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Abstract: Stable isotopes (18O/16O and 2H/1H) are fingerprints of water molecules and thus can be
used to gain insight on water circulation. Especially, the factors controlling the isotopic composition
of precipitation should be identified because they act as baseline determinants of the isotopic vari-
ations of surface water and groundwater. Here, using the HYSPLIT model, we attribute observed
isotope variations to different moisture sources and characterize the isotopic composition of meteoric
precipitation in Northwest China. Results show that the westerlies play a dominant role across
the region throughout the year, while other moisture sources only affect some parts of the region
during a specific season, i.e., Arctic airflow only affects the Altay Mountains as far as the Middle
Tianshan Mountains; the East Asia Monsoon only affects the region east of 100◦ E longitude during
the summer; and summer rainfall of local origin may contribute to the precipitation budget of basin
areas. Given the different moisture sources across Northwest China, a local meteoric water line
(NWMWL) of δ2H = 6.8δ18O − 1.6 is observed. Our findings not only can provide valuable insights
into the mechanism of precipitation isotope fractionation in Northwest China but also can contribute
to a better understanding of regional climate and hydrological studies.

Keywords: moisture sources; stable isotopes; precipitation; HYSPLIT; Northwest China

1. Introduction

Arid and semi-arid regions account for about one third of global land area, of which
the water shortage affects the lives of billions of people [1–4]. The increasing population
growth would bring more prominent conflict on the water resources supply and demand
in the arid and semi-arid regions [5–7]. In the future, the water resources in arid and
semi-arid regions will become increasingly severe. Northwest China is a typical arid region
(Figure 1) [8,9]. In recent years, Northwest China has shown significant warming changes.
Over the past 50 years, the average temperature in Xinjiang has increased by 1 ◦C [10–12],
which is higher than the global average increase (0.74 ◦C) over the past 100 years according
to the International Panel on Climate Change (IPCC) [13–15]. As a result of climate change,
the runoff flowing out of the mountainous region, which can represent the total water
resources in the arid zone, has shown increasing trend with different rates. For example, the
runoff of the Urumqi and Kumarak rivers in the north and south of Tianshan in Central Asia
has increased by 10.0% and 38.7%, respectively, around 1990 over the past 50 years [16,17].
In order to assess the current situation of water resources, predict future changes in water
resources, and improve water resources management measures, a systematic understanding
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of precipitation hydrological sources and atmospheric water–surface water–groundwater
recharge transformation is required.
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Figure 1. Study area and selected stations of precipitation isotopes monitoring across Northwest China.

The Lagrangian Hybrid Single Particle Orbit Model (HYSPLIT), jointly developed
by the National Oceanic and Atmospheric Administration (NOAA) Air Resources Lab-
oratory and the Australian Bureau of Meteorology, is able to calculate and analyze the
trajectory of moisture transport based on reanalysis data [18,19]. Moisture source regions
can be identified according to the HYSPLIT results. However, there might remain some
uncertainties for the trajectory of moisture transport because of the simplification of me-
teorological processes including mixing with surrounding air [20,21]. Stable isotopes of
precipitation are also useful tools for analyzing and understanding the processes of mois-
ture transport [22–24]. Meanwhile, numerous studies have shown that moisture sources
are important factors controlling the global distribution of precipitation isotopes [25–29].
Jouzel et al. [30] have presented the link between a precipitation isotope and its oceanic
origin. Kong et al. [25] have analyzed the seasonal and spatial distribution of precipitation
isotopes across the whole China considering the moisture sources. Cai and Tian [31] have
attributed the postmonsoon 18O depletion of a precipitation isotope to moisture transport.
Furthermore, the derived parameter deuterium excess (d-excess = δ2H− 8δ18O) of meteoric
precipitation has been proved to be very powerful in tracing moisture sources [32,33]. Over
the past decades, a combination of a HYSPLIT model and stable isotopic data has become
an effective method to discern the precipitation moisture sources and transport [22,34,35].
Strong et al. [36] used HYSPLIT combined with the distribution of the deuterium isotope to
investigate the water-vapor mixing sources at the bottom of the troposphere. Xu et al. [37]
discussed the relationship between moisture source regions and δ18O of precipitation in
the Namucuo basin of the Tibetan Plateau based on HYSPLIT.

Possible moisture sources in Northwest China include the westerlies, Arctic air masses,
the monsoon moisture from west Pacific Ocean, and the local recycled moisture [17,38,39].
However, the extent of these moisture sources and their impact on local precipitation
are still controversial [38,39]. Investigation of the relationship between moisture sources
and the stable isotopes of precipitation across Northwest China may help to resolve this
uncertainty [16,17]. Here, we combine the HYSPLIT model and precipitation isotopes to
ascertain the moisture sources of meteoric precipitation across Northwest China.
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2. Materials and Methods
2.1. Data Sources

Stable isotope data, temperature, and precipitation amount at the Urumqi, Zhangye, and
Yinchuan stations were obtained from the IAEA Global Network of Isotopes in Precipitation
(Figure 1) [40]. The data for Gaoshan Station and Houxia Station are from Pang et al. [41] and
Kong et al. [17], which also provide detailed descriptions of the two stations as well as the
sampling and analysis procedures. The data for Altay come from Tian et al. [38], where all the
data details can be found. A summary of the data used in this study can be found in Table 1.

Table 1. Summary of precipitation isotope records at different stations in Northwest China.

Stations Urumqi Gaoshan Houxia Altay Zhangye Yinchuan

Annual
δ18O/‰ −10.6 −9.2 −9.0 −13.4 −6.1 −6.8
δ2H/‰ −71.8 −63.6 −63.6 −97.4 −40.8 −43.5

d-excess/‰ 12.8 9.9 8.2 9.5 7.6 11.2

Summer
δ18O/‰ −6.3 −6.6 −6.2 −7.5 −4.1 −7.0
δ2H/‰ −42.0 −45.8 −43.5 −52.0 −28.6 −49.7

d-excess/‰ 8.5 7.4 6.3 7.7 3.8 6.3

Winter
δ18O/‰ −20.2 −19.8 −18.2 −22.2 −18.4 −14.8
δ2H/‰ −141.0 −138.8 −128.6 −168.0 −123.6 −103.0

d-excess/‰ 20.7 19.9 17.2 9.4 23.4 15.7

Maximum
δ18O/‰ 1.8 −6.0 −4.6 −5.3 0.9 3.9
δ2H/‰ −8.9 −40.5 −32.7 −40.2 −4.3 5.1

d-excess/‰ 54.8 33.5 23.7 15.5 79.0 24.2

Minimum
δ18O/‰ −28.0 −20.8 −22.2 −24.2 −28.5 −20.0
δ2H/‰ −204.5 −143.1 −159.6 −185.3 −191.4 −147.7

d-excess/‰ −44.5 −1.3 −7.4 2.2 −25.3 −25.8

Observation Period
1986–1992,
1996–1998,
2001–2003

2003–2004 2003–2004 1998–2001
1986–1992,
1996–1998,
2001–2003

1988–1992,
1999–2000

Source GNIP Pang et al. [41] Pang et al. [41] Tian et al. [38] GNIP GNIP

2.2. HYSPLIT Model

To identify the moisture sources of precipitation over Northwest China, the HYSPLIT
model was used to simulate the trajectory of moisture transport in the region. Moisture
trajectories were mapped for 72 h before reaching the destination. The modeling level height
of 1500 m above ground was chosen to show the moisture trajectory because 0–2000 m above
ground is the key moisture transport pathway [42]. For the HYSPLIT model results, blue lines
were used to represent July 2003 (summer), and red lines indicate January 2004 (winter). We
determined the modeling period to be winter and summer based on the seasonal characteristic
of precipitation isotopes in Northwest China.

2.3. Isotope Data Analysis

All the isotope data used in this work were expressed as permil (‰) difference relative
to the VSMOW (Vienna Standard Mean Ocean Water). To obtain the monthly mean value
of the precipitation isotope, we took the amount-weighted mean value of all the isotope
data within the same month at a certain station.

δM =
∑ PiδMi

∑ Pi
(1)

where δM is the monthly mean value of the precipitation isotope from all the isotope
records, Pi is the precipitation amount during the ith month, and δMi is the precipitation
isotope data during the ith month.

The weighted mean values of the precipitation isotope at both the annual and sea-
sonal scales are following similar calculations with the monthly weighted mean value of
precipitation isotopes.
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3. Results
3.1. Moisture Trajectories

Based on the HYSPLIT model results, we found that the moisture trajectory of Gaoshan
and Houxia is quite similar to that of Urumqi (Figure 2). Apparently, the westerlies
dominate the climate in Northwest China, and the moisture trajectory at the stations over
Northwest China bolsters the seasonal shift of the westerlies. From west to east (Gaoshan–
Yinchuan), moistures from the west are mixed with more and more moisture from the north
during winter, while in summer, almost all the moisture is from the west at Gaoshan and
Houxia stations. Monsoon emerges and accounts a considerable proportion in the moisture
at the Zhangye station.
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Figure 2. Moisture trajectories at selected stations of Urumqi, Gaoshan, Houxia, Altay, Zhangye, and
Yinchuan in Northwest China: red lines represent January (winter); blue lines represent July (summer).

3.2. Isotopic Compositions of Precipitation

Generally, seasonal variations of precipitation δ18O and δ2H at the 6 stations were
similar, reflecting enriched signals in summer and more depleted signals during winter
(Table 1 and Figure 3). The enriched isotope signal was usually observed in summer with
the maximum value of precipitation δ18O and δ2H to be 1.8‰ and −8.9‰ at the Urumqi
station, −6.0‰ and −40.5‰ at the Gaoshan station, −4.6‰ and −32.7‰ at the Houxia
station, −5.3‰ and −40.2‰ at the Altay station, 0.9‰ and −4.3‰ at the Zhangye station,
and 3.9‰ and 5.1‰ at the Yinchuan station, respectively. During winter, the precipitation
isotope was observed to be more depleted than other seasons with the minimum value of
precipitation δ18O and δ2H to be−28.0‰ and−204.5‰ at the Urumqi station,−20.8‰ and
−143.1‰ at the Gaoshan station, −22.2‰ and −159.6‰ at the Houxia station, −24.2‰
and −185.3‰ at the Altay station, −28.5‰ and −191.4‰ at the Zhangye station, and
−20.0‰ and −147.7‰ at the Yinchuan station, respectively. Except for the Altay station,
the precipitation d-excess at all the other stations shows seasonal variations with lower
values in summer and higher values in winter. The range of precipitation d-excess at the
Altay station was much smaller than that at the other stations (Table 1 and Figure 4). The
large range of precipitation isotope values and the small range of precipitation d-excess at
the Altay station indicate the effect of different moisture sources on the isotope variations
and will be discussed in detail in the following sections.
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3.3. The Westerlies

The westerlies are the prevailing winds that deliver moisture derived from the North
Atlantic Ocean to Northwest China. In Figure 2, it is observed that most of the blue (sum-
mer) and red (winter) lines are from the west, which represents the moisture derived from
the westerlies. Thus, the moisture mainly derived from the westerlies is delivered to the
region during both winter and summer. Figure 5 illustrates that precipitation in Northwest



Water 2023, 15, 1584 6 of 11

China shows a consistent seasonal distribution of more precipitation during the summer
season and less precipitation during the winter season. However, both the geographic dis-
tribution and d-excess show opposite seasonal characteristics. Summers are characterized
by higher 2H/1H and 18O/16O ratios and lower d-excess values, whereas precipitation is
depleted in 2H and 18O and has higher d-excess values in winter (Figures 3 and 4). Such
a distinctive characteristic of the westerlies moisture results from the seasonal swing of
the westerlies moisture. In summer, the North Atlantic air is moist, and the d-excess is
low. However, the red lines of winter moisture tracks in Figure 2 lie to both the south
and north of blue lines of summer moisture tracks, denoting the shift of the westerlies
from summer to winter. During winter, the moisture from the Atlantic Ocean mixes the
recycled moisture derived from the Caspian Sea, Aral Sea, and other local areas to produce
an increase in d-excess values [17,38]. This observation is consistent with the finding of
Kreutz et al. [43] based on ice core stable isotopic data from Tianshan Mountains and the
finding of Tian et al. [38] regarding the source of meteoric precipitation in Western China.
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3.4. The Arctic Moisture

The Arctic moisture has some influences on the isotopic composition of meteoric
precipitation in the Altay region of northern Xinjiang province, but the extent of the Arctic
moisture is not clear. Figure 4 shows that the seasonal variation of temperature at the
Urumqi and Altay stations is similar, but the seasonal variation of the precipitation amount
is quite different. The precipitation amount is large during summer but low in winter at the
Urumqi station, whereas no seasonal difference in the amount of precipitation is observed
at Altay station records. At the Urumqi station, summer rainfall is characterized by low
d-excess values and winter by high values. This contrasts with the situation at the Altay
station, where d-excess values exhibit little annual variation (Figure 4). In summer, the
d-excess values at the Altay and Urumqi stations are similar, with all values between 5 and
10‰; while in winter, the d-excess value at the Altay station is below 15‰, and it fluctuates
between 15 and 25‰ at the Urumqi Station. This illustrates that the impact of the Arctic
moisture on the isotopic composition of precipitation is very weak at the Urumqi station,
but it is more significant at the Altay station. Such isotopic difference between the Tianshan
and Altay mountains was also found by Li et al. [44]; however, we can further draw the
conclusion from our work that the Arctic moisture almost has no influence on precipitation
isotopes in Northwest China during summer, and its influence only extends as far as the
Altay mountains and the north on the Tianshan mountains of Northwest China in winter.
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3.5. The Monsoon

The monsoon includes the Indian monsoon derived from the south and the East Asian
monsoon from the southeast. Tian et al. [38] pointed out from the research on precipitation
isotopes in the Qinghai-Tibet Plateau that the northward boundary of the Indian Ocean
monsoon is 35◦ N latitude, but controversy still exists about the westward boundary of
the East Asian monsoon. It is traditionally thought that the East Asian summer monsoon
can only reach 100◦ E longitude [39,45–47], whereas Xu et al. [48] claimed on the basis of
tree-ring stable isotope variations that the East Asian monsoon might have influenced the
west of 100◦ E during the period of 1883–1975. Figure 2 shows that the subtropical ocean
moisture has no impact on Northwest China in winter. However, in summer, moisture
from the east is present over the Yinchuan region, extends part way into the Zhangye
region, and is not present over the Urumqi region. Additionally, it is known that the
isotopic composition of precipitation affected by the East Asian monsoon always exhibits
a precipitation amount effect [39] that is not observed in Northwest China by this study.
Therefore, the East Asian monsoon, if present, has only a very minor effect on the isotopic
composition of meteoric precipitation in Northwest China.

3.6. Local Recycled Moisture

Local recycled moisture does not contribute much to the precipitation in Northwest
China. Taking the Urumqi station as an example, it is about 8% of the annual precipita-
tion [17]. However, even this low contribution can alter the d-excess value of precipitation
because, characteristically, recycled moisture always has large d-excess [17,49]. Both 2H/1H
and 18O/16O ratios of precipitation and d-excess values are variable at different stations
across Northwest China, including at Xinjiang, Gansu, and Ningxia provinces, thus docu-
menting a small local moisture effect on the stable isotopic composition of precipitation.

4. Discussion
4.1. The Northwest Regional Meteoric Water Line (NWMWL)

Meteoric water lines are important reference lines in the hydrological and hydrogeo-
logical research by using stable isotopes (δ2H and δ18O). The global meteoric water line
(GMWL) is known as δ2H = 8.0δ18O + 10.0 [50]. The local meteoric water line (LMWL) is
usually used in regional studies due to the differences in geographical characteristics and
moisture sources around the world. However, the problem we often face is that precipita-
tion sampling stations are very rare, and, thus, it is difficult to obtain the proper LMWL.
Ordinarily, the LMWL is determined based on the precipitation isotope data at a local
station (such as GNIP stations). If the moisture sources are different, the meteoric water
lines are different at different stations. Nevertheless, a regional meteoric water line can
be made when the moisture sources are the same across a whole region. According to the
results of the analysis above, the northwest region is mainly dominated by the westerlies,
and the moisture sources are basically the same at different stations. Therefore, we use
the precipitation isotopes at the Gaoshan, Houxia, Urumqi, Zhangye, and Yinchuan sta-
tions to make the regional meteoric water line as the northwest region meteoric water line
(NWMWL): δ2H = 6.8δ18O − 1.6 (Figure 3). The slope of the NWMWL is 6.8, which is less
than the slope of the global meteoric water line (8.0), reflecting the sub-cloud evaporation
process in the arid area [51–54]. The NWMWL found in this work is similar with previous
studies in Northwest China, but there is a little difference that is caused by the differences
of the database [25,55].

4.2. Implications for the Effect of Climate Change on Water Cycle

From a holistic view of the earth system, precipitation, surface water, and groundwater
all occupy important positions on the exchange of materials and energy during geological
processes. General circulation models (GCMs) are tools for large-scale simulations of natu-
ral atmospheric cycles and can predict future climate patterns. Precipitation isotopes as well
as d-excess can serve as calibration tools for general circulation models (GCMs) to qualify
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the complex water-vapor mixing processes [56–59]. Modern atmospheric precipitation
isotope monitoring data have been shown to be a direct record of climate change [60–62].
Variations of precipitation isotopes in continental regions can reflect local climatic condi-
tions, especially for moisture source regions [30,35,63]. In Northwest China, there are more
and more publications reporting that a warmer and more humid climate is coming, while
the cause is still not quite clear. Therefore, the application of precipitation isotopes together
with GCMs might help in this regard. Furthermore, the utilization of precipitation isotopes
has the ability to unify the interrelationships between the precipitation, surface water, and
groundwater, which will advance the investigation on the composition and movement
within water systems, as well as the exchange of fluxes, solutes, and energy occurring
at the boundaries of water systems. Therefore, by investigating the moisture sources on
precipitation isotopes in Northwest China, it can furnish a scientific foundation for an exact
evaluation of the effect of climate change on the water cycle in the arid Northwest China.

5. Conclusions

By analyzing the precipitation isotopes in Northwest China and employing the HYS-
PLIT model, the following conclusions are drawn:

(1) The dominant moisture source affecting Northwest China is the westerlies. Other
less important sources include the Arctic moisture, monsoon, and local recycled moisture.
These moisture sources have a variable impact regionally. During different seasons, the
Arctic moisture affects the Altay mountains throughout the year and the northern part of
Tianshan mountains in winter, the east Asian monsoon impacts the region east of 100◦ E
longitude in summer, and local recycled moisture affects the basin region in the summer
and autumn seasons.

(2) The local meteoric water line for the Northwest China region (NWMWL:
δ2H = 6.8δ18O − 1.6) is a representative line on the feature of meteoric sources across
the region and, therefore, can be used as the reference line for hydrological circulation
studies in Northwest China.
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