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Abstract: Predicting reservoir water levels helps manage droughts and floods. Predicting reservoir 

water level is complex because it depends on factors such as climate parameters and human 

intervention. Therefore, predicting water level needs robust models. Our study introduces a new 

model for predicting reservoir water levels. An extreme learning machine, the multi-kernel least 

square support vector machine model (MKLSSVM), is developed to predict the water level of a 

reservoir in Malaysia. The study also introduces a novel optimization algorithm for selecting inputs. 

While the LSSVM model may not capture nonlinear components of the time series data, the extreme 

learning machine (ELM) model—MKLSSVM model can capture nonlinear and linear components 

of the time series data. A coati optimization algorithm is introduced to select input scenarios. The 

MKLSSVM model takes advantage of multiple kernel functions. The extreme learning machine 

model—multi-kernel least square support vector machine model also takes the benefit of both the 

ELM model and MKLSSVM model models to predict water levels. This paper’s novelty includes 

introducing a new method for selecting inputs and developing a new model for predicting water 

levels. For water level prediction, lagged rainfall and water level are used. In this study, we used 

extreme learning machine (ELM)-multi-kernel least square support vector machine (ELM-

MKLSSVM), extreme learning machine (ELM)-LSSVM-polynomial kernel function (PKF) (ELM-

LSSVM-PKF), ELM-LSSVM-radial basis kernel function (RBF) (ELM-LSSVM-RBF), ELM-LSSVM-

Linear Kernel function (LKF), ELM, and MKLSSVM models to predict water level. The testing 

means absolute of the same models was 0.710, 0.742, 0.832, 0.871, 0.912, and 0.919, respectively. The 

Nash–Sutcliff efficiency (NSE) testing of the same models was 0.97, 0.94, 0.90, 0.87, 0.83, and 0.18, 

respectively. The ELM-MKLSSVM model is a robust tool for predicting reservoir water levels. 

Keywords: hybrid models; hydrological simulations; optimization algorithms; water level 

 

1. Introduction 

Water resource management is a real challenge for decision-makers. [1]. Water level 

prediction helps flood and drought management [2]. Predicting water levels helps assess 

the volume of reservoirs and plan for future water supply demand. Predicting water level 

fluctuations is complex because it depends on different factors [3]. Recent studies have 

used machine learning models to predict water level fluctuations. These models are 

popular because of their accurate estimates and fast calculations. The least-square support 
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vector machine (LSSVM) is a machine learning model. The LSSVM model is a well-known 

method. The LSSVM model has high accuracy, flexibility, and accurate estimates [4]. A 

few studies have used the LSSVM model to predict water level fluctuations. Guo et al. [5] 

developed the LSSVM model for water level prediction. Seasonality and forecast lead time 

impacted the accuracy of the LSSVM model. Tang et al. [6] developed the LSSVM model 

for predicting groundwater levels (GWL). They stated that the LSSVM model successfully 

predicted groundwater levels in the northern region of the United Kingdom. Moravej et 

al. [7] coupled the LSSVM model with different optimization algorithms to predict 

groundwater levels. They reported that the optimized LSSVM models outperformed 

genetic programming and standalone LSSVM machine model models. Noorani et al. [8] 

developed the support vector machine model for predicting GWL. The different input 

combinations affected the performance of the support vector machine models.  

The LSSVM models use kernel functions to find the relationship between dependent 

and independent variables [9]. While the LSSVM models are robust, they also have 

shortcomings. These models may not capture the nonlinear and complex pattern of time 

series data [10]. Adjusting the parameters of the LSSVM model requires robust 

optimization algorithms [11]. Recent studies have also used LSSVM models without 

mixing kernel functions. A combination of kernel functions can boost the learning ability 

of LSSVM models [12]. Proper selection of input data can also improve prediction 

accuracy. The main goal of this paper is the development of the LSSVM model for the 

prediction of water level fluctuations in a reservoir. Thus, we use a new technique to 

address the shortcomings of the LSSVM model. Studies have reported that hybrid 

machine-learning models can improve the accuracy of machine-learning models [13]. The 

extreme learning machine (ELM) model is one of the most suitable tools for nonlinear data 

analysis. ELM is a machine learning algorithm. ELM is a feedforward neural network 

algorithm that performs regression or classification tasks. Unlike traditional neural 

networks, ELM only has one hidden layer [14]. The weights of the input layer are assigned 

randomly. ELM is faster and more efficient for large datasets than traditional neural 

networks [14]. The hidden layer performs nonlinear computations using an activation 

function. The weights between the hidden and output layers are calculated using least 

squares regression or a pseudo-inverse matrix to minimize the error between the 

predicted and actual outputs.  

Since the ELM avoids local minima and overfitting, it performs better than classical 

artificial neural networks [14]. Shiri et al. [15] developed the ELM model to predict water 

level fluctuations. The ELM model had the best accuracy. Deo and Sahin [16] developed 

the ELM model to predict water reservoir levels. They used large climate indices as inputs 

to the ELM model. They reported that the ELM model was an efficient method for 

predicting water levels. 

Fabio et al. [17] used the ELM models to predict groundwater levels. They reported 

that the ELM model was an efficient method for predicting groundwater levels. The ELM 

model has high capabilities for simulating complex phenomena. Thus, we can take 

advantage of the ELM model to overcome the limitations of the LLSVM model. The ELM 

model has high capabilities, so we can couple it with other machine learning models to 

overcome their limitations. Ardabili et al. [18] coupled the ELM model with the response 

surface methodology (RSM) to predict the yield of ethyl esters. They stated that the ELM-

RSM model outperformed the response surface methodology (RSM) model. Bonakdari et 

al. [19] used the ELM model and Gaussian Process Regression (GPR) to predict water 

level. They used the historical datasets at four previous time steps to predict water levels. 

The ELM was able to successfully water level. Seidu et al. [20] coupled wavelet transform-

self adaptive differential evolutionary with the ELM model to predict water level. They 

used the wavelet method to decompose water level time series. They reported that the 

hybrid method outperformed the ELM model.  

For predicting reservoir water level fluctuations, we propose a hybrid extreme 

learning machine—multi-kernel least square support vector machine model to enhance 
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the accuracy of the LSSVM model. In addition, we propose a hybrid scheme for coupling 

the—multi-kernel LLSVM model (MKLSSVM) with the ELM model. The hybrid scheme 

uses MKLSSVM and ELM models to analyze linear and nonlinear patterns of time series 

data. Our hybrid model combines multiple Kernel functions to improve prediction 

accuracy. This study also presents a novel optimization algorithm for feature selection. 

The current paper contains the following innovations: 

• The MKLSSVM model is introduced to predict the water level of a reservoir in 

Malaysia. 

• The LLSVM and MKLSSVM model is coupled with the extreme learning machine 

(ELM) model to predict water level fluctuations. In addition, the hybrid model boosts 

the learning ability of the LLSVM and MKLSSVM models. 

• This study introduces a novel binary optimization algorithm for choosing input data. 

Sections 2 and 3 present the structures of the methods and details of the case study, 

and Sections 4 and 5 present results and conclusions.  

2. Materials and Methods 

2.1. Structure of the LLSVM Model  

The LSSVM model is an enhanced version of the SVM model [21]. It can simplify the 

calculation process and reduce computational costs. Unlike SVM models, LLSVM models 

use a set of linear equations for training. For example, the LLSVM model can be defined 

based on the following equation [21]: 

( )T

t
Z x b e = + +  (1) 

where Z is: the dependent variable, x: input,  : weight coefficient, b: the bias value, and 

( ) x : a nonlinear mapping function. The function estimation is defined based on an 

optimization problem [22].  

  
=

+  2

1

1 1
:

2 2

M
T

t
t

Minimize e  (2) 

( ) ( )( ) ( ) = + +T

t
subjected to f x x b e  (3) 

where e: the error variable, ( )( )f x : value of the dependent variable and  : the regulative 

constant, M: number of data sets, T: transpose. The Lagrange Multiplier eliminates the 

error variable and the weight coefficient. After solving Equation (3), we obtain the 

following matrix: 

n n

n

b o

P z


 



 
     =    +      

1 1

1

0 1

1
0

 (4) 

where P : the kernel function, z: dependent variable,  : the Lagrange multiplier. The 

final form of the LLSVM model is expressed as follows: 

( ) ( )
=

= +
1

,
M

t t
t

f x K x x b  (5) 

  

https://www.sciencedirect.com/topics/engineering/lagrange-multiplier-method
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2.2. Structure of the Multi-Kernel Least Square Support Vector Machine Model (MKLSSVM) 

While the LLSVM model uses one type of kernel function, the MKLSSVM model 

takes advantage of multiple kernel functions. In this study, we use three kernel functions 

[23]: 

• Radial basis function (LSSVM-RBF) 

( )
i j

i j

q q
K q q



 − 
= −

 
 
 

2

2
, exp  (6) 

• Linear Kernel Function (LSSVM-LKF) 

( ) T

i j i j
K q q q q=, .  (7) 

• Polynomial Kernel Function (LSSVM-PKF) 

( )
d

T

i j

i j

q q
K q q

c

 
 = +
 
 

.
, 1  (8) 

where c, and  : kernel parameters, and d (power of equation) = 3. Equation (9) shows a 

combination of kernel functions: 

( )i j RBF LKF PKFfinal
K q q K K K  = + +

1 2 3
,  (9) 

where qi: ith input qj: jth: input 1 ,  2 , and  3 : Weight coefficients, RBF
K , LKF

K , and PKF
K

: RBF, LKF, and PKF. Since there is no priority, we assign equal weights to the kernel 

functions. Kernel parameters are set using an optimization algorithm. 

2.3. Structure of Extreme Learning Machine (ELM) 

The ELM model is an enhanced version of the artificial neural network model. The 

ELM model does not need iterative methods for weight adjustment. Simplicity and speed 

are two key benefits of the ELM model [24]. The ELM model has one hidden layer. The 

mathematical model of the ELM is defined based on the following equation [24]: 

( ) 
=

= + =
1

. , 1, ,..,
L

j i i j i
i

Out g x b j N  (10) 

where  i : the output weight of the ith neuron of the hidden layer,  i : the input weights, 

b: bias, g: activation function, and xj: input data. The input weight matrix and bias are 

randomly initialized. Equation (10) can be rewritten as follows: 

= Q H  (11) 

where H: the hidden layer output matrix, Q: The output. A system of linear equations is 

solved to obtain the optimal solutions of Equation (11): 

 = †ˆ H Q  (12) 

where †H : The generalization of the inverse matrix, ̂ : output weight.  
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2.4. Optimization Algorithm 

Optimization algorithms use advanced operators to find optimal solutions. There are 

different optimization algorithms. In large-scale combinatorial problems and nonlinear 

problems, classical optimization algorithms are insufficient. As a result, metaheuristic 

optimization algorithms have been developed [25]. There are different optimization 

algorithms, such as swarm-based optimization algorithms, plant-based optimization 

algorithms, and biology-based optimization algorithms.  

Deghani et al. [26] introduced the coati optimization algorithm (COA). We chose the 

COA because of its advantages. The Coati Optimization Algorithm can be used in various 

fields such as engineering, economics, and business. Thus, the Coati optimization 

algorithm has high flexibility. This algorithm can simultaneously optimize multiple 

objectives [24]. Furthermore, the Coati algorithm is robust, which means it can handle 

noisy data and uncertain conditions. Since it has only a few parameters, the algorithm is 

easy to implement. 

The coati optimization algorithm was inspired by the life of coatis. A coati is a 

mammal that lives in different regions of the world. The green iguana is the favorite food 

of coatis. Some coatis climb trees and scare the iguana (a herbivorous lizard). When an 

iguana falls to the ground, other coatis hunt it. Predators may attack coatis. The coati uses 

intelligent strategies to escape from predators [26]. The optimization process begins with 

an initial population. In the first level, locations of coatis are initialized: 

( )ij j j j
Co lo ra up lo= + −  (13) 

where 
ij

Co : location of the ith coati, ra: random value, 
j

up and 
j

lo : the upper and lower 

value of the jth decision variable. Coatis climb trees to hunt the iguana. Since the iguana 

fears, it falls to the ground. Then, the other coatis attack the iguana. The location of the 

climbing coatis is computed based on the following equation: 

( )1 . .P

j ij j ij
Co Co r iguana I Co= + −  (14) 

where 1P

j
Co : new location of the ith coati, 

ij
Co : location of ith coati in the jth dimension, 

I: a random value, r: random value 
j

iguana : Location of iguana. Coatis update their 

location based on the random location: 

( ).G

j j j
Iguana lb r up lo= + −  (15) 

( )
( )

ij j ij iguana ipl

i

ij ij j

Co r Iguana I Co F F
Co

Co r Co Iguana else

 + − 
 =
 + −
 

. . ,

. ,
 (16) 

where GIguana : location of iguana, 
iguana

F : objective function value of Iguana, and Fi: 

Objective function value of the ith coati. The location of Iguana shows the best location. 

When predators attack coatis, they escape from their locations. Equations (17) and (18) 

simulate this behavior: 

,
j jlocal local

j j

lo uo
lo uo

t t
= =  (17) 

( ) ( )( )2 1 2 . .P local local local

i ij j j j
Co Co r lo r up lo= + − + −  (18) 

where 2P

i
Co : new location of coati, local

j
lo : the local lower bound of the jth decision 

variable, the upper bound of the jth decision variable, and t: iteration number. Coati 

updates its location if the objective function value (OBFV) of the new location is better 
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than the OBFV of the previous location. The coati optimization algorithm is continuous. 

We need a binary version of the coati optimization algorithm to select inputs. A transfer 

function converts a continuous version to a binary version. 

( )( ) ( )( )
( )( )

( )( )

i
j

i
j

CO t

i i

j j CO t

e
CO t T CO t

e

+

+

−
+ = + =

+

2 1

2 1

1
Tanh 1 1

1

 (19) 

( )
( )( )( )1 1

1
0

i

i j

j

if T CO t
t

  + 
  + =
 
 

 (20) 

where ( )( )Tanh 1i

j
CO t + : Transfer function, ( )i

j
t + 1 : binary value, and  : random 

value. 

The coati optimization algorithm includes the following levels: 

The random locations of the coatis are initialized. Equation (13) is used to initialize 

the location of the coatis. Next, Coatis update their location to hunt prey. Equation (14) is 

used to update the location of coatis at this level. When coatis fall to the ground, they use 

random movements to update their location. Equations (15) and (16) are used to update 

the location of coatis at this level. Finally, Coatis escape from their location using 

Equations (17) and (18). 

2.5. Structure of Coati Optimization Algorithm—ELM-MKLSSVM 

This study used the coati optimization algorithm—ELM-MKLSSVM model to predict 

the water reservoir level. One of the challenges is to identify the inputs for modeling 

hydrological processes [27]. An input variable selection method involves identifying 

several predictors that can explain output behavior [28]. Building inaccurate models is 

inevitable if meaningful predictors are overlooked [29]. In addition, large input sets lead 

to longer computation times for model development. There are three main types of input 

variable selection methods: filter-based, wrapper-based, and embedded-based [29]. A 

filter-based input variable selection method (FIVS) is independent of the learning 

algorithm and uses statistical measures to rank input variables [29,30]. Wrapper-based 

input variable selection (WIVS) methods and embedded input variable selection methods 

(EMIVS), which use a learning algorithm, filter variables based on model performance. 

WIVS and EMIVS methods have high computational burdens, but they are more 

efficient than FIVS. A wrapper method uses a subset of features to train a model. Various 

wrapper methods are available, such as sequential or random [30]. The sequential 

wrapper method, such as the forward feature selection and backward elimination 

methods, incrementally adds and removes features from the selected subset. As a result, 

the features selected/removed in the first iteration are not removed/selected in the next 

iteration to improve the model’s performance [30]. 

In contrast to sequential wrappers, random search methods provide an enhanced 

technique for exploring the feature space. Optimization algorithms are the most important 

random search methods. A global optimization approach is used to develop wrapper 

input variable selection techniques where input subsets are represented as binary strings. 

When the search algorithm selects the i-th input, the i-th bit of the string will be set to 1; 

otherwise, it will be set to 0. Next, the selected predictors are fed into a machine-learning 

model, which is then trained and evaluated. Each individual had two parts: an input 

variable and a hyperparameter [28]. Hyperparameters are encoded as binary values [27]. 

The values of the hyperparameters and input variables were back-transformed into actual 

values in the final level [28]. In this study, the coot is chosen to determine the input 

variables. The model is created based on the following levels: 

Data are split into testing and training data. The name of input variables must be 

converted into a binary format. Each variable is represented as a sequence of 0 s and 1 s. 
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For example, if you have three input variables A, B, and C, you can represent each of them 

using two bits as follows: 

A

B

C

=

=

=

00,01,10,11

00,01,10,11

00,01,10,11

 (21) 

A binary vector contains 0 and 1 values. 0 and 1 values show unselected and selected 

input data. The model parameters and input vectors are defined as the population of the 

algorithms. The input vectors are inserted into the MKLSSVM. An objective function 

(MAE) is calculated to evaluate the quality of the solutions—Equations (13)–(18) update 

model parameters and input vectors. The process continues until the convergence 

criterion (maximum number of iterations) is met. Residual values are computed based on 

the difference between outputs and observed data. The parameters of the ELM model are 

defined as the initial population of the coati optimization algorithm. Residual values are 

inserted into the ELM model. The elm model is run to predict outputs. An objective 

function (Mean absolute error (MAE)) is calculated to evaluate the quality of the solutions. 

The operators of the coati optimization algorithm are used to update extreme learning 

machine parameters. Equation (22) provides the final output: 

( )final ELM MKLSSVM
Out Out out= +  (22) 

where 
final

Out : final output, ELM
Out : output of the extreme learning machine model 

(estimated residual value), and MKLSSVM
out : output of the MKLSSVM model. In this study, 

the ELM-MKLSSVM model is benchmarked against the LSSVM-RBF, LSSVM-LKF, 

LSSVM-PKF, and ELM models. 

3. Case Study 

The Batu Dam, located approximately 20 km north of Kuala Lumpur, is in Malaysia. 

Water supply, sediment management, and flood regulation are the goals of building the 

Batu Reservoir in Kuala Lumpur. The dam is an earth-fill embankment. Climate change 

affects rainfall patterns. As rainfall patterns change, reservoir inflow and water levels 

change. The dam’s height, length, and crest elevation are 44 m, 50 m, and 109 m, 

respectively. The reservoir’s storage capacity and design discharge capacities are 36.6 

MCM and 251.6 m3/s (Spillway and outlet). Decision makers need to predict the reservoir’s 

water level for flood control. A humid climate prevails in the basin. Figure 1a,b show the 

location of the case study and the data points. 
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(a) 

 
(b) 

Figure 1. (a) Location of the case study [31], (b) Time series data. 

This study uses lagged rainfall and water level to predict a one-day-ahead water 

level. Lag times of (t−1) (previous day), (t−10) (last ten days) are used for predicting 

outputs. Table 1 shows statistical details of inputs and outputs. 

Table 1. Statistical details of data. 

Parameter Maximum  Average  Minimum  

Water Level (m) 104.46  99.23  93.11  

Rainfall (mm) 50.5 34.56 0.50 
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Equations (23)–(25) are used to evaluate the performance of the models. 

1 Root mean square error (RMSE) 

( )
2

1

1 n

es ob
i

RMSE WL WL
n =

= −  (23) 

2 Mean absolute error (MAE) 

1

1 n

ob es
i

MAE WL WL
n =

= −  (24) 

3 Nash–Sutcliff efficiency (NSE) 

( )

( )

2

1

1

1

n

ob es
i

n

ob ob
i

WL WL

NSE

WL WL

=

=

−

= −

−




 (25) 

4 Willmott index 

( )

( )

2

1

2

1

1

n

es ob
i

n

es ob es ob
i

WL WL

WI

WL WL WL WL

=

=

−

= −

− + −




 (26) 

where, es
WL : Estimated Water level, ob

WL : Observed Water Level, ob
WL : Average 

observed Water level, n: number of data. Ideal models have high WI and NSE values. 

4. Results and Discussion 

4.1. Determination of Optimal Input Scenario 

By reducing the number of input variables, feature selection methods can help 

prevent overfitting. Too many input variables can make the model overly complex and 

inconsistent. Overfitting occurs when a model fits training data well but performs poorly 

on new data. A feature selection method reduces the overfitting risk by selecting only 

relevant input variables. Furthermore, feature selection methods can identify redundant 

or irrelevant variables. Choosing the best input scenario is complex. This study uses COA 

to determine optimal input scenarios. The number of input variables was 20 (Rainfall 

(t−1)… Rainfall (t−10); Water level (t−10), … Water level (t−10)). The number of input 

combinations is 220-1. Manually determining the optimal input scenario is time-

consuming and complex. In this study, the COA automatically determine the best input 

combination. The name of the input variables was defined as binary variables. The names 

of the input variables were considered decision variables. Locations of coatis show input 

combinations. The operators of the COA were used to update the input combinations at 

each iteration. Table 2 shows the first-best to third-best input combinations. 

Table 2. The best input combinations. 

Input Combination Components 

First best input 

combination  

rainfall (t−1), rainfall (t−2), water level (t−1), water level (t−2), 

water level (t−3) 
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Second best input 

combination  

rainfall (t−1), rainfall (t−2), water level (t−1), water level (t−2), 

water level (t−3), rainfall (t−4) 

Third-best input 

combination  

rainfall (t−1), rainfall (t−2), water level (t−1), water level (t−2), 

water level (t−3), rainfall (t−3), water level (t−5) 

4.2. Determination of Random Parameters 

The performance of an optimization algorithm depends on random parameters. 

Population size and maximum iteration number are the most important parameters of 

optimization algorithms (Figure 2). The optimal values of random parameters yield the 

lowest objective function values (MAE). Figure 2 shows the objective function value for 

different parameter values. As can be seen from the figure, population size = 200 and 

maximum iteration number = 100 provided the lowest objective function value. 

 

Figure 2. Values of the objective function for different values of parameters. 

In this study, the number of hidden nodes (N = 1,…, 256) and the type of activation 

function (sigmoid, sine, purelin, and radial basis) are the parameters of the ELM model. 

The number of hidden neurons variable varies from 1 to 256. Thus, there were 8 bits for 

the encoding. Since the ELM model had four activations, we used two bits for activation 

functions. Therefore, we needed 10 bits for the ELM parameters. At each iteration, the 

operators of the coot optimization algorithm updated the values of the model parameters. 

Based on multiple runs, the model with the best fitness was selected. Based on this 

selected model, the final prediction values were calculated. A matlabe software was used 

to prepare computer codes. Also, the ram of the system was 8 GB. 

4.3. Evaluation of the Accuracy of LSSVM Models 

The accuracy of the MKLSSVM, LSSVM-PKF, LSSVM-RBF, and LSSVM-LKF models 

is evaluated in this section (Table 3). 

Table 3 evaluates the accuracy of different LSSVM models. The highest and Lowest 

MAEs were obtained by the LSSVM-LKF and MKLSSVM models. The training and testing 

MAEs of the MKLSSVM model were 0.96 and 0.99, respectively. The LSSVM-PKF model 

was the second-best. The training and testing MAEs of the LSSVM-PKF were 1.02 and 

1.12, respectively. 

The NSE of the LSSVM-LKF model was lower than that of the other models. The 

training and testing NSE of the MKLSSVM model was 0.79 and 0.78, respectively. On the 
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other hand, the LSSVM-RBF outperformed the LSSVM-LKF model. The training and 

testing NSE of the LSSVM-RBF model was 0.76 and 0.74. 

The training RMSE of the MKLSSVM model was 15 and 16% was lower than that of 

the LSSVM-PKF and LSSVM-RBF models. On the other hand, the RMSE of the LSSVM-

LKF was higher than that of the other models. The training and testing RMSE of the 

LSSVM-LKF were 2.12 and 2.24, respectively. 

The WI of the MKLSSVM model was higher than that of the models. The training 

and testing WIs of the MKLSSVM model were 0.80 and 0.79, respectively. The WI of the 

LSSVM-KF was higher than that of the other models. 

Table 3. Investigation of the accuracy of the LSSVM models. 

Model  
MAE 

(Training) 

MAE 

(Testing) 

RMSE 

(Training) 

RMSE 

(Testing) 

NSE 

(Training) 

NSE 

(Testing) 

WI 

(Training) 

WI 

(Testing) 

MKLSSVM 0.96 0.99 1.67 1.78 0.79 0.78 0.80 0.79 

LSSVM-PKF 1.02 1.12 1.97 1.98 0.77 0.77 0.78 0.76 

LSSVM-RBF 1.14 1.23 1.99 2.01 0.76 0.74 0.75 0.74 

LSSVM-LKF 1.18 1.28 2.12 2.24 0.73 0.72 0.73 0.71 

Figure 3 shows boxplots of the LSSVM models. The observed data had the highest 

match with the MKLSSVM model. The median and maximum values of the observed data 

were 100.185 and 104.46 m, respectively. The median and maximum values of the 

MKLSSVM model were 100.45 and 104.46. On the other hand, the LSSVM-LKF had the 

lowest match with the observed data. The median and maximum values of the LSSVM-

LKF model were 101.1 and 107.1 m, respectively. 

 

Figure 3. Boxplots of the MKLSSVM and different least square support vector machine models. 

Among the other models, LSSVM-LKF had the lowest accuracy. The LSSVM-LKF 

model is poor for analyzing nonlinear data because it uses a linear kernel function. The 

LSSVM-PKF (RBF) use nonlinear kernel functions, so they perform better than the 

LSSVM-LKF model. Since the MKLSSVM model takes advantage of multiple kernel 

functions, it can predict data accurately. The performance of LSSVM models improves as 
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the exponent increases. The least LSSVM-PKF model performed better than the least 

square support vector machine—RBF model. 

4.4. Evaluation of the Accuracy of Hybrid Models 

In this section, the ELM-MKLSSVM model is benchmarked against other models. 

Figure 4 shows heat maps of error values. The MKLSSVM had the highest RMSE. The 

training and testing RMSEs of the MKLSSVM model were 52% and 54% higher than those 

of the ELM-MKLSSVM model. The training and testing RMSEs of the ELM-MKLSSVM 

model were 0.858 and 0.912 m, respectively. The ELM-MKLSSVM decreased RMSE values 

of the ELM model by 15% and 17%, respectively. 
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Figure 4. Heat maps of error values. 

The highest NSE was obtained by the ELM-MKLSSVM model. The training and 

testing NSEs of the ELM-MKLSSVM model were 0.98 and 0.97, respectively. Therefore, 

the NSE of the ELM was higher than that of the MKLSSVM model. The training and 

testing of NSEs of the ELM-RBF model were higher than those of the ELM-LLSVM-PKF 

model. The training and testing NSEs of the ELM-RBF model were 0.92 and 0.90, 

respectively. 

The WI of the ELM-MKLSSVM model was 0.98 and 0.97 at the training and testing 

level. The WI of the ELM-MKLSSVM model was higher than that of the other models. The 

WI values indicated that the ELM-LSSVM-PKF was the second-best model. The training 

and testing WIs of the same model were 0.95 and 0.93. The NSE of the same model was 

lower than that of the ELM-MKLSSVM model. The MAE of the ELM was higher than that 

of the ELM-MKLSSVM models. The training and testing MAEs of the ELM model were 

0.901 and 0.912, respectively. The training and testing MAEs of the MKLSSV model were 

0.70 and 0.71, respectively. The testing MAE of the ELM-MKLSSVM model was 28% lower 

than that of the MKLSSVM model. 

Since the ELM-MKLSSVM model combines the advantages of the extreme learning 

machine and MKLSSVM models, it outperforms other models. While the LSSVM model 

may not capture nonlinear components of time series data, the ELM-MKLSSVM model 
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can capture both nonlinear and linear components. The results showed that hybrid 

models performed better than MKLSSVM and ELM models. Figure 5 shows boxplots of 

hybrid and standalone LSSVM and ELM models. The median of the observed data and 

the ELM-MKLSSVM model had the highest match. The medians of the observed data and 

the ELM-MKLSSVM model were 100.185 m and 100.205 m, respectively. The ELM and 

MKLSSVM model median was 100.385 and 100.450 m, respectively. Thus, these models 

had weaker performance than the ELM-MKLSSVM model. A Taylor diagram is used to 

evaluate the accuracy of a model. For evaluating the accuracy of models, the Taylor 

diagram uses standard deviation, correlation coefficient, and the centralized root mean 

square error (CRMSE). The ideal model has the shortest distance from the reference point 

(observed data). Figure 6 shows a Taylor diagram for assessing the accuracy of hybrid and 

standalone LSSVM models. The CRMSE of the hybrid models was lower than that of the 

standalone models (ELM and MKLSSVM models). The CRMSE of the ELM-MKLSSVM 

model and ELM-LSSVM-PKF was 0.17 and 0.27, respectively. The correlation coefficient 

of the same models was 0.98 and 0.96. The correlation coefficient of the MKLSSVM model 

was 0.67. 

 

Figure 5. Boxplots of hybrid LSSVM models. 
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Figure 6. Comparison of the accuracy of models based on the Taylor diagram. 

Predicting reservoir water levels is a key issue in managing agricultural, industrial, 

and domestic water resources. Therefore, a reliable predictive model is required to ensure 

an adequate water supply. 

This study used the ELM-MKLSSVM model to estimate reservoir water levels. Our 

study results are important for water management. First, water managers can allocate 

reservoir water to different uses based on accurately predicting reservoir water levels. For 

example, water may be allocated to agricultural or urban areas for drinking, cleaning, or 

other purposes. Secondly, the study results help predict and prevent natural disasters 

such as floods. Dam overflow can occur when the reservoir water level increases 

uncontrollably, which can cause havoc in surrounding areas. Water level predictions and 

early warnings can help people and institutions move to safer places before natural 

hazards occur. Thirdly, study results are essential for planning the construction and 

operation of hydropower plants. The reservoir water level determines the amount of 

electricity that can be generated. Therefore, accurately predicting the reservoir water level 

can help prevent power outages and maintain a stable power supply. Fourth, water can 

damage land, crops, and infrastructure during a flood or overflow. The accurate 

prediction of water levels helps communities prepare for flood events that can cause 

destruction. A drought puts pressure on reservoirs because demand increases and water 

supply decreases. As precipitation decreases and evaporation rates increase, the reservoir 

water level falls, causing water scarcity, ecosystem damage, and socioeconomic impacts. 

Water scarcity can adversely affect agriculture, threaten water supply and hydroelectric 

power generation, and cause financial losses. To minimize the effect of water scarcity on 

water user economies and to maintain stability for water users, water resource managers 

must make accurate predictions of reservoir water levels. 

In this study, we used the ELM model to improve the performance of the MKLSSVM 

model. The extreme learning machine is a supervised learning algorithm for neural 

networks for regression and classification tasks. Due to its simplicity, high-speed 

processing, and accuracy, the ELM model is a powerful machine-learning technique. ELM 

models are advantageous for predicting the water level of reservoirs because they can 

process large amounts of data. An ELM model can employ many hidden neurons to learn 

the complexity of the reservoir systems, which leads to better accuracy in predicting water 

levels. In addition, an ELM model has a fast-learning ability with a shorter training time.  
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When the extreme learning machine—MKLSSVM model receives the climate 

information, it can predict the water level for the feature periods. Climate models and 

scenarios can be coupled with the ELM-MKLSSVM model to predict water levels for 

future periods. The ELM-MKLSSVM model can be used for predicting other variables 

(rainfall, groundwater level, and temperature) as it can capture nonlinear and linear 

components. Furthermore, our study contributed to the development of robust feature 

selection algorithms. The COA was a robust feature selection tool. 

In order to increase the accuracy of predictive models, the coot optimization 

algorithm selected the most relevant input variables. Models that contain irrelevant or 

redundant variables often produce incorrect predictions. The coot optimization could 

reduce the computational complexity of predictive models by eliminating unnecessary 

input variables. As a result, model training and prediction can be faster and more efficient. 

Choosing input variables relevant to the target variable improves the interpretability of 

predictive models. By understanding the relationship between input and output 

variables, users can make informed decisions. In addition to improving the accuracy of 

predictive models, optimization algorithms improve their generalization. 

There are several reasons why multi-kernel least square support vector machines 

(MKLSSVMs) perform better than LSSVMs. First, the MKLSSVM model can combine 

multiple kernels, which makes it flexible for fitting different types of data distributions. 

In contrast, the LSSVM model uses a single kernel function, which can not capture the 

complexity of data. When the MKLSSVM model uses multiple kernels, regularization 

occurs, which will reduce model overfitting. When the kernel function is not selected 

properly, LSSVM may be more prone to overfitting. The MKLSSVM model can improve 

the generalization ability to perform well on unseen data samples. In other words, using 

multiple kernels leads to a more robust and diverse model. When the input data are highly 

nonlinear and complex, LSSVM may have poor generalization ability. MKLSSVM can 

often achieve higher accuracy because it can capture more complex data patterns than 

LSSVM. It is particularly true for datasets that contain many features or high 

dimensionality. Finally, the LSSVM model can handle large datasets. Many applications 

have datasets with a large number of data points. Due to their reliance on a single kernel 

function, traditional LSSVM models can be computationally expensive or impossible to 

train on such large datasets. The MKLSSVM model can distribute the computation across 

multiple kernel functions for large datasets, making it more efficient and scalable. 

Previous studies reported that the combination of kernel functions could improve the 

accuracy of results. Ghiasi et al. [32] developed the LSSVM models based on the 

combination of kernel functions. They reported that the new model could successfully 

predict structural damage detection. Zhou et al. [33] developed a combination of kernel 

functions for the LSSVM model. The combination of kernel functions could improve the 

accuracy of the original LSSVM model. 

The limitation of our models is that time interval predictions cannot be quantified. 

To quantify uncertainty values, it is necessary to make time interval predictions. We can 

develop our models for quantifying uncertainty values in the next studies. Modelers need 

skill and experience to prepare such models. Data collection can be challenging because 

some data may not be available. Combining multiple models requires careful integration 

and coordination, which can be challenging for developers to implement. 

These models provide useful results for the optimal management of the Batu Dam. 

Water level predictions help reservoir managers understand the status of reservoir 

storage. Thus, water can be released based on reservoir water levels and downstream 

demands. During periods of drought, managers can use these models for watershed 

management. As reservoir water levels can be accurately predicted, managers can 

optimally open the Batu dam and release water during periods of drought. The Batu Dam 

provides water for domestic and industrial use, irrigation, and power generation. Thus, 

this dam is important for the water supply. Our models predict reservoir water levels so 

that managers can plan for the optimal operation of Batu. Dam. As a result, our models 
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contribute to improving dam management. We propose these models as early warning 

systems to prevent floods and droughts in the catchment area. Furthermore, we propose 

water resource management under climate change conditions. 

5. Conclusions 

Predicting reservoir water levels is vital for effective water management. Predicting 

reservoir water levels also facilitates flood management. Heavy rainfall can cause 

significant damage to the environment, infrastructure, and human life when reservoirs 

overflow. To prevent floods and disasters, water resource managers can use reservoir 

water level predictions. For environmental management, it is important to predict 

reservoir water levels. A water resource manager must balance the needs of different 

sectors and environmental protection. During the dry season, water resource managers 

may need to limit water allocations for some sectors to meet downstream needs. 

Predicting reservoir water levels allows managers to plan for environmental flows and 

adjust water allocations. 

Predicting water reservoir levels can mitigate the consequences of floods and 

droughts. This study aims to develop a new hybrid model for predicting the water level 

of reservoirs. Our study coupled the MKLSSVM model with the ELM model. The 

MKLSSVM model is a new version of the LSSVM model. The multi-kernel least square 

support vector machine model takes advantage of multiple kernel functions. For selecting 

the optimal input scenarios, we used a new binary optimization algorithm. The results 

indicated that the extreme learning machine—multi-kernel least square support vector 

machine model outperformed the other models. 

The highest NSE was obtained by the ELM-MKLSSVM model. The training and 

testing NSEs of the ELM-MKLSSVM model were 0.98 and 0.97, respectively. The training 

and testing NSE of the MKLSSVM model was 0.79 and 0.78, respectively. The LSSVM-

RBF outperformed the LSSVM-LKF model. The training and testing NSEs of the ELM-RBF 

model were 0.92 and 0.90, respectively. 

Our study showed that the extreme learning machine—MKLSSVM was a reliable 

tool for analyzing linear and nonlinear data. The new model can provide valuable 

information for water resource planning and management. Researchers can use the new 

model to predict spatial and temporal patterns. Choosing the essential input variables is 

complex, but our optimization algorithm selects them successfully. This article used a 

hybrid model to predict nonlinear and linear components of time series. This idea can be 

used to develop the performance of other models, such as support vector machines, 

regression models, and linear models. 

The ELM-MKLSSVM is a robust model for simulating complex problems but cannot 

predict interval times. We can combine the ELM-MKLSSVM model with Bayesian 

approaches to predict interval times in the next study. Quantifying uncertainty values 

relies on interval-time predictions. 
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