precipitation (P), infiltration (Inf ), evaporation
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(E), and runoff depth (R), across the country. The results systematically analyzed the
evolutionary characteristics of the water cycle at the national and different water-resource
region scales and identified the variability among water-resource regions. The research
results are a useful supplement to the research of the national-scale hydrological process
and provide a new reference for the high-resolution analysis of national-scale hydrological
variables through model-based methods.

2. Materials and Methodology
2.1. Study Area

China (N:3◦52′–N:53◦34′, E:73◦40′–E:135◦05′) is situated in the southeastern part of
the Eurasian continent, with an area of 9.6 million km2. The mean annual temperature
varies from −5.4 ◦C to 27.8 ◦C, and the mean annual precipitation is 649.8 mm, with an
extremely uneven distribution [38]. Based on the integrity of the river system and water
management requirements, China can be classified according to 10 Class I Water Resource
Regions (WWRs), 80 Class II WRRs, and 210 Class III WRRs [39–41]. The 10 Class I WRRs
are shown in Figure 1 and include Songhua River Basin (SRB), Liao River Basin (LRB),
Haihe River Basin (HRB), Yellow River Basin (YRB), Huai River Basin (HURB), Yangtze
River Basin (YZRB), Pearl River Basin (PRB), Southeast River Basin (SERB), Southwest
River Basin (SWRB), and Northwest River Basin (NWRB). Generally, the main rivers in
China flow from west to east, determined by elevation differences, suggesting that most
river basins have an upstream and downstream relationship. Six Class I WRRs (i.e., SRB,
LRB, HRB, YRB, HURB, and SWRB) are located in the north of China, and the remaining
four are located in the south. Figure 1 shows the distribution of China’s WRRs.
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2.2. Data Sources

Meteorological data were provided by the National Meteorological Information Center
of China [42]. The data on river runoff, soil moisture content, and groundwater table were
provided by the Annual Hydrological Report of China [43], the Second National Water
Resources Survey, and the China Hydrological Yearbook, respectively. All data entered into
the WEP-CN model have been processed into grids with a spatial resolution of 1 km× 1 km.
For detailed data and model validation, refer to Liu et al. [44]. The model provided more
than 20 hydrological variables. We selected the key variables (i.e., P, ETa, R, Inf ) to be
aggregated and explored data on an annual scale from 1956 to 2017 over China.
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2.3. Methodology
2.3.1. WEP-CN Model

Taking China as the study area, we succeeded in developing a high-resolution, phys-
ically based hydrological model running nationally. First, using the improved WEP-CN
method of river system generation and sub-watershed division, we obtained a well-defined
simulation area with 19,406 sub-watersheds and 86,406 contour belts [45]. Second, we
adopted the three-dimensional interpolation method with consideration of elevation effects
to interpolate precipitation and air temperature combined with the satellite products. Simi-
larly, we obtained vegetation data for the different elevation zones using satellite remote
sensing data. Third, we improved the numerical simulation of soil moisture movement in
the vadose zone. We quantitatively analyzed the effects of karst development, soil swelling
deformation, and soil freezing and thawing on soil moisture movement and modified the
related parameters.

We calculated evapotranspiration according to the Penman-Monteith equation [46,47].
The water balance approach and a multilayered Green-Ampt model [48] can be used to
simulate saturation-excess runoff and the infiltration excess runoff generation, respectively.
We computed overland flow and river flow using a one-dimensional kinematic wave
approach and simulated groundwater flow using the Boussinesq equations [24]. The
main components of the WEP-CN model are shown in Figure 2. For model calibration
and validation, we performed continuous simulations of 62 years (1956–2017) for various
land cover conditions. By comparing simulated and statistical monthly streamflow at the
203 hydrological stations across the country, the results showed that the model had higher
accuracy. Focusing on the validation period, the Nash-Sutcliff Efficiency (NSE) was larger
than 0.7 at 80% of the stations, and the absolute value of relative error (RE) was less than
10% at 95% of the stations, as listed in Table 1. For more details about this model, refer to
Liu et al. [44].
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Table 1. Calibration and validation results of 203 hydrological stations in China.

WRRs
Total

Number of
Stations

Calibration Period (1956–1980) Validation Period (1981–2000)

NSE > 0.7 |RE| < 10% NSE > 0.7 |RE| < 10%

NUM PCT NUM PCT NUM PCT NUM PCT

China 203 165 81% 184 91% 163 80% 193 95%
SRB 28 20 71% 26 94% 18 63% 26 94%
LRB 17 12 73% 17 100% 14 82% 17 100%
HRB 16 14 89% 12 78% 12 75% 14 89%
YRB 31 22 71% 29 93% 22 71% 29 93%

HURB 12 11 90% 10 80% 8 70% 12 100%
YZRB 47 45 96% 41 88% 47 100% 43 92%
SERB 12 12 100% 12 100% 12 100% 12 100%
PRB 25 25 100% 20 80% 23 90% 20 80%

SWRB 10 6 64% 8 82% 7 73% 10 100%
NWRB 5 3 67% 3 67% 3 67% 3 67%

Note: NUM and PCT represent the number of qualified stations and their proportion in the total number.

2.3.2. Trend Analysis

We used the Mann-Kendall (M-K) trend test [49] to quantify the significance of tem-
poral trends for hydrological variables, which can be intuitively expressed by a statistical
value. The M-K trend test is not affected by the actual distribution of the data, is not affected
by missing data or by the irregular spacing of the time points of measurement and is less
sensitive to outliers. This method has been used widely to evaluate the significance of
trends in hydrometeorological time series [50,51]. The calculation process is as follows:

S =
n−1

∑
a=1

n

∑
b=a+1

sgn(xb − xa); sgn(xb − xa) =


−1, if xb − xa < 0
0, if xb − xa = 0
+1, if xb − xa > 0

(1)

where S denotes the statistic variables of the M-K trend test, n is the number of detected
data series, and xa and xb are the data values in time series a and b (b > a), respectively.

Z =


S+1√
Var(S)

, if S < 0

0, if S < 0
S−1√
Var(S)

, if S > 0
; Var(S) =

n(n− 1)(2n + 5)−
q
∑

p=1
tp(tp − 1)(2tp + 5)

18
(2)

where Z is the standard normal test statistics. Positive values of ZS show increasing trends,
whereas negative Z values indicate decreasing trends; tp denotes the number of ties up
to sample p; and q is the number of tied groups. If |Z| > Z1−α/2, the null hypothesis is
rejected, and the variable exhibits a significant trend at the α level. In this study, Z values
of precipitation, temperature, runoff depth, infiltration, actual evapotranspiration, and
internal renewable water resources (IRWRs) were denoted as Zp, Zt, Zr, Zinf, Zeta, and Zirwr,
respectively. Because we used a two-sided test, the threshold for the significance test at the
0.05 level was 1.96. In addition, we also used linear trend analysis in this study to compare
and contrast the M-K trend analysis.

3. Results
3.1. Mean Spatial Pattern of Key Hydrological Variables

Figure 3 shows the spatial distribution of the long-term means (1956–2017) of the key
hydrological variables (i.e., precipitation, runoff, infiltration, and actual evapotranspiration)
in China. All variables decreased from the southeast coast to the northwest inland, showing
regional differences. Because the southeast areas are situated closer to the coast, compared
with the northwest inland, the hydrological variables are more likely to be affected by
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the East Asian monsoon. As shown in Figure 3a, the maximum value area of P was
distributed in the southwest regions (SWRB), which was caused by the prevailing Indian
monsoon. Compared with the other three variables, Figure 3b shows that the area with
a small R (<100 mm) in northern China was extremely large, which can be explained by
the following: (1) the regions with R less than 100 mm overlapped with the regions with P
less than 800 mm, as P is the major factor restricting R; and (2) most of the P infiltrated and
evaporated because of low soil moisture, small air humidity, and mechanism of the runoff
yield, which was dominated by excess infiltration in the north [52].
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Comparing Figure 3c with Figure 3d, in the area in northwest China, Inf and ETa
showed similarities in terms of magnitude and spatial pattern. We inferred that in northwest
China (NWRB), most of the water that infiltrated into the soil was evaporated back into the
atmosphere. However, in southeast China, which is covered by lush vegetation, ETa was
larger than Inf. It is likely that ETa in southeast China is contributed by a combination of
water in the soil layer and intercept water amounts by vegetation.

3.2. Temporal Changes of Key Hydrological Variables in China and Its WRRs
3.2.1. Temporal Trends of Hydrological Variables on National Scale

Figure 4 and Table 2 show the 62-year temporal trend of the key hydrological variables,
averaged for the entire country. We analyzed the temporal trends with the linear regression
and M-K trend test method. The 62-year average values of P, R, Inf, and ETa over the
country were 678.1 mm, 275.5 mm, 322.6 mm, and 431.6 mm, respectively. It should be
emphasized that on a multi-year average national scale, P, R, and ETa are not closed. This
can be explained from two perspectives: (1) the water budget at the continental scale is
not completely closed [53]; (2) Because the water equivalent of thaw and snowmelt are
contributed to R and ETa, their sum is larger than the P term. Variables P and R followed
decreasing trends over 62 years, whereas the Inf and ETa followed weak increasing trends.
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The M-K test indicated that the trends of the four hydrological variables were not significant.
Meanwhile, the four linear regression coefficients were not significantly different from
the value 0 at the 0.05 level, according to the results of the t-test, which indicated that no
significant trend existed in the time series of the four variables. The coefficient of variation
(CV) of P, R, Inf, and ETa was 5.24%, 11.80%, 2.57%, and 3.77%, respectively, which showed
that R highly fluctuated, whereas Inf and ETa were relatively stable. Additionally, R had a
significant correlation with P in the time series, which passed the significance test at the
0.01 confidence level. Annual precipitation decreased at a rate of −0.35 mm/year (linear
trend), suggesting a potentially higher frequency of drought. For example, an extreme
drought event in Southwest China that occurred in 2009–2010 (the years with the lowest
precipitation in Figure 4 was a “once-in-a-century drought” [54].
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Table 2. Statistics of key hydrological variables over time at national scales.

Variables Mean (mm) Z Values CV (%)

P 678.1 −1.04 5.24
R 275.5 −0.44 11.80

Inf 322.6 −1.04 2.57
ETa 431.6 1.03 3.77

3.2.2. Hydrological Variation and Its Differences among WRRs

We calculated trend changes on the scale of the Class III WRRs, as shown in Figure 5.
We also presented the results on the scale of Class I WRRs. The changes in P across the
country were spatially different. The P at most meteorological observation stations in the
NWRB followed a significantly increasing trend (Zp > 1.96). The increase in P effectively
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contributed to the abundance of water resources in NWRB. In addition, regions with
increased P also included part of SWRB, downstream of YZRB, some areas in SERB, and
PRB, but the results were not significant at the 0.05 confidence level. The regions that
followed a decreasing trend of P (Zp < 0) extended from the northeast to the southwest.
These regions specifically included SRB, LRB, HRB, most of YRB, HURB, YZRB midstream,
SWRB downstream, and part of PRB. Regions that showed a significant decline (Zp ≤ 1.96)
were concentrated in the middle YZRB and scattered in other areas.

Water 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

Table 2. Statistics of key hydrological variables over time at national scales. 

Variables Mean (mm) Z Values CV (%) 
P 678.1 −1.04 5.24 
R 275.5 −0.44 11.80 
Inf 322.6 −1.04 2.57 
ETa 431.6 1.03 3.77 

3.2.2. Hydrological Variation and Its Differences among WRRs 
We calculated trend changes on the scale of the Class III WRRs, as shown in Figure 

5. We also presented the results on the scale of Class I WRRs. The changes in P across the 
country were spatially different. The P at most meteorological observation stations in the 
NWRB followed a significantly increasing trend (Zp > 1.96). The increase in P effectively 
contributed to the abundance of water resources in NWRB. In addition, regions with in-
creased P also included part of SWRB, downstream of YZRB, some areas in SERB, and 
PRB, but the results were not significant at the 0.05 confidence level. The regions that fol-
lowed a decreasing trend of P (Zp < 0) extended from the northeast to the southwest. These 
regions specifically included SRB, LRB, HRB, most of YRB, HURB, YZRB midstream, 
SWRB downstream, and part of PRB. Regions that showed a significant decline (Zp ≤ 1.96) 
were concentrated in the middle YZRB and scattered in other areas. 

 
Figure 5. Spatial pattern of results for M-K trend test. (a) Zp, (b) Zr, (c) Zinf, (d) Zeta. 

From the perspective of changes over the years, we identified differences in R for 
various regions, which can be roughly categorized into five areas. (1) Most areas of NWRB 
followed a significant increasing trend (Zr > 1.96). (2) In the north-central area (parts of 
YRB and HRB), the changing trend of R show discretized spatial distribution, which ir-
regularly switched between increasing and decreasing trends. (3) In the northeast area 
(SRB and LRB), increasing trends and decreasing trends presented clustered distributions, 
and the general pattern increased in the west and decreased in the east. (4) The southeast-
ern area (downstream of YZRB, parts of HURB and SERB) showed an increasing tendency 

Figure 5. Spatial pattern of results for M-K trend test. (a) Zp, (b) Zr, (c) Zinf, (d) Zeta.

From the perspective of changes over the years, we identified differences in R for
various regions, which can be roughly categorized into five areas. (1) Most areas of NWRB
followed a significant increasing trend (Zr > 1.96). (2) In the north-central area (parts of YRB
and HRB), the changing trend of R show discretized spatial distribution, which irregularly
switched between increasing and decreasing trends. (3) In the northeast area (SRB and
LRB), increasing trends and decreasing trends presented clustered distributions, and the
general pattern increased in the west and decreased in the east. (4) The southeastern
area (downstream of YZRB, parts of HURB and SERB) showed an increasing tendency
(0 < Zr < 1.96). Conversely, (5) the southwestern areas (up and middle stream of YZRB and
PRB; part of SWRB) showed a clustered decreasing tendency (Zr < 0).

Analyzing these changes in infiltration volume from the interannual change trend, the
results showed that its tendency to change (Figure 5c) overlapped well with the spatial
distribution of Zp (Figure 5a). Most of the Zinf in NWRB showed a significant and concen-
trated increase, whereas this increase and decrease coexisted in other regions of China,
which followed insignificant trends. Some scattered basins in southwestern and eastern
regions showed significantly decreasing trends. The physical process of Zinf change should
be influenced by changes in precipitation and underlying surface (see Section 3.3.1)

According to the results of the M-K trend test, the ETa in China has changed dra-
matically. These changes are concentrated and appear in large-scale areas with reduced
ETa that is significant (Zeta ≤ 1.96) from the central to the southeast (i.e., middle of HRB,
middle and downstream of YZRB, HURB, and upstream of PRB). Most of the northwest
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(NWRB) followed a significant trend of change that was diametrically opposed to that of the
central and southeast regions. Other regions followed discretely increasing or decreasing
trends, but clearly, more areas followed decreasing trends than increasing trends within an
insignificant range.

Furthermore, we calculated the CV values of four key hydrological variables on Class
III WRRs and summarized the variables in Class I WRRs, as listed in Table 3. Overall, the
CV values for four variables in the Class I WRRs showed variability between north and
south. Compared with the south, the CV values for P and ETa were slightly greater in the
north, whereas the R values were significantly greater. Conversely, the CV values for Inf
were greater in the south.

Table 3. Coefficient of variations (CV) values of four key hydrological variables on Class III WRRs.

Class I
WRRs

Location Number of
Class III WRRs

CV of P CV of R CV of ET CV of Inf

Mean Median Mean Median Mean Median Mean Median

SRB

North

18 5% 5% 6% 5% 3% 3% 6% 6%
LRB 12 4% 4% 7% 3% 2% 2% 4% 2%
HRB 15 8% 7% 16% 14% 6% 5% 3% 2%
YRB 29 5% 4% 16% 14% 4% 3% 3% 2%

HURB 14 6% 6% 10% 9% 3% 4% 6% 6%
NWRB 33 11% 11% 17% 18% 7% 8% 4% 3%

YZRB

South

45 3% 3% 4% 3% 2% 1% 8% 6%
PRB 10 3% 2% 2% 2% 1% 1% 8% 6%

SERB 20 3% 3% 2% 3% 2% 2% 8% 7%
SWRB 14 6% 4% 5% 2% 2% 2% 14% 10%

3.3. Drivers and Constraints for Changes in Key Hydrological Variables
3.3.1. Driving Forces for Changes in R and Inf

Changes in the climate and underlying surface were the main driving forces for varia-
tions in runoff and infiltration. The northwestern region presented a spatially continuous
and large-scale trend in which both runoff and infiltration increased significantly. This
likely was caused by increased P and thawing with warmer temperatures (T).

The size of Z values can reflect the significant degree of change in the variables over
time. Therefore, we used the correlation analysis of the statistics (Z values) among different
variables to determine whether a correlation existed between the intensity of change of the
two variables. The meteorological data and hydrological data in 210 Class III WRRs were
used, which were obtained from the data statistics of 19,406 sub-basins through model
reanalysis. By analyzing the correlation between Zp and Zr, we found that they were
significantly correlated at the 0.01 level with a linear correlation coefficient of 0.74; that
is, a strong positive correlation existed in the intensity of change between R and P (see
Figure 6a). We performed a similar correlation analysis between Zp and Zrinf. The result
showed that they were significantly correlated at the 0.01 confidence level with a linear
correlation coefficient of 0.73; that is, a strong positive correlation existed in the intensity of
change between Inf and P (see Figure 6b).

We speculate that climate warming has caused the melting of glaciers and the thawing
of frozen soils, which has increased water production in the regions. Although we con-
firmed a weak negative correlation between Zt and Zr when performing spatial correlation
analysis in 210 Class III WRRs, which means we did not find direct evidence that warming
was causing an increase in water production. A positive effect of temperature on R and Inf,
however, could not be ruled out. Many studies [55–57] have reported that water production
in this region has increased significantly with the melting of glacier snow in recent years.
Conversely, it is unlikely that this change was caused by human activities because the
vegetation coverage and population density are much lower in northwestern China than
in other regions [58,59]. Southeast coastal areas (downstream of YZRB, parts of PRB, and
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SERB) also have been affected by the P change (0 < Zp), where both runoff and infiltration
have shown an increasing tendency (0 < Zr, Zinf).
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Another phenomenon is that the driving force of underlying surface change was
greater than that of the P variable. In those regions, runoff and infiltration roughly followed
a reverse trend. This change in the underlying surface was reflected in forest areas, farming
areas, and urbanization. A representative basin is the Hulan Basin (shown in Figure 5) in
northeast China. With the recent implementation of a strategy to have a “large granary
in the Northeast” [60], the agricultural area in the Hulan Basin has expanded rapidly. In
2015, the area of arable land increased by 56.58% compared with 1980. The proportion of
forests decreased from 31.89% in 1980 to 28.34% in 2015, which directly increased the runoff
and reduced the infiltration capacity [52]. In the Weihe Basin (shown in Figure 5), which
is located in the middle of the YRB, soil and water conservation have been implemented
for many years. The area of vegetation, such as forests and grasslands, has increased and
has been accompanied by a decrease in bare land. This vegetation has increased the water
conservation capacity of the basin, resulting in a decrease in runoff and an increase in
infiltration [61,62].

We determined that the effects of climate change and underlying surface changes on
runoff and infiltration are different in both spatial scales and intensity. On the national scale,
the changes in runoff and infiltration driven by climate change (including precipitation
and air temperature) were clearly more noticeable, as evidenced by the significant changes
in the northwestern region. In contrast, the underlying surface changes due to human
activities have been limited, and we identified only the impact of forest planting (Weihe
Basin) and agricultural planting (Hulan Basin) in a scaled area. This result was consistent
with the findings of an earlier investigation in 21 typical basins [52].

3.3.2. Constraints on Actual ET

Figure 7 shows the spatial pattern of the long-term mean of potential evapotranspira-
tion (PET), which is the potential rate when sufficient water is available [63]. The spatial
pattern of PET in China (Figure 7) followed the opposite spatial pattern of ETa (Figure 3d),
which indicated that water availability had played a critical role in constraining ETa. This
constraint, however, differed in the southern and northern regions. The results of the
t-test for the correlation between ETa and P showed that both variables had a significant
correlation at the 0.01 confidence level in northern China (SRB, LRB, HRB, HURB, YRB,
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and NWRB) and southern China (SWRB, YZRB, SERB, and PRB). The regression coefficient
(Figure 8), however, was greater in the north (0.78) than in the south (0.57). This means that
P in the north placed a greater constraint on ETa than it did in the south. This finding was
consistent with the perspective [64] that the north has water-limited ETa and the south has
energy-limited ETa based on the concept of the Budyko framework [65].
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Figure 5d showed a significant reduction in large areas of the central region extending
to southeastern regions, which was presumed to be related to a decrease in vegetation cover.
Regarding forest evapotranspiration (Figure 9a), grassland evapotranspiration (Figure 9b),
and surface interception and waterbody evaporation (Figure 9c), in the ETa decreasing
region, both ETg and Ew followed a significant decreasing trend (Z ≤ 1.96), and the range
of declines in ETf also was large. These results suggested the possibility that the vegetation
cover of the region, particularly the area covered by grassland, declined significantly over
the past few decades. The reduction in Ew (Figure 9c) may have been caused by the
reduction in surface retention capacity because of changes in vegetation cover. This result
was consistent with the finding that the vegetation coverage area, especially the grassland
area in southeastern China, decreased significantly from 1980 to 2017 [66].
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The northwest region (NWRB) has the largest potential evapotranspiration in China.
When the waterbody surface evaporation and interception evaporation (Figure 9c) in this
area increase significantly, the forest transpiration also increases to a certain extent. Then,
the ETa of NWRB inevitably would follow a significant increasing trend (Figure 5d). The
trend of precipitation has increased the amount of water available in NWRB. The melting
of many glaciers and snow in the region, however, is another important factor that has
been affecting water availability [67,68].

3.4. Assessment of Internal Renewable Water Resources

We evaluated the IRWRs of China based on the output variables of the WEP-CN
model. The IRWR is defined as the average annual flow of rivers and recharge of aquifers
generated from endogenous precipitation [69]. Here, IRWRa (m3) and IRWRd (mm) were
used, respectively. The results showed that the long-term mean value (1956–2017) of IRWRa
in China was 2.81 × 1011 m3/year, of which surface IRWRa was 2.71 × 1011 m3/year
and underground IRWRa was 0.82 × 1011 m3/year. Note that the average overlap water
between surface IRWRa and underground IRWRa was 0.72 × 1011 m3/year.

In the spatial distribution of the Class III WRR scale, IRWRs gradually increased from
northwest to southeast (Figure 10). The IRWRd of the northwestern region and the northern
region adjacent to Mongolia was below 100 mm. The IRWRd of the northeast region was
between 100 mm and 250 mm, but the IRWRd of the coastal areas was significantly higher
than that of other areas, up to 700 mm. The southeast region had the most abundant IRWRd,
with an average annual value of about 1000 mm. In terms of time evolution, the IRWRd of
HRB, SWRB, upper-middle stream of YZRB, and SRB decreased significantly (Zirwr ≤ 1.96),
which likely was caused by the combined effects of climate factor and underlying surface
change. The IRWRd of NWRB showed a significant increasing trend (Zirwr > 1.96), possibly
because of the melting of glaciers and the thawing of frozen soil.
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4. Discussion

The results of the study showed increased stress on water resources in the north. We
obtained annual averages of IRWRd from the WEP-CN model. Because of the limitation
of available data, the current water demand by Class I WRRs was represented by water
consumption in 2019 [70]. Despite variances in the development and water use efficiency
across WRRs, the data demonstrated the mismatches between water resources and popula-
tion distribution in China. Figure A1 shows the 1956–2017 averages of IRWRd (mm) and
2019 water consumption (mm) on the national scale and the Class I WRR scale.

The results of the IRWRd ranking showed that water resources were far more abundant
in the south than in the north because of the distribution characteristics of the hydrological
variables, as has been widely reported [71,72]. In the north, the prospects for water
surpluses to assist sustainable development were severe. The HURB has the highest
water consumption, the HRB has the largest water deficit, and the YRB has been under a lot
of water stress. Thus, the Chinese government has made a series of efforts in recent years
to diminish this mismatch through water transfer projects [73] and water conservation
policies [74].

Table A1 shows the interdecadal variation of IRWRs from 1956 to 2017. The interdecadal
variability in the 1980–2000 period relative to the 1956–1979 period was represented as Case (1),
and the interdecadal variability in the 2001–2017 period relative to the 1980–2000 period was
represented as Case (2). In Case (1), the results showed a slight increase in the national
average of IRWRs, with an increase of about 2%. The value with the largest increase (15%)
was in the SRB, and the most significant decrease (40%) was in the HRB. In Case (2), the
national average of IRWRs decreased by 5.2%. Except for the LRB, HURB, and NWRB,
the rest of the Class I WRRs have decreased to varying degrees, ranging from 2.7% to
19.5%. The surface IRWRs on a national scale showed a 1.6% increase in Case (1) and a 4.1%
decrease in Case (2). Correspondingly, the two values for the ground IRWRs were positive
3.3% and negative 8.3%. In summary, the two variabilities in surface IRWRs and subsurface
IRWRs were relatively low at the national scale but showed considerable variability at the
WRR scale, especially in the HRB.

Specifically, in the north, the IRWRs of the six Class I WRRs showed different water
stress profiles. The most notable feature was a dramatic fall of IRWRs over more than half a
century in the HRB, which was driven by a decrease in precipitation (see Figure 5a). The
rate of decline of the IRWRs in the YRB has slowed down; however, when combined with
the water consumption results shown in Table A1, it is apparent that the region is still facing
greater water stress compared to the southern region. Hopefully, the execution of the “High-
Quality Development of the Yellow River Basin” will break this cycle [75,76]. The IRWRs
of the HURB followed a pattern of decreasing and then increasing. This unstable pattern
of change has been highly detrimental to the sustainable utilization of the IRWRs, and the
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region was prone to the alternate occurrence of extreme drought and extreme flooding
events [77]. Although NWRB showed an increase in IRWRs, to which the thawing processes
made a non-negligible contribution, NWRB may continue to encounter water shortages
as future thawing water decreases. Residents in the NWRB should be cautious when
engaging in production activities. The reduction of runoff in recent years has contributed
significantly to the severe reduction of the wetland area in SRB, and the shrinkage of the
wetland has fed back into the reduced capacity to store runoff [78,79], which may result
in potential disasters, such as flooding. Thus, the runoff storage capacity in SRB requires
further attention.

In addition, it was found that the main results of this study were in good agreement
with the published academic results [33,36,37,80,81] in terms of spatial distribution patterns
and performed more superior in terms of spatial resolution. The main findings of this study
are valid and credible and provide a useful supplement to the research of the large-scale
hydrological process.

5. Conclusions

This study comprehensively presented the trends and spatial patterns of key hydro-
logical variables in China over more than half a century. We have demonstrated that the
four key hydrological variables (P, R, Inf, and ETa) have followed spatial patterns of gradu-
ally increasing from the northwest to the southeast. Over 62 years, the key hydrological
variables in different regions have revealed complex tendencies. The hydrological variables
in the northwestern region have shown a concentrated and large-scale increasing trend,
which we attributed to an increase in water availability caused by climate change. In the
southeast coastal area, the increase in P contributed to the increase in the R and Inf, whereas
ETa has dropped unexpectedly as a result of the reduction of vegetation area.

Human activities have a significant effect on the key hydrological variables in local
regions, but they are weaker in scope and intensity than climate change. Only if human
activities (e.g., afforestation, expanding farmland) are implemented at a large scale will the
hydrological variables be able to sufficiently respond to these driving forces on a relatively
large basin scale.

Interdecadal variabilities of IRWRs in Class I WRRs suggested that the northern regions
tend to face high water stress. In particular, the HRB and YRB, with high population density
and active economic activity, have shown a sustained decline in IRWRs. The recent increase
in IRWRs in the NWRB is potentially unsustainable. Reduced IRWRs in the SRB threatens
local ecology and food security. In the future, several engineering and policy measures
should be taken to optimize trade-offs and synergies between socioeconomic development
and water resources and to explore pathways to sustainable development.
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Table A1. Interdecadal variabilities of IRWRs at the Class I WRR scale and national scale.

Class I
WRRs/Nation

Variability of IRWR Variability of Surface
IRWR

Variability of Ground
IRWR

Case (1) Case (2) Case (1) Case (2) Case (1) Case (2)

SRB 14.51% −11.19% 12.37% −9.34% 14.49% −12.49%
LRB −10.96% 7.26% −10.22% 7.61% −4.31% −1.71%
HRB −37.4% −19.48% −38.07% −6.41% −31.55% −29.43%
YRB −9.91% −2.68% −9.44% −3.67% 2.88% −4.83%

HURB −11.44% 23.23% −10.39% 21.55% −13.99% 27.83%
NWRB −1.25% 11.61% 2.47% 11.47% −6.87% −3.24%
YZRB 7.55% −8.64% 6.21% −7.53% 8.72% −12.47%
PRB 7.81% −8.64% 8.27% −8.41% 6.06% −8.04%

SERB 1.94% −12.5% 1.52% −11.44% −2.33% −6.78%
SWRB −1.94% 0.76% −5.43% 4.55% 5.8% −7.3%
Nation 1.79% −5.15% 1.6% −4.13% 3.32% −8.25%
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