
Citation: Sammen, S.S.; Ehteram, M.;

Sheikh Khozani, Z.; Sidek, L.M.

Binary Coati Optimization

Algorithm- Multi- Kernel Least

Square Support Vector

Machine-Extreme Learning Machine

Model (BCOA-MKLSSVM-ELM): A

New Hybrid Machine Learning

Model for Predicting Reservoir Water

Level. Water 2023, 15, 1593.

https://doi.org/10.3390/w15081593

Academic Editors: Renato Morbidelli

and Aizhong Ye

Received: 16 March 2023

Revised: 14 April 2023

Accepted: 18 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Binary Coati Optimization Algorithm- Multi- Kernel Least
Square Support Vector Machine-Extreme Learning Machine
Model (BCOA-MKLSSVM-ELM): A New Hybrid Machine
Learning Model for Predicting Reservoir Water Level
Saad Sh. Sammen 1 , Mohammad Ehteram 2, Zohreh Sheikh Khozani 3,* and Lariyah Mohd Sidek 4

1 Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah 32001, Iraq
2 Department of Water Engineering, Semnan University, Semnan 35131-19111, Iran
3 Faculty of Civil Engineering, Institute of Structural Mechanics, Bauhaus Universität Weimar,

99423 Weimar, Germany
4 Institute of Energy Infrastructure (IEI), Department of Civil Engineering, College of Engineering,

University Tenaga Nasional (UNITEN), Kajang 43000, Malaysia
* Correspondence: y.sheikh2131@gmail.com

Abstract: Predicting reservoir water levels helps manage droughts and floods. Predicting reser-
voir water level is complex because it depends on factors such as climate parameters and human
intervention. Therefore, predicting water level needs robust models. Our study introduces a new
model for predicting reservoir water levels. An extreme learning machine, the multi-kernel least
square support vector machine model (MKLSSVM), is developed to predict the water level of a
reservoir in Malaysia. The study also introduces a novel optimization algorithm for selecting inputs.
While the LSSVM model may not capture nonlinear components of the time series data, the extreme
learning machine (ELM) model—MKLSSVM model can capture nonlinear and linear components
of the time series data. A coati optimization algorithm is introduced to select input scenarios. The
MKLSSVM model takes advantage of multiple kernel functions. The extreme learning machine
model—multi-kernel least square support vector machine model also takes the benefit of both the
ELM model and MKLSSVM model models to predict water levels. This paper’s novelty includes
introducing a new method for selecting inputs and developing a new model for predicting water
levels. For water level prediction, lagged rainfall and water level are used. In this study, we used ex-
treme learning machine (ELM)-multi-kernel least square support vector machine (ELM-MKLSSVM),
extreme learning machine (ELM)-LSSVM-polynomial kernel function (PKF) (ELM-LSSVM-PKF),
ELM-LSSVM-radial basis kernel function (RBF) (ELM-LSSVM-RBF), ELM-LSSVM-Linear Kernel
function (LKF), ELM, and MKLSSVM models to predict water level. The testing means absolute
of the same models was 0.710, 0.742, 0.832, 0.871, 0.912, and 0.919, respectively. The Nash–Sutcliff
efficiency (NSE) testing of the same models was 0.97, 0.94, 0.90, 0.87, 0.83, and 0.18, respectively. The
ELM-MKLSSVM model is a robust tool for predicting reservoir water levels.

Keywords: hybrid models; hydrological simulations; optimization algorithms; water level

1. Introduction

Water resource management is a real challenge for decision-makers. [1]. Water level
prediction helps flood and drought management [2]. Predicting water levels helps assess
the volume of reservoirs and plan for future water supply demand. Predicting water
level fluctuations is complex because it depends on different factors [3]. Recent studies
have used machine learning models to predict water level fluctuations. These models
are popular because of their accurate estimates and fast calculations. The least-square
support vector machine (LSSVM) is a machine learning model. The LSSVM model is
a well-known method. The LSSVM model has high accuracy, flexibility, and accurate
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estimates [4]. A few studies have used the LSSVM model to predict water level fluctuations.
Guo et al. [5] developed the LSSVM model for water level prediction. Seasonality and
forecast lead time impacted the accuracy of the LSSVM model. Tang et al. [6] developed the
LSSVM model for predicting groundwater levels (GWL). They stated that the LSSVM model
successfully predicted groundwater levels in the northern region of the United Kingdom.
Moravej et al. [7] coupled the LSSVM model with different optimization algorithms to
predict groundwater levels. They reported that the optimized LSSVM models outperformed
genetic programming and standalone LSSVM machine model models. Noorani et al. [8]
developed the support vector machine model for predicting GWL. The different input
combinations affected the performance of the support vector machine models.

The LSSVM models use kernel functions to find the relationship between dependent
and independent variables [9]. While the LSSVM models are robust, they also have
shortcomings. These models may not capture the nonlinear and complex pattern of time
series data [10]. Adjusting the parameters of the LSSVM model requires robust optimization
algorithms [11]. Recent studies have also used LSSVM models without mixing kernel
functions. A combination of kernel functions can boost the learning ability of LSSVM
models [12]. Proper selection of input data can also improve prediction accuracy. The main
goal of this paper is the development of the LSSVM model for the prediction of water level
fluctuations in a reservoir. Thus, we use a new technique to address the shortcomings of the
LSSVM model. Studies have reported that hybrid machine-learning models can improve
the accuracy of machine-learning models [13]. The extreme learning machine (ELM) model
is one of the most suitable tools for nonlinear data analysis. ELM is a machine learning
algorithm. ELM is a feedforward neural network algorithm that performs regression or
classification tasks. Unlike traditional neural networks, ELM only has one hidden layer [14].
The weights of the input layer are assigned randomly. ELM is faster and more efficient for
large datasets than traditional neural networks [14]. The hidden layer performs nonlinear
computations using an activation function. The weights between the hidden and output
layers are calculated using least squares regression or a pseudo-inverse matrix to minimize
the error between the predicted and actual outputs.

Since the ELM avoids local minima and overfitting, it performs better than classical
artificial neural networks [14]. Shiri et al. [15] developed the ELM model to predict water
level fluctuations. The ELM model had the best accuracy. Deo and Sahin [16] developed the
ELM model to predict water reservoir levels. They used large climate indices as inputs to
the ELM model. They reported that the ELM model was an efficient method for predicting
water levels.

Fabio et al. [17] used the ELM models to predict groundwater levels. They reported
that the ELM model was an efficient method for predicting groundwater levels. The ELM
model has high capabilities for simulating complex phenomena. Thus, we can take advan-
tage of the ELM model to overcome the limitations of the LLSVM model. The ELM model
has high capabilities, so we can couple it with other machine learning models to overcome
their limitations. Ardabili et al. [18] coupled the ELM model with the response surface
methodology (RSM) to predict the yield of ethyl esters. They stated that the ELM-RSM
model outperformed the response surface methodology (RSM) model. Bonakdari et al. [19]
used the ELM model and Gaussian Process Regression (GPR) to predict water level. They
used the historical datasets at four previous time steps to predict water levels. The ELM was
able to successfully water level. Seidu et al. [20] coupled wavelet transform-self adaptive
differential evolutionary with the ELM model to predict water level. They used the wavelet
method to decompose water level time series. They reported that the hybrid method
outperformed the ELM model.

For predicting reservoir water level fluctuations, we propose a hybrid extreme learn-
ing machine—multi-kernel least square support vector machine model to enhance the
accuracy of the LSSVM model. In addition, we propose a hybrid scheme for coupling
the—multi-kernel LLSVM model (MKLSSVM) with the ELM model. The hybrid scheme
uses MKLSSVM and ELM models to analyze linear and nonlinear patterns of time series
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data. Our hybrid model combines multiple Kernel functions to improve prediction accuracy.
This study also presents a novel optimization algorithm for feature selection. The current
paper contains the following innovations:

• The MKLSSVM model is introduced to predict the water level of a reservoir in Malaysia.
• The LLSVM and MKLSSVM model is coupled with the extreme learning machine

(ELM) model to predict water level fluctuations. In addition, the hybrid model boosts
the learning ability of the LLSVM and MKLSSVM models.

• This study introduces a novel binary optimization algorithm for choosing input data.

Sections 2 and 3 present the structures of the methods and details of the case study,
and Sections 4 and 5 present results and conclusions.

2. Materials and Methods
2.1. Structure of the LLSVM Model

The LSSVM model is an enhanced version of the SVM model [21]. It can simplify the
calculation process and reduce computational costs. Unlike SVM models, LLSVM models
use a set of linear equations for training. For example, the LLSVM model can be defined
based on the following equation [21]:

Z = αT ϕ(x) + b + et (1)

where Z is: the dependent variable, x: input, α: weight coefficient, b: the bias value, and
ϕ(x): a nonlinear mapping function. The function estimation is defined based on an
optimization problem [22].

Minimize :
1
2

αTα +
1
2

γ
M

∑
t=1

e2
t (2)

subjected(to)( f (x)) = αT ϕ(x) + b + et (3)

where e: the error variable, ( f (x)): value of the dependent variable and γ: the regulative
constant, M: number of data sets, T: transpose. The Lagrange Multiplier eliminates the error
variable and the weight coefficient. After solving Equation (3), we obtain the following matrix:[

01×n 11×n
0n×1 P + 1

γ

](
b
β

)
=

(
o
z

)
(4)

where P: the kernel function, z: dependent variable, β: the Lagrange multiplier. The final
form of the LLSVM model is expressed as follows:

f (x) =
M

∑
t=1

βtK(x, xt) + b (5)

2.2. Structure of the Multi-Kernel Least Square Support Vector Machine Model (MKLSSVM)

While the LLSVM model uses one type of kernel function, the MKLSSVM model takes
advantage of multiple kernel functions. In this study, we use three kernel functions [23]:

• Radial basis function (LSSVM-RBF)

K
(
qi, qj

)
= exp

(
−
∥∥qi − qj

∥∥2

σ2

)
(6)

• Linear Kernel Function (LSSVM-LKF)

K
(
qi, qj

)
= qT

i .qj (7)

• Polynomial Kernel Function (LSSVM-PKF)

K
(
qi, qj

)
=

(
qT

i .qj

c
+ 1

)d

(8)
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where c, and σ: kernel parameters, and d (power of equation) = 3. Equation (9) shows
a combination of kernel functions:

K
(
qi, qj

)
f inal = δ1KRBF + δ2KLKF + δ3KPKF (9)

where qi: ith input qj: jth: input δ1, δ2, and δ3: Weight coefficients, KRBF, KLKF, and
KPKF: RBF, LKF, and PKF. Since there is no priority, we assign equal weights to the
kernel functions. Kernel parameters are set using an optimization algorithm.

2.3. Structure of Extreme Learning Machine (ELM)

The ELM model is an enhanced version of the artificial neural network model. The
ELM model does not need iterative methods for weight adjustment. Simplicity and speed
are two key benefits of the ELM model [24]. The ELM model has one hidden layer. The
mathematical model of the ELM is defined based on the following equation [24]:

Outj =
L

∑
i=1

ψig
(
ωi.xj + bi

)
, j = 1, . . . , N (10)

where ψi: the output weight of the ith neuron of the hidden layer, ωi: the input weights,
b: bias, g: activation function, and xj: input data. The input weight matrix and bias are
randomly initialized. Equation (10) can be rewritten as follows:

Q = H × ψ (11)

where H: the hidden layer output matrix, Q: The output. A system of linear equations is
solved to obtain the optimal solutions of Equation (11):

ψ̂ = H†Q (12)

where H†: The generalization of the inverse matrix, ψ̂: output weight.

2.4. Optimization Algorithm

Optimization algorithms use advanced operators to find optimal solutions. There are
different optimization algorithms. In large-scale combinatorial problems and nonlinear
problems, classical optimization algorithms are insufficient. As a result, metaheuristic opti-
mization algorithms have been developed [25]. There are different optimization algorithms,
such as swarm-based optimization algorithms, plant-based optimization algorithms, and
biology-based optimization algorithms.

Deghani et al. [26] introduced the coati optimization algorithm (COA). We chose the
COA because of its advantages. The Coati Optimization Algorithm can be used in various
fields such as engineering, economics, and business. Thus, the Coati optimization algorithm
has high flexibility. This algorithm can simultaneously optimize multiple objectives [24].
Furthermore, the Coati algorithm is robust, which means it can handle noisy data and
uncertain conditions. Since it has only a few parameters, the algorithm is easy to implement.

The coati optimization algorithm was inspired by the life of coatis. A coati is a mammal
that lives in different regions of the world. The green iguana is the favorite food of coatis.
Some coatis climb trees and scare the iguana (a herbivorous lizard). When an iguana falls
to the ground, other coatis hunt it. Predators may attack coatis. The coati uses intelligent
strategies to escape from predators [26]. The optimization process begins with an initial
population. In the first level, locations of coatis are initialized:

Coij = loj + ra
(
upj − loj

)
(13)

where Coij: location of the ith coati, ra: random value, upj and loj: the upper and lower
value of the jth decision variable. Coatis climb trees to hunt the iguana. Since the iguana
fears, it falls to the ground. Then, the other coatis attack the iguana. The location of the
climbing coatis is computed based on the following equation:

CoP1
j = Coij + r.

(
iguanaj − I.Coij

)
(14)
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where CoP1
j : new location of the ith coati, Coij: location of ith coati in the jth dimension, I: a

random value, r: random value iguanaj: Location of iguana. Coatis update their location
based on the random location:

IguanaG = lbj + r.
(
upj − loj

)
(15)

Copl
i =

[
Coij + r.

(
Iguanaj − I.Coij

)
, Figuana < Fi

Coij + r.
(
Coij − Iguanaj

)
, else

]
(16)

where IguanaG: location of iguana, Figuana: objective function value of Iguana, and Fi:
Objective function value of the ith coati. The location of Iguana shows the best location.
When predators attack coatis, they escape from their locations. Equations (17) and (18)
simulate this behavior:

lolocal
j =

loj

t
, uolocal

j =
uoj

t
(17)

CoP2
i = Coij + (1− 2r).

(
lolocal

j + r.
(

uplocal
j − lolocal

j

))
(18)

where CoP2
i : new location of coati, lolocal

j : the local lower bound of the jth decision variable,
the upper bound of the jth decision variable, and t: iteration number. Coati updates its
location if the objective function value (OBFV) of the new location is better than the OBFV
of the previous location. The coati optimization algorithm is continuous. We need a binary
version of the coati optimization algorithm to select inputs. A transfer function converts a
continuous version to a binary version.

Tanh
(

COi
j(t + 1)

)
= T

(
COi

j(t + 1)
)
=

e(2COi
j(t+1)) − 1

e(2COi
j(t+1))

+ 1
(19)

∆i
j(t + 1) =

[
1← i f

(
T
(

COi
j

)
(t + 1)

)
> λ

0

]
(20)

where Tanh
(

COi
j(t + 1)

)
: Transfer function, ∆i

j(t + 1): binary value, and λ: random value.
The coati optimization algorithm includes the following levels:
The random locations of the coatis are initialized. Equation (13) is used to initialize the

location of the coatis. Next, Coatis update their location to hunt prey. Equation (14) is used
to update the location of coatis at this level. When coatis fall to the ground, they use random
movements to update their location. Equations (15) and (16) are used to update the location of
coatis at this level. Finally, Coatis escape from their location using Equations (17) and (18).

2.5. Structure of Coati Optimization Algorithm—ELM-MKLSSVM

This study used the coati optimization algorithm—ELM-MKLSSVM model to predict
the water reservoir level. One of the challenges is to identify the inputs for modeling
hydrological processes [27]. An input variable selection method involves identifying
several predictors that can explain output behavior [28]. Building inaccurate models is
inevitable if meaningful predictors are overlooked [29]. In addition, large input sets lead
to longer computation times for model development. There are three main types of input
variable selection methods: filter-based, wrapper-based, and embedded-based [29]. A
filter-based input variable selection method (FIVS) is independent of the learning algorithm
and uses statistical measures to rank input variables [29,30]. Wrapper-based input variable
selection (WIVS) methods and embedded input variable selection methods (EMIVS), which
use a learning algorithm, filter variables based on model performance.

WIVS and EMIVS methods have high computational burdens, but they are more
efficient than FIVS. A wrapper method uses a subset of features to train a model. Various
wrapper methods are available, such as sequential or random [30]. The sequential wrapper
method, such as the forward feature selection and backward elimination methods, incre-
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mentally adds and removes features from the selected subset. As a result, the features
selected/removed in the first iteration are not removed/selected in the next iteration to
improve the model’s performance [30].

In contrast to sequential wrappers, random search methods provide an enhanced
technique for exploring the feature space. Optimization algorithms are the most important
random search methods. A global optimization approach is used to develop wrapper input
variable selection techniques where input subsets are represented as binary strings. When
the search algorithm selects the i-th input, the i-th bit of the string will be set to 1; otherwise,
it will be set to 0. Next, the selected predictors are fed into a machine-learning model,
which is then trained and evaluated. Each individual had two parts: an input variable and
a hyperparameter [28]. Hyperparameters are encoded as binary values [27]. The values of
the hyperparameters and input variables were back-transformed into actual values in the
final level [28]. In this study, the coot is chosen to determine the input variables. The model
is created based on the following levels:

Data are split into testing and training data. The name of input variables must be
converted into a binary format. Each variable is represented as a sequence of 0 s and 1 s.
For example, if you have three input variables A, B, and C, you can represent each of them
using two bits as follows:

A = 00, 01, 10, 11
B = 00, 01, 10, 11
C = 00, 01, 10, 11

(21)

A binary vector contains 0 and 1 values. 0 and 1 values show unselected and selected
input data. The model parameters and input vectors are defined as the population of
the algorithms. The input vectors are inserted into the MKLSSVM. An objective function
(MAE) is calculated to evaluate the quality of the solutions—Equations (13)–(18) update
model parameters and input vectors. The process continues until the convergence criterion
(maximum number of iterations) is met. Residual values are computed based on the
difference between outputs and observed data. The parameters of the ELM model are
defined as the initial population of the coati optimization algorithm. Residual values are
inserted into the ELM model. The elm model is run to predict outputs. An objective
function (Mean absolute error (MAE)) is calculated to evaluate the quality of the solutions.
The operators of the coati optimization algorithm are used to update extreme learning
machine parameters. Equation (22) provides the final output:

Out f inal = (OutELM) + outMKLSSVM (22)

where Out f inal : final output, OutELM: output of the extreme learning machine model
(estimated residual value), and outMKLSSVM: output of the MKLSSVM model. In this
study, the ELM-MKLSSVM model is benchmarked against the LSSVM-RBF, LSSVM-LKF,
LSSVM-PKF, and ELM models.

3. Case Study

The Batu Dam, located approximately 20 km north of Kuala Lumpur, is in Malaysia.
Water supply, sediment management, and flood regulation are the goals of building the Batu
Reservoir in Kuala Lumpur. The dam is an earth-fill embankment. Climate change affects
rainfall patterns. As rainfall patterns change, reservoir inflow and water levels change.
The dam’s height, length, and crest elevation are 44 m, 50 m, and 109 m, respectively. The
reservoir’s storage capacity and design discharge capacities are 36.6 MCM and 251.6 m3/s
(Spillway and outlet). Decision makers need to predict the reservoir’s water level for flood
control. A humid climate prevails in the basin. Figure 1a,b show the location of the case
study and the data points.
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This study uses lagged rainfall and water level to predict a one-day-ahead water level.
Lag times of (t−1) (previous day), (t−10) (last ten days) are used for predicting outputs.
Table 1 shows statistical details of inputs and outputs.

Table 1. Statistical details of data.

Parameter Maximum Average Minimum

Water Level (m) 104.46 99.23 93.11
Rainfall (mm) 50.5 34.56 0.50

Equations (23)–(25) are used to evaluate the performance of the models.

1 Root mean square error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(WLes −WLob)
2 (23)

2 Mean absolute error (MAE)

MAE =
1
n

n

∑
i=1
|WLob −WLes| (24)

3 Nash–Sutcliff efficiency (NSE)

NSE = 1−

n
∑

i=1
(WLob −WLes)

2

n
∑

i=1

(
WLob −WLob

) (25)

4 Willmott index

WI = 1−

n
∑

i=1
(WLes −WLob)

2

n
∑

i=1

(∣∣WLes −WLob
∣∣+ ∣∣WLes −WLob

∣∣)2
(26)

where, WLes: Estimated Water level, WLob: Observed Water Level, WLob: Average
observed Water level, n: number of data. Ideal models have high WI and NSE values.

4. Results and Discussion
4.1. Determination of Optimal Input Scenario

By reducing the number of input variables, feature selection methods can help prevent
overfitting. Too many input variables can make the model overly complex and inconsistent.
Overfitting occurs when a model fits training data well but performs poorly on new data.
A feature selection method reduces the overfitting risk by selecting only relevant input
variables. Furthermore, feature selection methods can identify redundant or irrelevant
variables. Choosing the best input scenario is complex. This study uses COA to determine
optimal input scenarios. The number of input variables was 20 (Rainfall (t−1) . . . Rainfall
(t−10); Water level (t−10), . . . Water level (t−10)). The number of input combinations is
220-1. Manually determining the optimal input scenario is time-consuming and complex.
In this study, the COA automatically determine the best input combination. The name of
the input variables was defined as binary variables. The names of the input variables were
considered decision variables. Locations of coatis show input combinations. The operators
of the COA were used to update the input combinations at each iteration. Table 2 shows
the first-best to third-best input combinations.
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Table 2. The best input combinations.

Input Combination Components

First best input combination rainfall (t−1), rainfall (t−2), water level (t−1), water
level (t−2), water level (t−3)

Second best input combination rainfall (t−1), rainfall (t−2), water level (t−1), water
level (t−2), water level (t−3), rainfall (t−4)

Third-best input combination
rainfall (t−1), rainfall (t−2), water level (t−1), water

level (t−2), water level (t−3), rainfall (t−3), water
level (t−5)

4.2. Determination of Random Parameters

The performance of an optimization algorithm depends on random parameters. Pop-
ulation size and maximum iteration number are the most important parameters of opti-
mization algorithms (Figure 2). The optimal values of random parameters yield the lowest
objective function values (MAE). Figure 2 shows the objective function value for different
parameter values. As can be seen from the figure, population size = 200 and maximum
iteration number = 100 provided the lowest objective function value.
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Figure 2. Values of the objective function for different values of parameters.

In this study, the number of hidden nodes (N = 1, . . . , 256) and the type of activation
function (sigmoid, sine, purelin, and radial basis) are the parameters of the ELM model.
The number of hidden neurons variable varies from 1 to 256. Thus, there were 8 bits for
the encoding. Since the ELM model had four activations, we used two bits for activation
functions. Therefore, we needed 10 bits for the ELM parameters. At each iteration, the
operators of the coot optimization algorithm updated the values of the model parameters.
Based on multiple runs, the model with the best fitness was selected. Based on this selected
model, the final prediction values were calculated. A matlabe software was used to prepare
computer codes. Also, the ram of the system was 8 GB.

4.3. Evaluation of the Accuracy of LSSVM Models

The accuracy of the MKLSSVM, LSSVM-PKF, LSSVM-RBF, and LSSVM-LKF models
is evaluated in this section (Table 3).
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Table 3. Investigation of the accuracy of the LSSVM models.

Model MAE
(Training)

MAE
(Testing)

RMSE
(Training)

RMSE
(Testing)

NSE
(Training)

NSE
(Testing)

WI
(Training)

WI
(Testing)

MKLSSVM 0.96 0.99 1.67 1.78 0.79 0.78 0.80 0.79
LSSVM-PKF 1.02 1.12 1.97 1.98 0.77 0.77 0.78 0.76
LSSVM-RBF 1.14 1.23 1.99 2.01 0.76 0.74 0.75 0.74
LSSVM-LKF 1.18 1.28 2.12 2.24 0.73 0.72 0.73 0.71

Table 3 evaluates the accuracy of different LSSVM models. The highest and Lowest MAEs
were obtained by the LSSVM-LKF and MKLSSVM models. The training and testing MAEs
of the MKLSSVM model were 0.96 and 0.99, respectively. The LSSVM-PKF model was the
second-best. The training and testing MAEs of the LSSVM-PKF were 1.02 and 1.12, respectively.

The NSE of the LSSVM-LKF model was lower than that of the other models. The
training and testing NSE of the MKLSSVM model was 0.79 and 0.78, respectively. On
the other hand, the LSSVM-RBF outperformed the LSSVM-LKF model. The training and
testing NSE of the LSSVM-RBF model was 0.76 and 0.74.

The training RMSE of the MKLSSVM model was 15 and 16% was lower than that of
the LSSVM-PKF and LSSVM-RBF models. On the other hand, the RMSE of the LSSVM-LKF
was higher than that of the other models. The training and testing RMSE of the LSSVM-LKF
were 2.12 and 2.24, respectively.

The WI of the MKLSSVM model was higher than that of the models. The training
and testing WIs of the MKLSSVM model were 0.80 and 0.79, respectively. The WI of the
LSSVM-KF was higher than that of the other models.

Figure 3 shows boxplots of the LSSVM models. The observed data had the highest
match with the MKLSSVM model. The median and maximum values of the observed
data were 100.185 and 104.46 m, respectively. The median and maximum values of the
MKLSSVM model were 100.45 and 104.46. On the other hand, the LSSVM-LKF had the
lowest match with the observed data. The median and maximum values of the LSSVM-LKF
model were 101.1 and 107.1 m, respectively.
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Among the other models, LSSVM-LKF had the lowest accuracy. The LSSVM-LKF
model is poor for analyzing nonlinear data because it uses a linear kernel function. The
LSSVM-PKF (RBF) use nonlinear kernel functions, so they perform better than the LSSVM-
LKF model. Since the MKLSSVM model takes advantage of multiple kernel functions, it
can predict data accurately. The performance of LSSVM models improves as the exponent
increases. The least LSSVM-PKF model performed better than the least square support
vector machine—RBF model.

4.4. Evaluation of the Accuracy of Hybrid Models

In this section, the ELM-MKLSSVM model is benchmarked against other models.
Figure 4 shows heat maps of error values. The MKLSSVM had the highest RMSE. The
training and testing RMSEs of the MKLSSVM model were 52% and 54% higher than those
of the ELM-MKLSSVM model. The training and testing RMSEs of the ELM-MKLSSVM
model were 0.858 and 0.912 m, respectively. The ELM-MKLSSVM decreased RMSE values
of the ELM model by 15% and 17%, respectively.
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Figure 4. Heat maps of error values.

The highest NSE was obtained by the ELM-MKLSSVM model. The training and
testing NSEs of the ELM-MKLSSVM model were 0.98 and 0.97, respectively. Therefore, the
NSE of the ELM was higher than that of the MKLSSVM model. The training and testing of
NSEs of the ELM-RBF model were higher than those of the ELM-LLSVM-PKF model. The
training and testing NSEs of the ELM-RBF model were 0.92 and 0.90, respectively.

The WI of the ELM-MKLSSVM model was 0.98 and 0.97 at the training and testing
level. The WI of the ELM-MKLSSVM model was higher than that of the other models. The
WI values indicated that the ELM-LSSVM-PKF was the second-best model. The training
and testing WIs of the same model were 0.95 and 0.93. The NSE of the same model was
lower than that of the ELM-MKLSSVM model. The MAE of the ELM was higher than that
of the ELM-MKLSSVM models. The training and testing MAEs of the ELM model were
0.901 and 0.912, respectively. The training and testing MAEs of the MKLSSV model were
0.70 and 0.71, respectively. The testing MAE of the ELM-MKLSSVM model was 28% lower
than that of the MKLSSVM model.
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Since the ELM-MKLSSVM model combines the advantages of the extreme learning
machine and MKLSSVM models, it outperforms other models. While the LSSVM model
may not capture nonlinear components of time series data, the ELM-MKLSSVM model can
capture both nonlinear and linear components. The results showed that hybrid models
performed better than MKLSSVM and ELM models. Figure 5 shows boxplots of hybrid
and standalone LSSVM and ELM models. The median of the observed data and the
ELM-MKLSSVM model had the highest match. The medians of the observed data and
the ELM-MKLSSVM model were 100.185 m and 100.205 m, respectively. The ELM and
MKLSSVM model median was 100.385 and 100.450 m, respectively. Thus, these models
had weaker performance than the ELM-MKLSSVM model. A Taylor diagram is used
to evaluate the accuracy of a model. For evaluating the accuracy of models, the Taylor
diagram uses standard deviation, correlation coefficient, and the centralized root mean
square error (CRMSE). The ideal model has the shortest distance from the reference point
(observed data). Figure 6 shows a Taylor diagram for assessing the accuracy of hybrid and
standalone LSSVM models. The CRMSE of the hybrid models was lower than that of the
standalone models (ELM and MKLSSVM models). The CRMSE of the ELM-MKLSSVM
model and ELM-LSSVM-PKF was 0.17 and 0.27, respectively. The correlation coefficient of
the same models was 0.98 and 0.96. The correlation coefficient of the MKLSSVM model
was 0.67.

Water 2023, 15, x FOR PEER REVIEW  14 of 19 
 

 

can  capture  both  nonlinear  and  linear  components.  The  results  showed  that  hybrid 

models performed better than MKLSSVM and ELM models. Figure 5 shows boxplots of 

hybrid and standalone LSSVM and ELM models. The median of the observed data and 

the ELM‐MKLSSVM model had the highest match. The medians of the observed data and 

the ELM‐MKLSSVM model were 100.185 m and 100.205 m, respectively. The ELM and 

MKLSSVM model median was 100.385 and 100.450 m, respectively. Thus, these models 

had weaker performance than the ELM‐MKLSSVM model. A Taylor diagram is used to 

evaluate  the  accuracy  of  a model.  For  evaluating  the  accuracy  of models,  the  Taylor 

diagram uses standard deviation, correlation coefficient, and the centralized root mean 

square error (CRMSE). The ideal model has the shortest distance from the reference point 

(observed data). Figure 6 shows a Taylor diagram for assessing the accuracy of hybrid and 

standalone LSSVM models. The CRMSE of the hybrid models was lower than that of the 

standalone models (ELM and MKLSSVM models). The CRMSE of the ELM‐MKLSSVM 

model and ELM‐LSSVM‐PKF was 0.17 and 0.27, respectively. The correlation coefficient 

of the same models was 0.98 and 0.96. The correlation coefficient of the MKLSSVM model 

was 0.67. 

 

Figure 5. Boxplots of hybrid LSSVM models. 

100.185 100.205 100.215 100.225 100.35 100.365 100.45

O
bs

er
ve

d 
da

ta

E
L

M
-M

K
L

S
S

V
M

E
L

M
-L

S
S

V
M

-P
K

F

E
L

M
-L

S
S

V
M

-R
B

F

E
L

M
-L

S
S

V
M

-L
K

F

E
L

M

L
S

S
V

M

92

94

96

98

100

102

104

106

W
at

er
 L

ev
el

 (
m

)

 25%~75%
 Range within 1.5IQR
 Median Line

Figure 5. Boxplots of hybrid LSSVM models.

Predicting reservoir water levels is a key issue in managing agricultural, industrial,
and domestic water resources. Therefore, a reliable predictive model is required to ensure
an adequate water supply.

This study used the ELM-MKLSSVM model to estimate reservoir water levels. Our
study results are important for water management. First, water managers can allocate
reservoir water to different uses based on accurately predicting reservoir water levels. For
example, water may be allocated to agricultural or urban areas for drinking, cleaning, or
other purposes. Secondly, the study results help predict and prevent natural disasters such
as floods. Dam overflow can occur when the reservoir water level increases uncontrollably,
which can cause havoc in surrounding areas. Water level predictions and early warnings
can help people and institutions move to safer places before natural hazards occur. Thirdly,
study results are essential for planning the construction and operation of hydropower
plants. The reservoir water level determines the amount of electricity that can be gener-
ated. Therefore, accurately predicting the reservoir water level can help prevent power
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outages and maintain a stable power supply. Fourth, water can damage land, crops, and
infrastructure during a flood or overflow. The accurate prediction of water levels helps
communities prepare for flood events that can cause destruction. A drought puts pressure
on reservoirs because demand increases and water supply decreases. As precipitation
decreases and evaporation rates increase, the reservoir water level falls, causing water
scarcity, ecosystem damage, and socioeconomic impacts. Water scarcity can adversely
affect agriculture, threaten water supply and hydroelectric power generation, and cause
financial losses. To minimize the effect of water scarcity on water user economies and to
maintain stability for water users, water resource managers must make accurate predictions
of reservoir water levels.
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Figure 6. Comparison of the accuracy of models based on the Taylor diagram.

In this study, we used the ELM model to improve the performance of the MKLSSVM
model. The extreme learning machine is a supervised learning algorithm for neural net-
works for regression and classification tasks. Due to its simplicity, high-speed processing,
and accuracy, the ELM model is a powerful machine-learning technique. ELM models
are advantageous for predicting the water level of reservoirs because they can process
large amounts of data. An ELM model can employ many hidden neurons to learn the
complexity of the reservoir systems, which leads to better accuracy in predicting water
levels. In addition, an ELM model has a fast-learning ability with a shorter training time.

When the extreme learning machine—MKLSSVM model receives the climate informa-
tion, it can predict the water level for the feature periods. Climate models and scenarios can
be coupled with the ELM-MKLSSVM model to predict water levels for future periods. The
ELM-MKLSSVM model can be used for predicting other variables (rainfall, groundwater
level, and temperature) as it can capture nonlinear and linear components. Furthermore,
our study contributed to the development of robust feature selection algorithms. The COA
was a robust feature selection tool.

In order to increase the accuracy of predictive models, the coot optimization algorithm
selected the most relevant input variables. Models that contain irrelevant or redundant
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variables often produce incorrect predictions. The coot optimization could reduce the
computational complexity of predictive models by eliminating unnecessary input variables.
As a result, model training and prediction can be faster and more efficient. Choosing
input variables relevant to the target variable improves the interpretability of predictive
models. By understanding the relationship between input and output variables, users can
make informed decisions. In addition to improving the accuracy of predictive models,
optimization algorithms improve their generalization.

There are several reasons why multi-kernel least square support vector machines
(MKLSSVMs) perform better than LSSVMs. First, the MKLSSVM model can combine
multiple kernels, which makes it flexible for fitting different types of data distributions.
In contrast, the LSSVM model uses a single kernel function, which can not capture the
complexity of data. When the MKLSSVM model uses multiple kernels, regularization
occurs, which will reduce model overfitting. When the kernel function is not selected
properly, LSSVM may be more prone to overfitting. The MKLSSVM model can improve
the generalization ability to perform well on unseen data samples. In other words, using
multiple kernels leads to a more robust and diverse model. When the input data are highly
nonlinear and complex, LSSVM may have poor generalization ability. MKLSSVM can often
achieve higher accuracy because it can capture more complex data patterns than LSSVM. It
is particularly true for datasets that contain many features or high dimensionality. Finally,
the LSSVM model can handle large datasets. Many applications have datasets with a large
number of data points. Due to their reliance on a single kernel function, traditional LSSVM
models can be computationally expensive or impossible to train on such large datasets.
The MKLSSVM model can distribute the computation across multiple kernel functions for
large datasets, making it more efficient and scalable. Previous studies reported that the
combination of kernel functions could improve the accuracy of results. Ghiasi et al. [32]
developed the LSSVM models based on the combination of kernel functions. They reported
that the new model could successfully predict structural damage detection. Zhou et al. [33]
developed a combination of kernel functions for the LSSVM model. The combination of
kernel functions could improve the accuracy of the original LSSVM model.

The limitation of our models is that time interval predictions cannot be quantified.
To quantify uncertainty values, it is necessary to make time interval predictions. We can
develop our models for quantifying uncertainty values in the next studies. Modelers need
skill and experience to prepare such models. Data collection can be challenging because
some data may not be available. Combining multiple models requires careful integration
and coordination, which can be challenging for developers to implement.

These models provide useful results for the optimal management of the Batu Dam.
Water level predictions help reservoir managers understand the status of reservoir storage.
Thus, water can be released based on reservoir water levels and downstream demands.
During periods of drought, managers can use these models for watershed management.
As reservoir water levels can be accurately predicted, managers can optimally open the
Batu dam and release water during periods of drought. The Batu Dam provides water for
domestic and industrial use, irrigation, and power generation. Thus, this dam is important
for the water supply. Our models predict reservoir water levels so that managers can plan
for the optimal operation of Batu. Dam. As a result, our models contribute to improving
dam management. We propose these models as early warning systems to prevent floods
and droughts in the catchment area. Furthermore, we propose water resource management
under climate change conditions.

5. Conclusions

Predicting reservoir water levels is vital for effective water management. Predict-
ing reservoir water levels also facilitates flood management. Heavy rainfall can cause
significant damage to the environment, infrastructure, and human life when reservoirs
overflow. To prevent floods and disasters, water resource managers can use reservoir water
level predictions. For environmental management, it is important to predict reservoir
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water levels. A water resource manager must balance the needs of different sectors and
environmental protection. During the dry season, water resource managers may need to
limit water allocations for some sectors to meet downstream needs. Predicting reservoir
water levels allows managers to plan for environmental flows and adjust water allocations.

Predicting water reservoir levels can mitigate the consequences of floods and droughts.
This study aims to develop a new hybrid model for predicting the water level of reservoirs.
Our study coupled the MKLSSVM model with the ELM model. The MKLSSVM model
is a new version of the LSSVM model. The multi-kernel least square support vector
machine model takes advantage of multiple kernel functions. For selecting the optimal
input scenarios, we used a new binary optimization algorithm. The results indicated that
the extreme learning machine—multi-kernel least square support vector machine model
outperformed the other models.

The highest NSE was obtained by the ELM-MKLSSVM model. The training and
testing NSEs of the ELM-MKLSSVM model were 0.98 and 0.97, respectively. The training
and testing NSE of the MKLSSVM model was 0.79 and 0.78, respectively. The LSSVM-RBF
outperformed the LSSVM-LKF model. The training and testing NSEs of the ELM-RBF
model were 0.92 and 0.90, respectively.

Our study showed that the extreme learning machine—MKLSSVM was a reliable tool
for analyzing linear and nonlinear data. The new model can provide valuable information
for water resource planning and management. Researchers can use the new model to
predict spatial and temporal patterns. Choosing the essential input variables is complex,
but our optimization algorithm selects them successfully. This article used a hybrid model
to predict nonlinear and linear components of time series. This idea can be used to develop
the performance of other models, such as support vector machines, regression models, and
linear models.

The ELM-MKLSSVM is a robust model for simulating complex problems but cannot
predict interval times. We can combine the ELM-MKLSSVM model with Bayesian ap-
proaches to predict interval times in the next study. Quantifying uncertainty values relies
on interval-time predictions.
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