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Abstract: Mining of mineral resources exposes various minerals to oxidizing environments, especially
sulfide minerals, which are decomposed by water after oxidation and make the water in the mine area
acidic. Acid mine drainage (AMD) from mining can pollute surrounding rivers and lakes, causing
serious ecological problems. Compared with traditional field surveys, unmanned aerial vehicle
(UAV) technology has advantages in terms of real-time imagery, security, and image accuracy. UAV
technology can compensate for the shortcomings of traditional technology in mine environmental
surveys and effectively improve the implementat ion efficiency of the work. UAV technology has
gradually become one of the important ways of mine environmental monitoring. In this study, a
UAV aerial photography system equipped with a Red, Green, Blue (RGB) camera collected very-
high-resolution images of the stone coal mining area in Ziyang County, northwest China, and
classified the very-high-resolution images by support vector machine (SVM), random forest (RF),
and U-Net methods, and detected the distribution of five types of land cover, including AMD, roof,
water, vegetation, and bare land. Finally, the accuracy of the recognition results was evaluated
based on the land-cover map using the confusion matrix. The recognition accuracy of AMD using
the U-Net method is significantly better than that of SVM and RF traditional machine-learning
methods. The results showed that a UAV aerial photography system equipped with an RGB camera
and the depth neural network algorithm could be combined for the competent detection of mine
environmental problems.

Keywords: acid mine drainage; mining environmental survey; unmanned aerial vehicle; support
vector machine; random forest; U-Net

1. Introduction

Acid mine drainage (AMD) is an environmental phenomenon caused by mining,
which may be related to mining activities that artificially expose a large amount of sulfide
minerals to the weathering conditions of the earth’s surface and form low-pH water under
the chemical reaction process involving oxygen, water, and microorganisms. AMD has been
defined in previous studies as the process of oxidation of sulfide minerals to form low-pH
drainage water [1]. This acidic water with toxic elements could significantly influence the
health of natural ecosystems and the survival of aquatic organisms. The main areas affected
by AMD are generally rivers, lakes, estuaries, and coastal waters. The formation of AMD
always occurs during a long period taking from years to decades, and its environmental
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impact could last for centuries [2]. Therefore, this environmental problem requires long-
term monitoring and sustained remediation. In order to monitor the spatial distribution
and intensity of AMD pollution, some efforts have been made, mainly with systematic
sampling and laboratory analysis of surface water and sediments. Then, interpolation
results are scattered to draw pollution distribution and evaluation maps [3,4]. However,
this method is suitable for scientific research and detailed investigation, which require high
test results. It is time-consuming, expensive, and covers limited spatial scale for the daily
monitoring work of local environmental regulatory authorities.

In many metallic and coal mines of the United States, China, and Russia, the oxidative
breakdown of iron-containing sulfide minerals releases ferrous iron and the energy that
microbes depend on for survival [5–7]. The ferrous iron continues to be oxidized to ferric
iron and produces more sulfuric acid [8,9]. The solubility of ferric iron at near-neutral pH is
low, at which point iron hydroxide solids are rapidly formed. Iron hydroxide precipitation
can be regarded as evidence for the presence of AMD [2]. It also has the characteristic
of adsorbing toxic metals from AMD. The alteration of ferrous iron can produce a series
of secondary minerals such as goethite, hematite, and jarosite, which usually appear
orange [10]. The pH value plays a crucial role in secondary mineral precipitation, where
goethite forms at a pH of between 2 and 12, and hematite forms at a pH of between 7
and 9 [11,12]. The jarosite usually produces at a low pH value (between 1 and 3) [13]. A
group of secondary mineral products appears orange to red in color, according to their high
concentrations of ferric iron. This characteristic has been previously known as a gossan, a
significant remote-sensing detection marker for ore exploration [14–17].

Previous studies have proved that remote-sensing technology facilitates many envi-
ronmental monitoring efforts [18–20]. Multispectral and hyperspectral sensors have been
widely used due to the obvious reflectance variation of minerals such as hematite and
goethite in the visible to short-wave infrared region of the electromagnetic spectrum [21,22].
These studies are based on a wide range of spatial scales, which are determined by data-
collection platforms including satellite remote-sensing technology for water source pro-
tection [23,24]. The indirect estimation of pH values of mine waste [25–28] and iron oxide
precipitation on the riverbed mainly used aerial remote sensing [29]. Other studies have
collected AMD minerals, performed spectroscopic tests indoors, and established a reference
spectroscopic library of iron minerals [30,31]. A multi-rotor UAV carrying a hyperspectral
sensor supplies images with both high spatial and high spectral resolution that is better
than that of most satellite data [32]. However, hyperspectral and multispectral sensors are
not suitable for routine monitoring due to their expensiveness and scarcity. At present,
a multi-rotor UAV system with a Red, Green, Blue (RGB) color digital camera has been
rapidly developed due to its low price and flexible application direction, and is widely used
in land resources and in geological, environmental, and other industrial mapping. The
application research of a UAV system with an RGB color digital camera in acid drainage
investigation in mines has not been comprehensively discussed yet.

The purpose of this study is to collect aerial remote-sensing data from stone coal
mines in Qinling Mountains by using a UAV system with an RGB color digital camera.
Three methods, including support vector machine (SVM), random forest (RF), and U-Net
methods, were used for acid mine drainage recognition and surface classification mapping.
The results of the three methods are comparatively discussed and an efficient, economical
method for acid mine drainage monitoring was developed. This study was proposed based
on actual mine environmental investigation work, and provided a simple, inexpensive, and
efficient environmental problem detection approach for the environmental authorities of
local governments and mining companies.

2. Materials and Methods
2.1. Study Area

The study area is located in the stone coal mining area of Qinling Mountains in Ziyang
County, Shaanxi Province. The main ore-bearing strata in the mining area are the Upper
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Ordovician Lower Silurian Banjiuguan Formation, and the main lithology is a set of black
carbonaceous slate with pyrite-rich trachyte [33]. The UAV imagery covered a relatively
larger mining company named the Minghua Mining Industry Co., Ltd. The Minghua
Mining Industry Co., Ltd. was established in the year of 2010 and produces 30,000 to
50,000 tons of ore annually. This company was shut down by the local government in
2017 due to its serious environmental problems. After nearly 8 years of exploitation in the
mining area, a large amount of gangue piles had been stacked on the slope and in the valley,
leaving a huge open pit. Under the effect of rainfall infiltration, oxidation occurs and a
large amount of acid mine drainage (AMD) was directly discharged into the Xiaomi stream
downstream from the mining area, forming an orange-colored river bed several kilometers
long (Figures 1 and 2). Xiaomi stream flows downward and inward to the Hanjiang River,
bringing huge contamination danger to the regional water environment. At the same time,
the Hanjiang River is an important water source for the South to North Water Transfer
Project. The acid drainage of the stone coal mines endangers the water source safety of the
water transfer project.
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Figure 2. (a) The AMD flows out of the mine portal; (b) the Xiaomi stream polluted by AMD.

2.2. The UAV Aerial Photography System

The Feima D2000 UAV system (Shenzhen Feima Robotics Technology Co., Ltd., Shen-
zhen, China), which was used for image acquisition in this study, is a light, long-endurance,
multi-rotor UAV system that can simultaneously meet the requirements of high-precision
mapping, remote sensing, and video shooting (Figure 3a). An aerial survey module, tilt
module, visible video module, thermal infrared video module, and thermal infrared remote-
sensing module could optionally be carried and could obtain diversified data. The standard
takeoff weight of the system is 2.8 kg, the standard load is 200 g, and the endurance is
74 min [34]. The whole system can be integrated into a work box after modular decom-
position, which is convenient for carrying and transportation. Feima D2000 is equipped
with high-precision differential GNSS card office, and the network RTK, PPK, and their
fusion solution services are provided as standard [35]. This system is competent for 1:500
mapping without control points, supports high-precision POS-assisted aerial triangulation,
and realizes phase-control-free application. The image size of the SONY a-6000 digital
camera (Sony Group Corporation, Tokyo, Japan) equipped with Feima D2000 aerial survey
system is 6000 × 4000 pixels and the lens focal length is 25 mm (Figure 3b) [36].
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The flight time was selected from 12:00 to 14:00 on 4 December 2020, which is the best
time for solar illumination. All aerial images were obtained through two flights. The flight
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adopts the ground-simulating flight mode, with a relative height of 200 m from the ground.
The flight parameters were defined off the shelf (Table 1) and the preset flight range and
route were imported into the remote controller before the flight.

Table 1. The flight parameters of the aerial image acquisition.

Parameter Value

Flight altitude (above take-off) 946 m
Ground resolution 4 cm
Number of flights 2

Flight duration 50 min
Course overlap 80%
Lateral overlap 60%
Relative height 314 m
Area covered 3.3 km2

In Table 2, the well-known UAV systems used in the AMD detection of mines in the
recently published literature are listed. The UAV system used in this study has advantages
of light weight and long duration.

Table 2. The instrumental parameters of the UAV aerial photography systems.

Parameter Feima D2000 DJI Matrice 210 V2 [19] Texo DSI [15] Tholeg THO-R-PX8 [21]

Duration 60 min 24 min 30 min 20 min
Sensor weigh 200 g 508.8 g 680 g 720 g
Cruise speed 72 km/h 61 km/h 36 km/h 40 km/h
Maximum relative height ±1000 m ±500 m ±500 m ±500 m

2.3. Pre-Processing

This study used Context Capture software version 10.20.0.4117 (Bentley Engineering
Software System Co., Ltd., Exton, PA, USA) to compute aerial triangulation of UAV aerial
data. The software automatically generates digital surface model (DSM) by matching the
same image points on the stereo relative and calculates the elevation of the ground points
using the collinear equation. True digital orthophoto map (TDOM) is a resampling based on
DSM to correct the geometric distortion of the original image. Since DSM contains elevation
information of buildings, bridges, trees, and other ground objects, the resulting image
not only corrects the terrain, but also corrects ground objects such as surface buildings,
maintains the vertical angle of the surface landscape, and resolves the difficulties of splicing
large-scale orthophoto images [37]. The geometric resolution of the UAV orthophoto images
collected in this study is 6 cm × 6 cm. The map projection used CGCS2000 ellipsoidal and
Gauss Kruger projection (Ministry of Natural Resources, Beijing, China). The true-color
image contains three channels of red, green, and blue.

2.4. Ground Truth Data

This study collected the latest land-use map of the study area from Xi’an Geological
Survey Center of China Geological Survey, and combined similar land types according
to recent land cover. Since dry land, tea plant, shrubbery, orchard, woods, bamboo, and
vegetables are all vegetation types, and abandoned land, unpaved road, rock dumps, and
rock cuts are bare-ground types, a total of five land-cover types were displayed. The five
surface-cover types of mine acid drainage, water body, roof, vegetation, and bare land are
most accurately classified as the ground truth data (Figure 4).



Water 2023, 15, 1613 6 of 16Water 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 4. The latest land-use map of the stone coal mining area. 

2.5. Methods 

2.5.1. Selection of Study Samples 

The learning image is an aerial image taken by an unmanned aerial vehicle in the 

vicinity of the study area, covering an area of 87,680 km2 (Figure 5a). The learning image 

contains five types of land cover: AMD, roof, water, vegetation, and bare land (Figure 5b). 

These learning labels are interpreted by human visual interpretation according to the 

land-use-type map of the mining area. Because the roads in the mining area are non-paved 

and the surface is consistent with the bare-land type, the bare-land type includes tradi-

tional bare land and the roads in the mining area. 

 

Figure 5. (a) The UAV image of the training area; (b) the ground truth of the training area. 

Figure 4. The latest land-use map of the stone coal mining area.

2.5. Methods
2.5.1. Selection of Study Samples

The learning image is an aerial image taken by an unmanned aerial vehicle in the
vicinity of the study area, covering an area of 87,680 km2 (Figure 5a). The learning image
contains five types of land cover: AMD, roof, water, vegetation, and bare land (Figure 5b).
These learning labels are interpreted by human visual interpretation according to the land-
use-type map of the mining area. Because the roads in the mining area are non-paved and
the surface is consistent with the bare-land type, the bare-land type includes traditional
bare land and the roads in the mining area.
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2.5.2. Support Vector Machine

This study used Support Vector Machine (SVM) to extract landslide information. This
method is a machine-learning model algorithm based on statistical theory. This method
uses optimization problem solving to determine the optimal classification hyperplane in the
high-dimensional feature space of the data, which can deal with complex data classification
problems [38–40]. SVM classifies by mapping the set of low-dimensional space vectors to
the high-dimensional space vectors, and then constructs a kernel function, which minimizes
the classification error and maximizes the generalization ability of the classifier [40].

The SVM optimal classification function expression is as follows:

S(x) = sign
[
∑n

i=1 aiyiK
(
xi, xj

)
+ b
]

(1)

In the formula, ai is a non-negative Lagrange multiplier; yi is the category; K(xi, xj) are
kernel functions; b is the classification threshold.

At present, there are four kinds of kernels commonly used in SVM, mainly Sigmoid
kernels, Polynomial kernels, Radial basis functions (RBF), and Linear kernels. In this study, the
polynomial is 2nd-order polynomial and all the expressions of the core functions are as follows:

Linear kernel function is:
K
(
xi, xj

)
= xT

i xj (2)

Polynomial kernel function is:

K
(

xi, xj
)
=
(

gxT
i xj + r

)c
(3)

Radial basis function is:

K
(

xi, xj
)
= exp

(
−g
∥∥xi − xj

∥∥2
)

, g > 0 (4)

Sigmoid kernel is:
K
(
xi, xj

)
= tanh

(
gxT

i xj + r
)

(5)

where, g > 0; c is a natural number, c = 2, r is hyperparameter.

2.5.3. Random Forest

Random forest algorithm was originally proposed by Breiman as a machine-learning
algorithm [41]. Random forest is a bagging-based decision tree method. Its core is the
bagging algorithm. Given a training set D of size n, the bagging algorithm selects n’
size subsets Di in a number of m from the training set evenly, and playback (using self-
service sampling) is used as a new training set. Using classification, regression, and other
algorithms on this m training set, a number of m models can be obtained, and then bagging
results can be obtained by averaging and majority votes. That is, given a training set X = X1,
..., Xn and target Y = Y1, ..., Yn, the bagging method repeats back (B times) samples from
the training set and then trains the tree model on these samples. After the training, the
prediction of the unknown sample X can be achieved by averaging the predictions of all
the single regression trees on X [42].

2.5.4. U-Net

The U-Net network structure, proposed by Olaf Ronneberger, Philipp Fischer, and Thomas
Brox at the IEEE International Symposium on Biomedical Imaging (ISBI) Competition 2015,
is a U-shaped structure consisting of shrinking subnetworks and expanding subnetworks.
Therefore it is named U-Net [43]. The structure of the U-Net network is shown in Figure 6. U-
Net first extracts feature information by downsampling through convolution and pooling, and
then fuses lower feature maps before upsampling and clipping through transposed convolution
for accurate positioning. The U-Net method repeats this process until the output signature
map is obtained, and then the segmented map is finished through the activation function.
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2.5.5. Confusion Matrix

In this study, the confusion matrix method was used to evaluate the accuracies of AMD
and land-cover classification in this mining area. The confusion matrix is calculated by com-
paring the location and category of each real pixel on the surface with the corresponding
location and category in the classification image [44]. The evaluation includes overall accuracy
and accuracy of each category. For AMD and other land-cover categories in mining area, the
overall accuracy is the percentage produced by dividing the sum of the correct classification
inspection points by the total selected inspection points. The accuracy of each category refers
to the probability that the results of each classification are comparable with the actual reference
data, to calculate the correct classification of each category.

3. Results

In general, all three methods have been used to classify RGB aerial images from UAVs
effectively and have identified the distribution of AMD successfully. The SVM and RF
methods classified all the pixels of the entire image, while the U-Net method classified
some pixels poorly matched with the five types of land cover as unclassified. Among the
SVM classification results, bare land covered the largest area (62.77% of the entire area) of
the study area, followed by vegetation (22.39% of the entire area). Roof class contained
threadiness such as non-paved roads in mining areas (Figure 7). AMD and water bodies
were mainly distributed along ponds and streams in the study area with a small coverage
percent of 0.14% (Figure 7). Because the study area is located in the Qinling Mountains,
the earth’s surface is mainly covered with dense forest and vegetation. Therefore, the SVM
classification results distorted the classification of vegetation and bare land. The results of
RF method showed the largest distribution area is bare land (39.89% of the entire area) and
followed by vegetation (38.99% of the entire area) (Figure 8). Most pixels of roof class were
real roofs of buildings, a few were unpaved roads in the mining area. Unpaved roads in the
mining area were mainly incorporated into bare-land class due to their similar color. AMD
and water bodies were still distributed along ponds and rivers with a smaller area (5.84% of
the entire area) in the results of the RF method (Figure 8). However, some of the vegetation
distinguished by the SVM classification method were misclassified into the AMD category,
possibly because some of the withered leaf color in autumn was close to the orange color of
AMD. The U-Net method showed the largest vegetation area (39.54% of the entire area),
followed by bare land (8.92% of the entire area). There were almost no misclassified mining
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roads in the roof class. Water bodies and AMD were still distributed along ponds and rivers
with a smaller area in the result of the U-Net method (Figure 9). The distribution of U-Net
classification results was better than that of the SVM and RF methods with fewer discrete
classification points. This feature greatly improves the aesthetics of the next mapping step.
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A small scale of the classification area was selected for detail comparisons among
the results of the different methods and the classes (Figure 10a). Among the vegetation
classification results of all the three methods, the SVM method mapped a smaller vegetation
land cover than the other two methods (Figure 10b). The RF and the U-Net methods
identified a similar vegetation distribution, but the RF vegetation recognition results are
more discrete than those of the U-Net (Figure 10c,d). Among the bare-land classification
results, the SVM method identified the largest bare-land area. Some vegetation pixels
were misidentified as bare land, while some unpaved roads were also misclassified as
roof by the SVM (Figure 10b). The RF method can more accurately identify bare land,
and fewer areas of bare land were misclassified as roof (Figure 10c). The bare-land areas
incorrectly identified by the U-Net method were mainly the road in the mining area and
the surface of the mining gangue piles (Figure 10d). The formation of AMD in stone coal
mines in the study area is due to the peeling off of rock and soil during open-pit mining,
resulting in the exposure of fresh rock surfaces and loose mining gravel to an oxidative
environment. Under the action of oxygen, atmospheric precipitation, and microorganisms,
minerals such as pyrite (FeS) are oxidized to form sulfate-containing AMD. AMD flows
downstream along the drainage channel built on the mining waste dump and forms a
confluence into the Xiaomi stream, so acidic water in the study area is mainly distributed in
the drainage channel and the Xiaomi stream of the mining area. As shown in Figure 10b, the
AMD identified by the SVM method appeared intermittently along the drainage channel
in the mining area. As shown in Figure 10c, the AMD identified by the RF method was
more contiguous along drainage channels in mining areas, but withered leaves are also
misidentified as AMD in vegetation areas. As shown in Figure 10d, the continuity of
the AMD distribution identified by the U-Net method was close to RF, and there was no
misclassification in vegetation areas.
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4. Discussion

This study used SVM, RF, and U-Net models combined with land-use classification
maps to identify AMD, bare land, roof, vegetation, and water bodies in a stone coal mine
area in Ziyang county with over 6 cm high-resolution RGB images obtained using UAVs.
The overall classification accuracies of the SVM, RF, and U-Net methods were 30.35%,
49.84%, and 56.26%, respectively, (Tables 3–5). Compared with traditional machine-learning
classification methods such as RF and SVM, the U-Net method improves the classification
accuracy by 6.42–25.91% using the same RGB image and the ground truth land-cover map.
This result is in agreement with previous studies that applied the deep learning network
model to remote-sensing land-use classification [45–47]. In this study, to form a reciprocity
in data with traditional machine-learning classification methods, without too many manual
steps to extract and select features [47,48], using 6 cm very-high-resolution UAV color
images for AMD and mine land-cover classification, the overall classification accuracies
of traditional machine-learning classification methods SVM and RF were lower than that
of U-Net.
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Table 3. The confusion matrix of the SVM results (%).

Class Bare Land Vegetation AMD Roof Water

Unclassified 0.01 0.01 0.00 0.00 0.00
Bare land 70.85 71.87 75.47 50.63 79.57
Vegetation 8.91 27.33 2.34 0.37 19.01

AMD 0.15 0.55 13.60 0.18 0.00
Roof 20.08 0.25 8.59 48.82 1.43

Water 0.00 0.00 0.00 0.00 0.00
Total 100.00 100.00 100.00 100.00 100.00

Note: Overall Accuracy = 30.35%.

Table 4. The confusion matrix of the RF results (%).

Class Bare Land Vegetation AMD Roof Water

Unclassified 0.01 0.01 0.00 0.00 0.00
Bare land 77.43 42.80 47.49 37.61 48.49
Vegetation 12.18 47.85 12.76 7.36 34.93

AMD 4.31 7.15 38.65 12.47 2.85
Roof 6.06 2.16 1.09 42.53 13.30

Water 0.01 0.03 0.00 0.04 0.42
Total 100.00 100.00 100.00 100.00 100.00

Note: Overall Accuracy = 49.84%.

Table 5. The confusion matrix of the U-Net results (%).

Class Bare Land Vegetation AMD Roof Water

Unclassified 43.44 37.91 26.28 37.33 47.49
Bare land 49.80 4.56 1.76 16.75 1.62
Vegetation 6.58 57.50 2.97 1.51 2.46

AMD 0.00 0.00 68.97 0.00 5.91
Roof 0.18 0.02 0.01 44.35 0.00

Water 0.00 0.01 0.00 0.05 42.51
Total 100.00 100.00 100.00 100.00 100.00

Note: Overall Accuracy = 56.26%.

Among the confusion matrices of the five types of ground cover distinguished by
the three methods, the AMD classification accuracy of the SVM method was the lowest at
13.60% and a large number pixels were misclassified into bare land (Table 3). The AMD
classification accuracy of the RF method was 38.65%, and the misclassification was also
mainly bare land (Table 4). The AMD classification accuracy of the U-Net method was
68.97% and the highest (Table 5). The classification accuracy of bare land by the SVM
method was 70.85% (Table 3). The bare-land classification accuracy of the RF method
was the highest at 77.43% (Table 4). The classification accuracy of bare land by the U-Net
method was 49.80%, with the lowest classification accuracy, and a large number of pixels
were marked as unclassified (Table 5). The vegetation classification accuracy of the SVM
method was the lowest at 27.33% and many pixels were misclassified as bare land (Table 3).
The precision of vegetation classification by the RF method was 47.85% (Table 4). The
classification accuracy of bare land by the U-Net method was 57.50% and the highest
(Table 5). The roof classification accuracy of the SVM method was the highest at 48.82%
(Table 3). The roof classification accuracy of the RF method was the lowest at 42.53% with
many pixels incorrectly classified as bare land (Table 4). The roof classification accuracy of
the U-Net method was 44.35% and some pixels were classified as bare land (Table 5). The
water classification accuracy of the SVM method was the lowest at 0.00%. In total 79.57%
and 19.01% pixels of water were misclassified as bare land and vegetation, respectively,
(Table 3). The roof classification accuracy of the RF method was 0.42% and the classification
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accuracy was also very low. Approximately 48.49% and 34.93% pixels of the roof were
misclassified as bare land and vegetation (Table 4). The roof classification accuracy of
the U-Net method was 42.51% and many pixels failed to be classified (Table 5). In some
previous studies, the accuracy of RF land-cover classification is generally higher than that
of SVM classification [49].

Meanwhile, due to the limitation of flight time and spectrum of the RGB images
collected using UAVs, non-paved roads, open pits, and waste dumps of stone coal mines
all belong to mining land. The color and texture of these cover types are similar to those
of natural bare land, which results in failure to classify these similar land-cover types by
machine-learning algorithm. However, along the pathway of AMD, the water bottom
exhibited orange color due to the deposition of richer iron oxides on the water bottom.
This color can be distinguished from most other objects and clean water bodies. Only
some dry vegetation in autumn and winter show brown-red color which leads to incorrect
classification of AMD identification. Therefore, follow-up research should consider the use
of growing season images to refine other land-cover classifications for in-depth learning
fine classification.

The data used in this study are true-color remote-sensing data with 6 cm very high
spatial resolution of the UAV, which contains richer texture information. In particular,
AMD performs a strong sense of granularity on the water bottom of the high-resolution
UAV image, and the fine features of the water bottom of AMD are more significant. Ex-
tracting geometric texture features of AMD underwater stones combined with current edge
information detection algorithm could better identify the distribution of AMD, which may
provide direction for further research [50].

5. Conclusions

In this study, very-high-resolution images acquired by a UAV system with a spatial
resolution of 6 cm were used to classify AMD and land-cover types in a stone coal mining
area of Ziyang County. Two conventional machine-learning classification methods includ-
ing SVM and RF, and additionally the currently emerging U-Net deep artificial neural
network (DANN) method, were used. All three classification methods have successfully
identified five land-cover types: AMD, roof, water, vegetation, and bare land. The overall
classification accuracy of the SVM method is the lowest, and the U-Net method the highest.
The identification results for AMD also resulted in the lowest classification accuracy of
13.60% for the SVM method and the highest identification accuracy of 68.97% for the U-Net
method. The results illustrated the capability of a UAV system equipped with an RGB
camera to perform its advantages of high resolution and fast data acquisition in mine
environmental monitoring. The very-high-resolution imagery acquired by a UAV system
could enable comparatively higher accuracy of AMD identification and mine environment
investigation. In terms of identification algorithms, the DANN methods, especially U-
Net, generally perform with higher classification accuracy than general machine-learning
methods in the identification of environmental problems such as AMD. In addition, UAV
systems equipped with RGB cameras are lighter and cheaper than those equipped with
multispectral or hyperspectral sensors, and RGB color images are easier to process than
multispectral and hyperspectral data. Therefore, the UAV systems and RGB color images
are particularly suitable for monitoring mining environmental problems by mining corpora-
tions and local environmental protection administration with nonspecialist remote-sensing
technology. In the next step, a serious attempt might be taken to improve U-Net or other
DNN classification algorithms to achieve better precision in mining environmental surveys
using UAV aerial photography systems with RGB color cameras.
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