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Abstract: Studying palaeotsunamis is important to the comprehensive understanding of these events
and their role in the geological evolution of the coasts of oceans and seas. The present work aims
at summarizing the published information on Triassic tsunamis to document their spatiotemporal
distribution and the related knowledge gaps and biases. A bibliographical survey was undertaken to
collect the literature sources, and their content was examined to extract the principal information
about palaeotsunamis. The certainty of the literary evidence for particular localities and regions is
addressed by checking the consistency of the published interpretations. It is found that tsunamis
were discussed commonly in different parts of the world for the Permian–Triassic transition and
the end-Triassic. However, the certainty of the literary evidence is questionable in both cases. Some
interpretations of palaeotsunamis were disputed, and storm versus tsunami interpretations were
offered in several cases. A few tsunamis were also reported from the Olenekian–Carnian interval
but with the same quality of literary evidence. Taking into account the frequency of tsunamis in the
historical times and the Holocene, as well as the presence of their possible triggers in the Triassic, it is
proposed that the analyzed literary evidence is significantly incomplete, and, thus, our knowledge
about Triassic tsunamis is imperfect. Further research should aim at studying them in a bigger
number of localities, paying attention to the Olenekian–Norian interval and trying to relate them to
different triggers.
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1. Introduction

Tsunamis are not only devastative events of outstanding magnitude and different
nature but also factors of geological evolution, which affect coastal landforms, deposi-
tional systems, and habitats [1–19]. Although there have been significant advances in their
understanding after the two catastrophes that occurred at the beginning of the 21st cen-
tury [20–24], there is much to be studied yet in regard to their spatiotemporal regularities,
causes and mechanisms, and effects.

Indeed, the geological records of tsunamis can facilitate a comprehensive understand-
ing of this phenomenon in general. Palaeotsunamis have been studied actively, with
significant attention to their sedimentological and palaeoecological evidence [25–30]. The
oldest tsunami was interpreted for the Archaean [31]. However, the preservation potential
of tsunamis and/or the scientists’ ability to identify them and interpret them correctly is
limited. That is why the knowledge of pre-Quaternary tsunamis remains scarce. However,
it is available and not too limited, and the related studies have experienced growth. Taking
into account that this knowledge is scattered through the geological literature and the
related notions sometimes appear “marginally”, it appears very reasonable to synthesize it
regularly and with attention to particular intervals of geological time.

The Triassic Period, which lasted ~50.5 Ma [32], was marked by palaeoenvironmen-
tal changes (for instance, fluctuations of the thermal regime [33,34] and global sea-level
changes [35,36]), which were superimposed by a series of extraordinary events such as
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the Permian/Triassic (P/T) [37–39] and Triassic/Jurassic (T/J) [40–42] catastrophes and
lesser crises [43–47]. Taking into account these changes, it appears intriguing to investigate
Triassic tsunamis, irrespective of whether they were related to the noted events or not.
Some high-resolution studies of Triassic sequences in search of the evidence of these above-
mentioned catastrophes might have led to finding tsunamis. A brief check of the available
literature (see review below) implies that the related lines of evidence exist. Arguments
pro et contra palaeotsunami interpretations were expressed. However, it appears that
the knowledge of Triassic tsunamis is not only heterogeneous but also fragmented and
controversial to a certain degree.

The objective of the present work is to summarize briefly the available literary evidence
of Triassic tsunamis. Attention is paid to their spatiotemporal distribution. However,
even more important is the examination of the certainty of the lines of evidence because
palaeotsunamis can only be interpreted (hypothesized) with more or less strong arguments.
Judgments about these interpretations are out of the scope of this study, but it appears
essential to check controversies and alternative explanations already stated in the published
literature. The author neither favors nor criticizes the previous interpretations but tries
to synthesize the information to reflect the present understanding of Triassic tsunamis, as
evidenced by the entity of the related literature sources. In other words, this work offers a
general and neutral view of these events—a kind of view from the outside (for instance, of
any professional geologist needing to learn about palaeotsunamis of this age and caring
about the consistency of this information). The present synthesis has been stimulated by the
examination of the regional geological record of the hypothetic, earliest Induan tsunami in
the Western Caucasus; nonetheless, bringing together the dispersed published information
from different stratigraphical levels of the Triassic and different parts of the world is the
central task, solution of which may be helpful for further developments, both of regional
and global scale.

2. Materials and Methods

The present study follows the Triassic time scale established by the International
Commission on Stratigraphy [32]. The period consisted of three epochs and seven stages,
and its subdivision is highly disproportional because the Late Triassic was longer than the
Early and Middle Triassic taken together, and the Norian Stage lasted more than two Triassic
epochs (Figure 1). The Triassic world was organized rather simply, with one supercontinent,
namely Pangaea, surrounded by the Panthalassa Ocean; the Palaeo- and Neo-Tethys oceans
intruded into the interiors of Pangaea and formed a giant “tongue” [48–50]. The climate
was warm, with global average temperatures above 20 ◦C [33,34]. A thermal maximum
with extreme temperatures took place in the Early Triassic [51–53]. The global sea level
was relatively low, and it fluctuated generally near or above the present level [35,36].
Palaeoenvironmental and palaeoecological perturbations stressed the world during a
significant part of the Triassic (Figure 1).

The material of the present study is the entity of literature sources, chiefly articles
mentioning Triassic tsunamis and published in international journals. In order to collect
these sources, a bibliographical survey was undertaken. The principal part of the infor-
mation was obtained with the major bibliographical database “Scopus”, which boasts
extensive coverage of sources and outstanding richness [54–56]. However, various addi-
tions were made via search with the bibliographical databases of particular publishers
such as “Elsevier” and “Springer”. Direct search on the Internet was also helpful. The
sources mentioning Triassic tsunamis in their titles, abstracts, keywords, and full text were
collected this way. After “filtering” (deletion of duplicating or irrelevant works), the set
of the literature includes 39 publications, which is not so small taking into account the
consideration of the highly-specific subject and the poor preservation of palaeotsunamis
in pre-Quaternary geological records. This set seems to be representative because the
used bibliographical databases include all leading and numerous national/local journals,
including those published in languages other than English (indeed, missing a few papers
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published is possible, but such biases are principally unavoidable; anyway, the set is treated
as not fully comprehensive, but only representative).
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Figure 1. Selected patterns of the Triassic history of the Earth (geologic time scale follows [32], events
according to Ruban [45], global average temperature is modified from [34], and global long-term
sea-level changes are modified from [35]). One should note the well-developed but disproportional
geologic time scale, which may reflect the changed tempos of the planetary evolution. Biotic pertur-
bations were very frequent, with two major catastrophes and several smaller crises. The Earth was
warm, but the palaeotemperatures fluctuated significantly. The global sea level remained generally
low, although it peaked in the first half of the Late Triassic.

Essentially, the present analysis is a kind of bibliographical survey aimed at a concise,
systematic description of the matter. The content of the collected literature sources was
analyzed to extract the basic information about Triassic tsunamis. In several cases, the same
section or group of sections is addressed in several works. To reduce the heterogeneity of the
information, the sections are attributed to the localities, which can be either small or rather
large, but presumably, each of them represents the same event or series of events. These
localities are specified for only descriptive purposes, and thus, differences in their size do
not matter. For each locality, the evidence of tsunami is summarized to reveal its certainty
resulting from the consistency of the interpretations from the related works. For instance,
some works hypothesize palaeotsunami, others imply the presence of either tsunami or
storm, and there are situations when the authors argue for the absence of palaeotsunami.
Such interpretations are based on sedimentological and somewhere palaeoecological and
geochemical observations. The age of palaeotsunamis is further considered. When possible,
it is established at the stage level. It should be noted that many works focus on the Permian–
Triassic or Triassic–Jurassic transitions. Naturally, these transitions go beyond the Triassic’s
limits, and older and younger tsunamis should also be considered because they are directly
related to the Triassic geological history, with two outstanding catastrophes that marked its
beginning and end. If mentioned in the analyzed literature sources, the possible triggers of
palaeotsunamis are outlined. Finally, the temporal (not necessarily causal) correspondence
to the global events (Figure 1) can be traced.

The certainty of evidence can be established as follows: it is very high when palaeot-
sunami is hypothesized without an alternative, it is high when the majority of the works pro-
pose palaeotsunami, but some specialists propose alternative interpretations, it is medium
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when palaeotsunami is hypothesized together with some other factors or some specialists
question it, and it is low when the evidence is too weak, or palaeotsunami is one of many
possible explanations. Finally, arguments against palaeotsunamis are specified for some
localities. Indeed, this procedure is somewhat subjective, but it appears to be useful for
the general judgments of the certainty of evidence. Moreover, it should be stressed that
this certainty is always only relative because even the strongest and currently undisputed
evidence allows only to hypothesize palaeotsunami, not to prove it. In this work, the
quality of the evidence from each particular work is not checked because this would require
detailed field studies in all considered localities and also because such a critical assessment
of the previous literature would require avoiding the neutrality of judgments and choosing
any particular methodological framework.

Then, the information is again generalized and grouped by major spatial domains
and principal time slices. Domains are outlined provisionally and include closely situ-
ated localities (also those localities, the relations discussed in the literature sources) with
comparable palaeogeographical settings (for instance, it appears reasonable to consider
all West European localities together). The literature has paid significant attention to the
Permian–Triassic transition and the end-Triassic interval (Rhaetian and Triassic–Jurassic
transition), and the rest information characterizes the Olenekian–Carnian interval. These
slices reflect the different temporal “density” of the available lines of evidence, i.e., the
former depends on the concentration of the latter. The interpretations of the certainty of
evidence are generalized for all major domains in each time slice.

3. Results

The literary evidence of Triassic tsunamis implies that the contemporary knowledge
of them is far from being ideal. On the one hand, some palaeotsunamis are disputed or
face alternative explanations (Table 1). Commonly, they are interpreted for beds with
unusual sedimentary, palaeoecological, and geochemical characteristics, the origin of which
can also be attributed to storms or seismicity. A typical example is found in the earliest
Induan sandstones bearing boulders and megaclasts (Figure 2) reported from the Western
Caucasus [57]. On the other hand, too little attention has been paid to the Ladinian–Norian
interval (Table 1), which constitutes more than half of the Triassic history (Figure 1). It
is also necessary to note the concentration of research in particular localities, such as
the British Isles or Kashmir (Table 1). Nonetheless, the already published information
generally proves tsunamis as a rather characteristic phenomenon of the Triassic or, at least,
its particular intervals.

Table 1. The literary evidence for judgments of Triassic tsunamis.

Locality Source and Evidence Certainty of
Evidence Age Possible Trigger Events

Carnic Alps
(Austria)

[58]: tsunami (storm not
excluded) High Permian–Triassic

transition - P/T catastrophe

Germanic Basin
(Germany and

Poland)

[59]: tsunami (storm not
excluded)

High Anisian Earthquake
-

[60]: tsunami (storm not
excluded)

[61]: tsunami

[62]: tsunami

[63]: tsunami

[64]: tsunami

[65]: tsunami

[66]: tsunami (mass
movements not excluded)

[67]: tsunami Very high Anisian–Ladinian Ladinian crisis
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Table 1. Cont.

Locality Source and Evidence Certainty of
Evidence Age Possible Trigger Events

Kashmir
(India)

[68]: storm/tsunami

High Permian–Triassic
transition

-

P/T catastrophe
[69]: tsunami Remote massive

volcanism

[70]: tsunami/seismicity -

[71]: tsunami -

Lagonegro Basin
(Italy)

[72]: tsunami in adjacent
area Unclear Norian–Rhaetian Bolide impact Late Triassic

perturbations

Northern Ireland
(UK)

[73]: not tsunami

Medium Rhaetian

-

Late Triassic
perturbations

[74]: not tsunami -

[75]: tsunami Earthquake, bolide
impact?[76]: tsunami

Massif Central
(France) [77]: tsunami Very high Triassic–Jurassic

transition Bolide impact T/J catastrophe

Mino Terrane
(Japan)

[78]: tsunami among
other possible processes Low Anisian–Carnian - Ladinian and

Carnian crises

Northwestern
Peninsular Malaysia

(Malaysia)
[79]: tsunami/seismicity Medium Middle Triassic - Ladinian crisis

Ordos Basin
(China)

[80]: not tsunami
Absence Ladinian–Carnian

- Ladinian and
Carnian crises[81]: not tsunami -

Parana Basin
(Brazil)

[82]: tsunami
Very high Permian–Triassic

transition
Bolide impact,

earthquake
P/T catastrophe

[83]: tsunami

Paris Basin
(France) [84]: tsunami Very high Rhaetian Bolide impact Late Triassic

perturbations

Sichuan Basin
(China) [85]: storm/tsunami Medium Triassic–Jurassic

transition - T/J catastrophe

South Iberia
(Spain) [86]: storm/tsunami Medium

Middle–Late Triassic
(Ladinian–
Carnian?)

- Ladinian and
Carnian crises

Southern and
Southwestern

England
(UK)

[87]: not tsunami

Medium Rhaetian

-

Late Triassic
perturbations

[74]: not tsunami -

[75]: tsunami Earthquake, bolide
impact?[76]: tsunami

Spiti
(India)

[88]: tsunami in
adjacent area Unclear Permian–Triassic

transition
Earthquake, bolide

impact P/T catastrophe

Spitsbergen
(Norway) [89]: storm/tsunami Medium Permian–Triassic

transition Earthquake P/T catastrophe

Tataouin Basin
(Tunisia) [90]: not tsunami Absence Late Triassic

(Rhaetian?) - Late Triassic
perturbations

Tatra Mountains
(Poland)

[91]: not
tsunami Absence Olenekian–Anisian - -

Utah
(USA) [92]: tsunami Very high Olenekian - -

Western Balkanides
(Bulgaria) [93]: not tsunami Absence Olenekian - -

Western Canada
(Canada)

[94]: tsunami cannot be
excluded Low Permian–Triassic

transition - P/T catastrophe

Western Carpathians
(Slovakia) [95]: tsunami Very high Anisian - -

Western Caucasus
(Russia) [57]: storm/tsunami Medium Permian–Triassic

transition - P/T catastrophe
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Figure 2. Lowermost Induan strata (Bambak Formation) of the Western Caucasus: simplified cross-
section (above) and image of characteristic megaclast in sandstone bed (below) (the image is a part of
the larger photograph from [57], and it is re-published with permission of MDPI).

Tsunamis at the Permian–Triassic transition have been reported from several localities,
from which the most studied is the Guryul Ravine in Kashmir (Table 1). However, the
Parana Basin of Brazil is the only place where the evidence of palaeotsunami seems to be the
most certain. For the other localities, alternative interpretations were proposed, with storms
as the most common (Table 1). Nonetheless, it is notable that the available lines of literary
evidence come from different parts of the world (Figure 3a), which means tsunamis could be
a global phenomenon during the Permian–Triassic transition. Before the 2010s, researchers
stated the absence of any tsunami deposits linked to the P/T catastrophe [96,97]. However,
new information has been obtained from several localities (Table 1), and it appears to be
promising to link this phenomenon to the P/T catastrophe, although one should note
the questionable correlation of the described events. In Kashmir, they occurred near the
beginning of the Permian–Triassic transition [68,69], but the hypothetic palaeotsunami
took place near its end in the Western Caucasus [57]. Moreover, one should note that
different specialists indicated different triggers of the palaeotsunamis hypothesized for
the Permian–Triassic transition, in which a bolide impact could cause massive remote
volcanism and earthquakes (Table 1). In the latter case, they were not necessarily related to
planetary mechanisms.

Olenekian tsunamis were discussed for three localities (Table 1). Surprisingly, their
absence was argued in two places, and thus, only their presence in western North Amer-
ica was hypothesized with certainty. More publications focused on the possible Anisian
tsunamis, but the majority of them deal with the Germanic Basin (Table 1). The certainty of
evidence from this major Central European palaeogeographical domain is high because
many works offered interpretations of the only earthquake-triggered palaeotsunamis, al-
though alternative explanations of the observed features (first of all, storms) cannot be
totally excluded. Ladinian–Norian tsunamis were mentioned from only a few localities
(Table 1). The certainty of this evidence is usually limited. On the one hand, alternative
interpretations were given for some localities. On the other hand, one should note ar-
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guments against palaeotsunamis, which are especially strong in the case of the Ordos
Basin [80,81]. Generally, Olenekian–Norian tsunamis were reported rarely, and the entire
literary evidence of these events seems to be rather uncertain (Figure 3b). Although a
few possible events corresponded to the Ladinian and Carnian crises, this correspondence
may be only occasional. Moreover, the triggers of the proposed palaeotsunamis were not
indicated in the literature, except for the Anisian events in the Germanic Basin, where they
were attributed to seismicity (Table 1).
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End-Triassic tsunamis were reported in rather numerous works, although from a
limited number of regions; the best studied are the localities of the British Isles (Table 1).
In the French localities, the evidence seems to be very certain, but apparently, the same
palaeotsunamis are disputed in the localities of Northern Ireland and Southern and South-
western England (Table 1). The number of works arguing for palaeotsunami and disproving
it seems to be comparable, which decreases the certainty of the evidence. In the other lo-
calities, either alternative (storm) interpretations were offered, or it was argued against
palaeotsunami. Principally, the available literary evidence seems to be less certain and less
geographically representative (Figure 3c) than in the case of the Permian–Triassic transition
(Figure 3a). Indeed, it appears to be intriguing to relate the hypothesized end-Triassic
tsunamis to the T/J catastrophe or its prelude that started yet in the Norian (Figure 1).
Some works argued bolide impact as a possible trigger of palaeotsunamis [72,75–77,84],
although seismicity, either related to this impact or not, cannot be excluded. Such a bolide
impact could be linked to the end-Triassic sequence of catastrophic events. However, the
arguments against palaeotsunamis make the related scenarios questionable, if possible.
Much depends on the interpretations of soft-sediment deformations [76,87], and some
scenarios can be only highly-hypothetic and based on the more or less logically organized
sets of assumptions.
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4. Discussion

Taking into account the state of the literary evidence summarized above (see also
Table 1 and Figure 3), it appears that the quantity and the certainty of the available
knowledge of Triassic tsunamis remain restricted. Nonetheless, it has been established
that tsunamis could be linked to planetary-scale catastrophes (such as those marked the
Permian–Triassic transition and the end-Triassic) and local/regional events (such as major
earthquakes). The literary evidence of the hypothetic tsunamis associated with (but not
necessarily linked to) the P/T catastrophe demonstrates rather high certainty. The biggest
problem is that, in many cases, it is impossible to be sure that tsunami took place or that
this was a tsunami and not a storm (Table 1). This appears to be a general methodological
problem that cannot be avoided presently. First, it is evident that sedimentary records
of palaeotsunamis can often be challenged and interpreted differently [73,74,80,91,93],
whereas arguing for palaeotsunami requires difficult, state-of-the-art approaches [98–100],
which do not necessarily work in the “Deep Past”. Second, making clear distinctions
between storm (also hurricane) and tsunami deposits on the basis of simple criteria is very
difficult (if possible), at least in contemporary geology [101–109]. The very high certainty
of the interpretations is established chiefly for those localities, which were addressed in
only one to two works. When a given locality attracted the attention of several research
teams, arguments pro et contra were commonly expressed. For some localities, which
have been studied for a long time, it is also possible to observe interesting shifts: for
instance, storm versus tsunami was initially interpreted, but the tsunami was further em-
phasized (apparently, this might have occurred even without the accumulation of more
convincing evidence).

To realize the incompleteness of the literary evidence of Triassic tsunamis, it is nec-
essary to hypothesize the true frequency of these events. In historical times, numerous
tsunamis were recorded, and there were several major events of this kind even during
the past century [1,5,8,21,24,109–113]. The Holocene records of tsunamis, including those
archaeological, are known to be very rich [114–121]. Taking into account the longevity of
the Triassic Period of ~50.5 Ma [32], one can hypothesize a huge amount of tsunami events,
many times larger than those few possible events discussed in the literature (Table 1).

To prove the assumption of the outstanding incompleteness of the knowledge, it is
necessary to check the presence of the principal triggers of tsunamis in the Triassic. The
global plate tectonic reconstruction [50] shows a significant extension of active tectonic
zones in this period; particularly, subduction zones stretched along the Panthalassic margins
of Pangaea and the northern Tethyan (northwestern Neo-Tethyan and northeastern Palaeo-
Tethyan) margin was also active, with well-shaped subduction zones. If so, seismicity
could be significant on the global scale, as well as the probability of earthquake-triggered
tsunamis. Moreover, such tectonic events as the emplacement of large igneous provinces
contributed to global seismicity [122]. Triassic volcanism of different natures was reported
from different regions and time slices [123–128], and thus, it could be responsible for
some (if not many) tsunamis. Considering the extension of shelfal versus deep-marine
palaeoenvironments [48], wide distribution of submarine slides and other mass wasting
processes can be supposed for the Triassic, and such events have been reported from
different localities [78,129–131]. Therefore, many palaeotsunamis of this origin are expected.
Finally, several bolide impacts have been argued for the Triassic [46,132–135]. Apparently,
such extraordinary events were able to cause tsunamis, and not only at the time of the P/T
and T/J catastrophes, for which such a trigger has already been considered (Table 1).

Taking into account the above-mentioned information, it appears that our knowledge
(at least, the literary evidence) of Triassic tsunamis (Table 1) is too insufficient (one can even
proclaim it as close to zero). This can be explained by the very low preservation potential of
tsunamis [136–140], unclear criteria for their identification (see above), and concentration
of the researchers’ attention on the P/T and J/T catastrophes (Table 1), whereas many
“ordinary” palaeotsunamis with regional/local triggers are not looked for. The Germanic
Basin (Table 1) example demonstrates how information regarding palaeotsunamis not



Water 2023, 15, 1590 9 of 15

linked to planetary-scale catastrophes can be studied. Three biases in the knowledge of
Triassic tsunamis can be outlined as follows. First, too few events from too few localities
were reported. Second, the Olenekian–Norian (especially Ladinian–Norian) tsunamis are
known less than those from the Permian–Triassic transition and the end-Triassic. Third,
palaeotsunamis with different triggers were not recorded adequately, and their causal
relationships to the Triassic events other than the P/T and T/J catastrophes are unclear.
One can hypothesize that these may be biases of not only the previous research but also of
this study; in other words, they can be caused by the limited literature availability and/or
reporting of some research in languages other than English. Although missing sources
cannot be excluded, it appears that hypotheses of Triassic tsunamis are internationally
important by definition, and, thus, the majority of the related research was published in
the journals covered by the bibliographical database “Scopus”, which is employed for
the purposes of this study. Importantly, this database also offers extensive coverage of
numerous national and even local journals, including those published in languages other
than English.

An interesting perspective in the studies of Triassic tsunamis is their relation to geolog-
ical heritage (geoheritage). Indeed, their rarity in the geological records and the impressions
of ancient natural catastrophes make their localities ideal candidates to geoheritage sites
(geosites). At least two geosites of this kind have already been proposed (Table 2). They
both represent the hypothetic tsunamis corresponding to the P/T catastrophe. It is known
that geoheritage recognition itself facilitates research activities and promotes unique geo-
logical objects among the international scientific community [141–145]. If so, establishing
geosites on the basis of the localities representing Triassic tsunamis may be very helpful in
decreasing the above-mentioned uncertainties and filling various gaps in the knowledge.

Table 2. Examples of geoheritage related to possible Triassic tsunamis.

Geosite Location Lithology Age Source

Guryul Ravine
Vicinity of Srinagar city,
Kashmir, northwestern

India

Bioclastic limestones from the
transition between the Zewan

and Khunamuh formations

Permian–Triassic
transition

[69]: description
[71]: description and

formal geosite
proposition

Sakhray
Canyon

Gosh river valley,
Mountainous Adygeya,

southwestern Russia

Coarse siliciclastics of the
Bambak Formation, with large

boulders and megaclasts

Permian–Triassic
transition

[57]: description and
formal geosite

proposition

5. Conclusions

The present brief summary of the literary evidence of Triassic tsunamis emphasizes
the urgency of research intensification on this promising theme. The main findings are
as follows.

(1) Triassic tsunamis were reported from different regions of the world and different time
slices, and some of them corresponded hypothetically to the P/T and T/J catastrophes.

(2) The amount of literary evidence remains very little, and its quality (certainty) is often
restricted: particularly, some palaeotsunamis were disputed, or the related geological
features can be interpreted alternatively (for instance, as signatures of severe storms).

(3) The incompleteness of the knowledge of Triassic tsunamis is significant, especially
taking into account the activity of their possible triggers in this period.

Generally, the present study indicates various gaps and biases in the knowledge of
Triassic tsunamis. Although some of them have objective sources (for instance, difficulties
in making distinctions between tsunami and storm deposits or low preservation potential of
tsunamis), many others can be explained by the state and the imperatives of contemporary
geosciences research. For instance, overemphasis on the P/T and T/J catastrophes can be
linked to better funding of the related research, as well as better opportunities to publish
its outcomes. Presumably, geologists deal with potential tsunamis in some (if not many)
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cases, but they are unable to recognize them because of low awareness and the absence
of related skills. Some researchers would be disinterested in launching projects aimed at
palaeotsunamis to avoid involvement in “too hypothetic” and “too unserious” studies.
Apparently, the very “atmosphere” of the geosciences research should be changed to make
Triassic and other pre-Quaternary tsunamis studied really adequately. A limitation of
this work is that it deals with the only published information. Checking the opinions
of researchers and evaluating the readiness of the international research community to
increase attention to highly-hypothetic subjects need further analyses.

Revealing gaps and biases in this knowledge allows for highlighting perspectives
for further research. Particularly, special investigations are necessary to identify palaeot-
sunamis related to different triggers, with special attention to the Olenekian–Norian interval.
Studies of the possible relations of palaeotsunamis to the mechanisms of biotic crises other
than the P/T and T/J catastrophes seem to be very promising. The present work does not
offer a critical re-examination of the published lines of evidence, but future studies can
try to achieve this—at least for some major regions. It also appears that reconsidering the
already available literary evidence, even considering the degree of its completeness and
certainty, can facilitate the development of advanced methodology for identifying tsunamis
in the pre-Quaternary sedimentary records.
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