Challenges of Changing Water Sources for Human Wellbeing in the Arctic Zone of Western Siberia
Abstract
:1. Introduction
2. The Arctic Zone of Western Siberia: Settings
3. Domestic Practices of Water Use by People of the YNAO
4. Environmental Impacts on Water Sources in the Arctic Zone of Western Siberia
4.1. Climate Change
4.2. Geochemistry of Potential Drinking Water from Natural Sources
4.2.1. Thermokarst Lakes
4.2.2. Snow Melt Water
4.2.3. River Water
4.3. Industrial and Waste Water Contamination of Water Sources
5. Impacts of Changing Water Quality on the Health and Wellbeing of Local People
6. Recommendations to Improve Knowledge on Changing Water Sources and to Support Health
- -
- To reinstate and sustain hydrological monitoring (which has been reduced since the beginning of the 21st century) and improve monitoring to include water quality monitoring for the purposes of better understanding and better adapting to the hydrological and biogeochemical changes due to the climate and environmental changes. This is especially important for small and medium-sized rivers and lakes of Western Siberia, where permafrost is present. This increased monitoring would be important for both the local people and regional authorities, who need information on the availability and amount of water acceptable for consumption.
- -
- To develop research in order to predict future hydrological changes in the water quality and quantity (in different water sources) due to the environmental and anthropogenic impacts to forewarn authorities and increase preparedness.
- -
- To initiate independent professional interdisciplinary research groups to check the quality of the water used by households in the YNAO remote areas and the associated risks, including follow-up assessments of potential developing impacts on local people’s health and wellbeing.
- -
- To improve sanitation and water purification to control epidemics and the health issues associated with heavy metal concentrations in water consumed by the Indigenous Peoples.
- -
- To enhance the monitoring of health, including studying the element status of the Arctic local population (chemical analysis of elements’ concentrations in the human organism with a special focus on the heavy metals content).
- -
- To improve the control of snow cover pollution due to the exploitation of oil and gas fields in the areas close to the reindeer herding nomadic routes and camps, as well as along the winter roads in the YNAO.
- -
- To improve the water preparation methods for households (e.g., mobile or compact installations for water purification, filters enriched with Mg for purification and enrichment of water to be adopted for the Arctic remote areas).
- -
- To initiate educational and outreach activities and recommendations on the importance of securing sustainable, pure water sources, e.g., the correct use of filters for drinking water preparation for the local population in the remote settlements of the YNAO.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R. The Arctic Water Resource Vulnerability Index: An Integrated Assessment Tool for Community Resilience and Vulnerability with Respect to Freshwater. Environ. Manag. 2008, 42, 523–541. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Available online: https://sdgs.un.org/goals (accessed on 10 October 2022).
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Haghighi, A.T. Unconventional water resources: Global opportunities and challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef] [PubMed]
- Sohns, A.; Ford, J.; Riva, M.; Robinson, B.; Adamowski, J. Water Vulnerability in Arctic Households: A Literature-based Analysis. Arctic 2019, 72, 300–316. [Google Scholar] [CrossRef]
- Mann, P.J.; Strauss, J.; Palmtag, J.; Dowdy, K.; Ogneva, O.; Fuchs, M.; Bedington, M.; Torres, R.; Polimene, L.; Overduin, P.; et al. Degrading permafrost river catchments and their impact on Arctic Ocean nearshore processes. Ambio 2022, 51, 439–455. [Google Scholar] [CrossRef]
- Liu, S.; Wang, P. Emerging solute-induced mineralization in Arctic rivers under climate warming. Sci. Total Environ. 2022, 851, 158091. [Google Scholar] [CrossRef]
- Babayev, M.; Capozzi, S.L.; Miller, P.; McLaughlin, K.R.; Medina, S.S.; Byrne, S.; Zheng, G.; Salamova, A. PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study. Environ. Pollut. 2022, 305, 119246. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Gashkina, N.A.; Dinu, M.I.; Kremleva, T.A.; Khoroshavin, V.Y. Water Chemistry of Arctic Lakes under Airborne Contamination of Watersheds. Water 2020, 12, 1659. [Google Scholar] [CrossRef]
- Matveeva, V.A.; Alekseenko, A.V.; Karthe, D.; Puzanov, A.V. Manganese Pollution in Mining-Influenced Rivers and Lakes: Current State and Forecast under Climate Change in the Russian Arctic. Water 2022, 14, 1091. [Google Scholar] [CrossRef]
- Rowles, L.S.; Hossain, A.I.; Aggarwal, S.; Kirisits, M.J.; Saleh, N.B. Water quality and associated microbial ecology in selected Alaska Native communities: Challenges in off-the-grid water supplies. Sci. Total Environ. 2020, 711, 134450. [Google Scholar] [CrossRef]
- Gascard, J.-C.; Crepin, A.-S.; Karcher, M.; Young, O.R. Facets of Arctic Change. Ambio 2017, 46, 339–340. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Walsh, J.E.; Stroeve, J.C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2013, 2, 68–74. [Google Scholar] [CrossRef]
- Medeiros, A.S.; Wood, P.; Wesche, S.D.; Bakaic, M.; Peters, J.F. Water security for northern peoples: Review of threats to Arctic freshwater systems in Nunavut, Canada. Reg. Environ. Chang. 2017, 17, 635–647. [Google Scholar] [CrossRef]
- Sarkar, A.; Hanrahan, M.; Hudson, A. Water insecurity in Canadian Indigenous communities: Some inconvenient truths. Rural Remote Health 2015, 15, 3354. [Google Scholar] [CrossRef] [PubMed]
- Schmale, J.; Arnold, S.R.; Law, K.S.; Thorp, T.; Anenberg, S.; Simpson, W.R.; Mao, J.; Pratt, K.A. Local Arctic air pollution: A neglected but serious problem. Earths Future 2017, 6, 1385–1412. [Google Scholar] [CrossRef]
- Instanes, A.; Kokorev, V.; Janowicz, R.; Bruland, O.; Sand, K.; Prowse, T. Changes to freshwater systems affecting Arctic infrastructure and natural resources. J. Geophys. Res. Biogeosci. 2016, 121, 567–585. [Google Scholar] [CrossRef]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.-K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Law, K.S.; Stohl, A.; Quinn, P.K.; Brock, C.; Burkhart, J.; Paris, J.-D.; Ancellet, G.; Singh, H.B.; Roiger, A.; Schlager, H. Arctic air pollution: New insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 2014, 95, 1873–1895. [Google Scholar] [CrossRef]
- Soromotin, A.; Moskovchenko, D.; Khoroshavin, V.; Prikhodko, N.; Puzanov, A.; Kirillov, V.; Koveshnikov, M.; Krylova, E.; Krasnenko, A.; Pechkin, A. Major, Trace and Rare Earth Element Distribution in Water, Suspended Particulate Matter and Stream Sediments of the Ob River Mouth. Water 2022, 14, 2442. [Google Scholar] [CrossRef]
- Penn, H.J.F. Water Security in the Rural North: Responding to Change, Engineering Perspectives, and Community Focused Solutions. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2016. Available online: https://scholarworks.alaska.edu/handle/11122/6850 (accessed on 10 October 2022).
- Eriksson, U.; Kärrman, A.; Rotander, A.; Mikkelsen, B.; Dam, M. Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environ. Sci. Pollut. Res. 2013, 20, 7940–7948. [Google Scholar] [CrossRef]
- Daley, K.; Castleden, H.; Jamieson, R.; Furgal, C.; Ell, L. Municipal water quantities and health in Nunavut households: An exploratory case study in coral Harbour, Nunavut, Canada. Int. J. Circumpolar Health 2014, 73, 23843. [Google Scholar] [CrossRef]
- Daley, K.; Jamieson, R.; Rainham, D.; Truelstrup Hansen, L. Wastewater treatment and public health in Nunavut: A microbial risk assessment framework for the Canadian Arctic. Environ. Sci. Pollut. Res. 2018, 25, 32860–32872. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.; Jackson, A.; Johnston, L.; Hayward, J. Desktop Risk Assessment on the Sustainability of Nunavut’s Primary Drinking Water Sources; Centre for Water Resources Studies, Dalhousie University: Halifax, NS, Canada, 2017. [Google Scholar]
- Dudarev, A.A.; Dushkina, E.V.; Sladkova, Y.N.; Alloyarov, P.R.; Chupakhin, V.S.; Dorofeyev, V.M.; Kolesnikova, T.A.; Fridman, R.B.; Evengard, B.; Nilsson, L.M. Food and water security issues in Russia II: Water security in general population of Russian Arctic, Siberia and Far East, 2000-2011. Int. J. Circumpolar Health 2013, 72, 22646. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, E.; Zykova, E.; Zykov, S.; Druzhinina, A.; Ivanchenko, N. Evaluation of Heavy Metal Pollution of Snow and Groundwater on the Territory of Suburban Community Garden Plots of the Arkhangelsk Agglomeration (Northwest Russia). Pollution 2022, 8, 1448–1473. [Google Scholar]
- Moiseenko, T.I.; Dinu, M.I.; Bazova, M.M.; De Wit, H.A. Long-term changes in the water chemistry of arctic lakes as a response to reduction of air pollution: Case study in the Kola, Russia. Water Air Soil Pollut. 2015, 226, 98. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Kotova, E.I. Izmenchivost’ Soderzhaniya Metallov v Atmosfernyh Osadkah i v Vodah Ozer na Severo-Zapade Rossii [Variability of the Content of Metals in Atmospheric Precipitation and in the Waters of Lakes in the North-West of Russia]; Ecology, Economics, Informatics; Southern Federal University: Rostov-on-Donu, Russia, 2015; pp. 86–95. [Google Scholar]
- Bazova, M.M.; Koshevoj, D.V. Ocenka sovremennogo sostoyaniya kachestva vod Noril’skogo promyshlennogo rajona [Assessment of the current state of water quality in the Norilsk industrial region]. Arct. Ecol. Econ. 2017, 3, 49–60. [Google Scholar] [CrossRef]
- Bazova, M.M. Metally i metalloidy v prirodnyh vodah Kol’skogo Severa i ih ekologicheskaya opasnost’ [Metals and metalloids in the natural waters of the Kola North and their environmental hazard]. Bull. Tyumen State Univ. Ecol. Nat. Manag. 2013, 12, 189–198. [Google Scholar]
- Moiseenko, T.I.; Dinu, M.I.; Gashkina, N.A.; Kremleva, T.A. Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia. Environ. Res. Lett. 2019, 14, 065010. [Google Scholar] [CrossRef]
- Bazova, M.M. Osobennosti formirovaniya elementnogo sostava vod Kol’skogo Severa v usloviyah funkcionirovaniya gornorudnyh proizvodstv [Features of the formation of the elemental composition of the waters of the Kola North in the conditions of the functioning of mining industries]. Geochemistry 2017, 1, 92–106. [Google Scholar] [CrossRef]
- Bazova, M.M.; Moiseenko, T.I. Migracionnaya aktivnost’ elementov v vodah ozer severo-zapada Rossii [Migration activity of elements in the waters of lakes in the north-west of Russia]. Geochemistry 2021, 66, 938–951. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Gashkina, N.A. Raspredelenie mikroelementov v poverhnostnyh vodah sushi i osobennosti ih vodnoj migracii [Distribution of microelements in surface waters of land and features of their water migration]. Water Resour. 2007, 34, 454–468. [Google Scholar]
- Dudarev, A.A. Public health practice report: Water supply and sanitation in Chukotka and Yakutia, Russian Arctic. Int. J. Circumpolar Health 2018, 77, 1423826. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.M.; Destouni, G.; Berner, J.; Dudarev, A.A.; Mulvad, G.; Odland, J.Ø.; Parkinson, A.; Tikhanov, C.; Rautio, A.; Evengård, B. A call for urgent monitoring of food and water security based on relevant indicators for the Arctic. Ambio 2013, 42, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Larina, N.S.; Moiseenko, T.I.; Morozova, N.V. Geohimicheskaya evolyuciya ozer Zapadnoj Sibiri [Geochemical evolution of lakes in Western Siberia]. Chistaya Voda: Opyt Realizacii Innovacionnyh Proektov v Ramkah Federal’nyh Celevyh Programm Minobrnauki Rossii [Pure Water: Experience in Implementing Innovative Projects within the Framework of Federal Target Programs of the Ministry of Education and Science of Russia]; Russian Chemical-Technological University, DI. Mendeleev: Moscow, Russia, 2014; pp. 76–78. [Google Scholar]
- Mamaeva, N.L.; Petrov, S.A. Kachestvo vodnyh resursov Purovskogo rajona Jamalo-Neneckogo Avto-nomnogo okruga [Quality of water resources of the Purovsky district of the Yamal Nenets Autonomic Okrug]. Oil Gas 2016, 4, 125–128. [Google Scholar] [CrossRef]
- Soromotin, A.V.; Kudryavcev, A.A.; Efimova, A.A.; Gerter, O.V.; Fefilov, N.N. Fonovoe soderzhanie tyazhelyh metallov v vode malyh rek Nadym-Purovskogo mezhdurech’ya [Background content of heavy metals in the water of small rivers of the Nadym-Purovsky interfluence]. Geoecology Eng. Geol. Hydrogeol. Geocryol. 2019, 2, 48–55. [Google Scholar]
- Chiu, H.-F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.-K. Impact of Micronutrients on Hypertension: Evidence from Clinical Trials with a Special Focus on Meta-Analysis. Nutrients 2021, 13, 588. [Google Scholar] [CrossRef] [PubMed]
- Andronov, S.; Lobanov, A.; Popov, A.; Luo, Y.; Shaduyko, O.; Fesyun, A.; Lobanova, L.; Bogdanova, E.; Kobel’kova, I. Changing diets and traditional lifestyle of Siberian Arctic Indigenous Peoples: Effects on health and well-being. Ambio 2020, 50, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Andronov, S.; Lobanov, A.; Bogdanova, E.; Popov, A.; Yuzhakov, A.; Shaduyko, O.; Raheem, D.; Kobelkova, I. The Relationships among Microelement Composition of Reindeer Meat (Rangifer tarandus) and Adaptation: A Systematic Review and Meta-Analysis. Sustainability 2022, 14, 1173. [Google Scholar] [CrossRef]
- Soldatova, E.A.; Ivanova, I.S.; Kolubaeva, Y.V.; Sokolov, D.A. Specifics of Chemical Composition Origin of Surface Water in the Arctic Zone of Western Siberia. Geochem. Int. 2022, 60, 1153–1166. [Google Scholar] [CrossRef]
- Reshetnyak, O.S.; Bryzgalo, V.A.; Kosmenko, L.S. Regional’nye osobennosti vysokogo urovnya zagryaznennosti rek Ob’-Irtyshskogo bassejna [Regional features of the high level of pollution in the rivers of the Ob-Irtysh basin]. Water Chem. Ecol. 2013, 6, 3–9. [Google Scholar]
- Soromotin, A.V.; Prikhodko, N.V.; Sizov, O.S.; Dayzel, A.V.; Kudryavtsev, A.A.; Zakirova, M.R. Geoecology of thermokarst lakes of Western Siberia in the zone of influence of an arctic town (a case study of the town of Nadym). Geogr. Bull. 2022, 2, 90–108. [Google Scholar] [CrossRef]
- Starostin, S.A.; Yurkevich, N.V.; Edelev, A.V.; Kolesnikov, R.A. Ocenka ekologicheskogo sostoyaniya sostava poverhnostnyh vod i donnyh otlozhenij v Yamalo-Neneckom avtonomnom okruge [Evaluation of the ecological state of the composition of surface waters and bottom sediments in the Yamal-Nenets Autonomous Okrug]. Interexpo Geo-Sib. 2022, 2, 72–79. [Google Scholar] [CrossRef]
- 900. PND F 14.1:2:4.167-2000; Quantitative Chemical Analysis of Waters. Method for Performing Measurements of Mass Concentrations of Potassium, Sodium, Lithium, Magnesium, Calcium, Ammonium, Strontium, Barium Cations in Samples of Drinking, Natural, Waste Water by Capillary Electrophoresis Using the Kapel Capillary Electrophoresis System. LLC Lumex: Moscow, Russia, 2011; 16p.
- 901. PND F 14.1:2:4.157-99; Quantitative Chemical Analysis of Waters. Method for Measuring the Mass Concentrations of Chloride Ions, Nitrite Ions, Sulfate Ions, Nitrate Ions, Fluoride Ions and Phosphate Ions in Samples of Natural, Drinking and Treated Wastewater Using the Kapel Capillary Electrophoresis System. LLC Lumex: Moscow, Russia, 1999; 44p.
- 902. PNDF 14.1:2:3.99-97; Quantitative Chemical Analysis of Waters. Method for Measuring the Mass Concentration of Hydrocarbonates in Samples of Natural and Waste Waters by the Titrimetric Method. LLC Lumex: Moscow, Russia, 2017; 25p.
- Talukder, M.R.R.; Rutherford, S.; Huang, C.; Phung, D.; Islam, M.Z.; Chu, C. Drinking water salinity and risk of hypertension: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2016, 72, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Rosstat. Available online: http://rosstat.gov.ru/folder/12781?print=1 (accessed on 27 August 2022).
- The Ministry of Foreign Affairs of the Russian Federation. Available online: https://www.mid.ru/vnesneekonomiceskie-svazi-sub-ektov-rossijskoj-federacii/-/asset_publisher/ykggrK2nCl8c/content/id/128534 (accessed on 27 August 2022).
- SOTI. Tourist Information Exchange System. Available online: https://www.nbcrs.org/regions/yamalonenetskiy-avtonomnyy-okrug/etnicheskiy-sostav-naseleniya (accessed on 27 August 2022).
- Leibman, M.O.; Kizyakov, A.I. Cryogenic Landslides of Yamal and Yugorsky Peninsula; Izdanie IKZ SO RAN: Moscow, Russia, 2007; 206p. [Google Scholar]
- Natsional’nyy Atlas Pochv Rossiyskoy Federatsii [National Soil Atlas of the Russian Federation]; Astrel-AST Moscow: Moscow, Russia, 2011; 632p.
- Alisov, B.P. Geographical types of climates. Meteorol. Hydrol. 1936, 6, 16–25. [Google Scholar]
- Nature of Russia National Portal Electronic Resource. Available online: http://www.priroda.ru/regions/climate/detail.php?SECTION_ID=&FO_ID=582&ID=7072 (accessed on 27 January 2023).
- Bol’shaya Rossiyskaya Entsiklopediya [Big Russian Encyclopedia]. Available online: https://old.bigenc.ru/geography/text/4926339 (accessed on 27 January 2023).
- Report of the Government of the Yamal Nenets Autonomous Okrug ”On the Environmental Situation in the Yamalo-Nenets Autonomous Okrug in 2017”; Government of the YNAO: Salekhard, Russia, 2017; 212p.
- Edel’shtejn, K.K.; Alabyan, A.M.; Gorin, S.L.; Popryaduhin, A.A. Gidrologicheskie osobennosti krupnejshih ozer poluostrova Yamal [Hydrological features of the largest lakes of the Yamal Peninsula]. Bull. Karelian Sci. Cent. Russ. Acad. Sci. 2017, 10, 3–16. [Google Scholar] [CrossRef]
- Blaire, S.; Pollard, W.; Whyte, L. Microbial ecology and biodiversity in filtration. Extrem. Life Extrem. Cond. 2006, 10, 259–267. [Google Scholar] [CrossRef]
- Savvichev, A.; Rusanov, I.; Dvornikov, Y.; Kadnikov, V.; Kallistova, A.; Veslopolova, E.; Chetverova, A.; Leibman, M.; Sigalevich, P.A.; Pimenov, N.; et al. The water column of the Yamal tundra lakes as a microbial filter preventing methane emission. Biogeosciences 2021, 18, 2791–2807. [Google Scholar] [CrossRef]
- Nizhne-Ob Basin Water Authority. Federal Agency for Water Resources of the Russian Federation. Available online: http://nobwu.ru/ (accessed on 27 August 2022).
- State Statistical Report 2-TP “Vodkhoz”, 2019; NOBVU: Tyumen, Russia, 2020; 241p.
- Luo, Y.; Lobanov, A.A.; Andronov, S.V.; Lobanova, L.P.; Grishechkina., I.A.; Hui, F.M.; Popov, A.I.; Fedorov, R.Y.; Bogdanova, E.N. Traditional Arctic native fish storage methods and their role in the sustainable development of the Arctic. Adv. Polar Sci. 2021, 32, 161–176. [Google Scholar] [CrossRef]
- Bogdanova, E.; Filant, K.; Sukhova, E.; Zabolotnikova, M.; Filant, P.; Raheem, D.; Shaduyko, O.; Andronov, S.; Lobanov, A. The Impact of Environmental and Anthropogenic Factors on the Migration of the Rural Arctic Population of Western Siberia. Sustainability 2022, 14, 7436. [Google Scholar] [CrossRef]
- Cherkasov, S.V. Deferrization of Water. Theory and Practice. Available online: https://wwtec.ru/index.php?id=241 (accessed on 27 August 2022).
- Toporov, G.V.; Beshentsev, B.A. Characteristic features of the formation of chemical composition of natural waters in the Urengoy oil and gas extraction region (as exemplified Urengoi oil-gas condensate field). Nauk. O Zemle 2013, 4, 115–124. [Google Scholar]
- AMAP. Adaptation Actions for a Changing Arctic: Perspectives from the Barents Area; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. [Google Scholar]
- Kivinen, S.; Rasmus, S.; Jylhä, K.; Laapas, M. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013). Climate 2017, 5, 16. [Google Scholar] [CrossRef]
- IPCC (International Panel on Climate Change). Summary for policymakers. In Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Pèan, C., Pidcock, R., et al., Eds.; World Meteorological Organization (WMO): Geneva, Switzerland, 2018. [Google Scholar]
- Marshall, G.J.; Kivinen, S.; Jylhä, K.; Vignols, R.M.; Rees, W.G. The accuracy of climate variability and trends across Arctic Fennoscandia in four reanalyses. Int. J. Clim. 2018, 38, 3878–3895. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2013; 1535p. [Google Scholar]
- Kharyutkina, E.; Loginov, S.; Moraru, E.; Pustovalov, K. Dynamics of climate extremes and trends of dangerous meteorological phenomena in Western Siberia. Atmos. Ocean. Opt. 2022, 35, 394–401. [Google Scholar] [CrossRef]
- Report on Climate Features on the Territory of the Russian Federation in 2021; Roshydromet: Moscow, Russia, 2022; 104p.
- Johansson, M.; Callaghan, T.V.; Bosiö, J.; Åkerman, H.J.; Jackowicz-Korczynski, M.; Christensen, T.R. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ. Res. Lett. 2013, 8, 035025. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Kulikova, O.; Rakhmanova, L.; Topp-Jørgensen, E.; Labba, N.; Kuhmanen, L.-A.; Kirpotin, S.; Shaduyko, O.; Burgess, H.; Rautio, A.; et al. Improving dialogue among researchers, local and indigenous peoples and decision-makers to address issues of climate change in the North. Ambio 2020, 49, 1161–1178. [Google Scholar] [CrossRef] [PubMed]
- Sannikov, G.S. Natural factors of small thermokarst lakes dynamics inside the Bovanenkovo gas field. Oil Gas Stud. 2015, 3, 122–126. [Google Scholar] [CrossRef]
- Portnov, A.; Mienert, J.; Winsborrow, M.; Andreassen, K.; Vadakkepuliyambatta, S.; Semenov, P.; Gataullin, V. Shallow carbon storage in ancient buried thermokarst in the South Kara Sea. Sci. Rep. 2018, 8, 14342. [Google Scholar] [CrossRef]
- Polishchuk, Y.M.; Kupriyanov, M.A. Studying the dynamics of thermokarst lakes in the West Siberian Arctic based on the analysis of time series of satellite measurements. Yugra State Univ. Bull. 2022, 18, 137–144. [Google Scholar] [CrossRef]
- Soromotin, A.V.; Sizov, O.S.; Prihod’ko, N.V.; Taburkin, L.A.; Kormil’ceva, A.A.; Efimova, A.A.; Ivanyuk, T.V. Morfometricheskie harakteristiki i gidrohimicheskie osobennosti golubyh ozer Nadym-Purovskogo mezhdurech’ya [Morphometric characteristics and hydrochemical features of the blue lakes of the Nadym-Purovsky interfluve]. Sci. Bull. Yamal Nenets Auton. Okrug 2017, 3, 42–46. [Google Scholar]
- Kirpotin, S.N.; Polishchuk, Y.M.; Bryksina, N.A. Dinamika ploshchadej termokarstovyh ozer v sploshnoj i preryvistoj kriolitozonah Zapadnoj Sibiri v usloviyah global’nogo potepleniya [Dynamics of areas of thermokarst lakes in continuous and discontinuous permafrost zones of Western Siberia under the conditions of global warming]. Bull. Tomsk. State Univ. 2008, 311, 185–189. [Google Scholar]
- Kravtsova, V.I.; Tarasenko, T.V. Investigation of changes in thermokarst lake distribution in West Siberia by multitemporal satellite images. Environ. Dyn. Glob. Clim. Chang. 2010, 1, 96–103. [Google Scholar] [CrossRef]
- Bogdanova, E.; Andronov, S.; Soromotin, A.; Detter, G.; Sizov, O.; Hossain, K.; Raheem, D.; Lobanov, A. The Impact of Climate Change on the Food (In)security of the Siberian Indigenous Peoples in the Arctic: Environmental and Health Risks. Sustainability 2021, 13, 2561. [Google Scholar] [CrossRef]
- Miner, K.R.; D’Andrilli, J.; Mackelprang, R.; Edwards, A.; Malaska, M.J.; Waldrop, M.P.; Miller, C.E. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 2021, 11, 809–819. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Kopysov, S.G.; Krickov, I.V.; Shirokova, L.S.; Loiko, S.V.; Lim, A.G.; Kolesnichenko, L.G.; Vorobyev, S.N.; Kirpotin, S.N. Impact of Permafrost Thaw and Climate Warming on Riverine Export Fluxes of Carbon, Nutrients and Metals in Western Siberia. Water 2020, 12, 1817. [Google Scholar] [CrossRef]
- Agbalyan, Y.V.; Kolesnikov, R.A.; Krasnenko, A.S.; Morgun, Y.N.; Shinkaruk, Y.V.; Pechkin, A.S.; Loktev, R.I.; Ilyasov, R.M.; Kobelev, V.O. The Natural Waters’ Quality Assessment at the Yamal Nenets Autonomous Okrug Scientific Grounds (Pyrovskiy, Tazovskiy, Shuryshkarskiy, Polyarno-Uralskiy). Water Sect. Russ. 2019, 6, 6–23. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Vorobyev, S.N.; Loiko, S.V.; Kritzkov, I.V.; Shirokova, L.S.; Shevchenko, V.P.; Kirpotin, S.N.; Kulizhsky, S.P.; Kolesnichenko, L.G.; Zemtzov, V.A.; et al. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 2015, 12, 3009–3028. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Pokrovsky, O.S.; Kirpotin, S.N.; Shirokova, L.S. Thermokarst lake waters across the permafrost zones of western Siberia. Cryosphere 2014, 8, 1177–1193. [Google Scholar] [CrossRef]
- Pozhitkov, R.Y.; Moskovchenko, D.V.; Soromotin, A.V.; Kudryavtsev, A.A.; Tomilova, E.V. An estimation of snow cover pollution in the Zapolyarnoe field. Environ. Prot. Oil Gas Complex 2019, 5, 15–21. [Google Scholar] [CrossRef]
- Hygienic Standards GN 2.1.5.1315-03. Available online: http://www.dioxin.ru/doc/gn2.1.5.1315-03.htm (accessed on 27 March 2023).
- Agbalyan, E.V.; Shinkaruk, E.V.; Khoroshavin, V.Y. Characteristics of chemical indicators of water quality in the Tazovsky district of the Yamal-Nenets Autonomous Okrug. Sci. Bull. Yamal-Nenets Auton. Okrug. 2016, 2, 44–49. [Google Scholar]
- Agbalyan, E.V.; Kolesnikov, R.A.; Krasnenko, A.S.; Morgun, E.N.; Shinkaruk, E.V.; Pechkin, A.S.; Loktev, R.I.; Ilyasov, R.M.; Kobelev, V.O. Assessment of the quality of natural water on scientific polygons of the Yamal-Nenets Autonomous Okrug (Purovsky, Tazovsky, Shuryshkarsky, Polarno-Uralsky). Water Manag. Russ. Probl. Technol. Manag. 2019, 6, 6–23. [Google Scholar]
- Beshentsev, V.A. Current state of water resources of the Yamal-Nenets oil producing region. Nauchnyj Lider 2021, 21, 15–20. [Google Scholar]
- Heslop, J.K.; Walter Anthony, K.M.; Winkel, M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Liebner, S. A synthesis of methane dynamics in thermokarst lake environments. Earth-Sci. Rev. 2020, 210, 103365. [Google Scholar] [CrossRef]
- Chernova, E.N.; Russkikh, I.V.; Zhakovskaya, Z.A. Toxic metabolites of bluegreen algae and detection methods. Vestn. St. Petersburg Univ. Phys. Chem. 2017, 4, 440–473. [Google Scholar] [CrossRef]
- Kobelev, V.O.; Agbalyan, E.V.; Krasnenko, A.S.; Shinkaruk, E.V.; Pechkin, A.S.; Pechkina, Y.A.; Eremina, S.A. Dynamics of the hydrochemical indexes of the surface water of the Nadym River. Mezhdunarodnyi Zhurnal Prikl. I Fundam. Issledo vanii 2016, 10, 448–452. [Google Scholar]
- Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Loiko, S.V.; Vorobyev, S.N.; Pokrovsky, O.S.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V. Major and trace elements in suspended matter of Western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochim. Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Babushkin, A.G.; Moskovchenko, D.V.; Pikunov, S.V. Gidrokhimicheskii Monitoring Poverkhnostnykh vod Khanty-Mansiiskogo Avtonomnogo Okruga–Yugry [Hydrochemical Monitoring of the Surface Water in Khanty-Mansi Autonomous Area–Yugra]; Publishing House “Nauka”: Novosibirsk, Russia, 2007; 152p. [Google Scholar]
- Beshentsev, B.A. Resources and quality of natural water in Yamal Nenets oil and gas producing region and their use. Vestn. TyumGU. Nauk. O. Zemle 2011, 4, 17–28. [Google Scholar]
- Shvartsev, S.L.; Serebrennikova, O.V.; Zdvizhkov, M.A.; Savichev, O.G.; Naimushina, O.S. Geokhimiya bolotnykh vod nizhnei chasti basseina reki Tomi [Geochemistry of swamp water in the southern part of water-collecting area of the Tom River]. Geochemistry 2012, 4, 403–417. [Google Scholar]
- Moiseenko, T.I.; Gashkina, N.A.; Dinu, M.I.; Kremleva, T.A.; Khoroshavin, V.Y. Aquatic Geochemistry of Small Lakes: Effects of Environment Changes. Geochem. Int. 2013, 51, 1031–1148. [Google Scholar] [CrossRef]
- Beshentsev, B.A.; Vasil’ev, V.G.; Ivanov, Y.K. Zhelezo v podzemnykh vodakh Yamala [Iron in the underground water of Yamal]. Oil Gas 1999, 5, 10–16. [Google Scholar]
- Soromotin, A.V. Ecological consequences of different stages of the development of oil and gas deposits in the taiga zone of the Tyumen’ oblast. Contemp. Probl. Ecol. 2011, 4, 600–607. [Google Scholar] [CrossRef]
- Hramov, A.V.; Kontrosh, L.V.; Pankratova, M.Y.; Vezhenkova, I.V. Chemical Composition of Drinking Water and Accumulation of Toxic Metals in a Human Body. Hum. Ecol. 2019, 6, 11–16. [Google Scholar] [CrossRef]
- Vaziri, N.D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Gambelunghe, A.; Sallsten, G.; Borné, Y.; Forsgard, N.; Hedblad, B.; Nilsson, P.; Fagerberg, B.; Engström, G.; Barregard, L. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ. Res. 2016, 149, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.R.; Ribeiro Júnior, R.F.; Vescovi, M.V.A.; de Jesus, H.C.; Padilha, A.S.; Stefanon, I.; Vassallo, D.V.; Salaices, M.; Fioresi, M. Acute Lead Exposure Increases Arterial Pressure: Role of the Renin-Angiotensin System. PLoS ONE 2011, 6, e18730. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Nishijo, M.; Ujjin, P.; Vanavanitkun, Y.; Moore, M.R. Cadmium-induced nephropathy in the development of high blood pressure. Toxicol. Lett. 2005, 157, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Eum, K.D.; Lee, M.S.; Paek, D. Cadmium in blood and hypertension. Sci. Total Environ. 2008, 407, 147–153. [Google Scholar] [CrossRef]
- Martins, A.C.; Santos, A.A.D.; Lopes, A.C.B.A.; Skalny, A.V.; Aschner, M.; Tinkov, A.A.; Paoliello, M.M.B. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr. Hypertens. Rev. 2021, 17, 14–26. [Google Scholar] [CrossRef]
- da Cunha Martins, A., Jr.; Carneiro, M.F.H.; Grotto, D.; Adeyemi, J.A.; Barbosa, F., Jr. Arsenic, cadmium, and mercury-induced hypertension: Mechanisms and epidemiological findings. J. Toxicol. Env. Health B Crit. Rev. 2018, 21, 61–82. [Google Scholar] [CrossRef]
- Trzcinka-Ochocka, M.; Jakubowski, M.; Razniewska, G.; Halatek, T.; Gazewski, A. The effects of environmental cadmium exposure on kidney function: The possible influence of age. Environ. Res. 2004, 95, 143–150. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Mofrad, M.D.; do Nascimento, I.J.B.; Milajerdi, A.; Mokhtari, T.; Esmaillzadeh, A. The effect of zinc supplementation on blood pressure: A systematic review and dose–response meta-analysis of randomized-controlled trials. Eur. J. Nutr. 2020, 59, 1815–1827. [Google Scholar] [CrossRef]
- Cunha, A.R.; Umbelino, B.; Correia, M.L.; Neves, M.F. Magnesium and Vascular Changes in Hypertension. Int. J. Hypertens. 2012, 2012, 754250. [Google Scholar] [CrossRef]
- Sontia, B.; Touyz, R.M. Role of magnesium in hypertension. Arch. Biochem. Biophys. 2007, 458, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Klammer, N.; Ekmekcioglu, C. The Effect of Electrolytes on Blood Pressure: A Brief Summary of Meta-Analyses. Nutrients 2019, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Miller, E.R.; Guallar, E.; Singh, V.K.; Appel, L.J.; Klag, M.J. The effect of magnesium supplementation on blood pressure: A meta-analysis of randomized clinical trials. Am. J. Hypertens. 2002, 15, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Allender, P.S.; Cutler, J.A.; Follmann, D.; Cappuccio, F.P.; Pryer, J.; Elliott, P. Dietary Calcium and Blood Pressure a Meta-Analysis of Randomized Clinical Trials. Ann. Intern. Med. 1996, 124, 825–831. [Google Scholar] [CrossRef]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Naska, A.; Kasdagli, M.-I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef]
- RD 52.24.497-2005; Color of Natural Waters. Measurement Technique by Photometric and Visual Methods. Federal Service for Hydrometeorology and Environmental Monitoring: Rostov-na-Donu, Russia, 2004; 19p.
- GOST 31861-2012; Interstate standard “Water. General Requirements for Sampling”. Standartinform: Moscow, Russia, 2013. Available online: https://docs.cntd.ru/document/1200097520 (accessed on 17 June 2018).
- GOST 17.1.5.05-85; Nature Protection. Hydrosphere. General Requirements for Surface and Sea Waters, Ice and Atmosphere Precipitation Sampling. State Committee for Standards: Moscow, Russia, 1985. Available online: https://docs.cntd.ru/document/1200008297 (accessed on 17 June 2018).
- GOST 31869-2012; Water. Methods for the Determination of Cations Ammonium, Barium, Potassium, Calcium, Lithium, Magnesium, Sodium, Strontium Content Using Capillary Electrophoresis. Standartinform: Moscow, Russia, 2019. Available online: https://docs.cntd.ru/document/1200097408 (accessed on 17 June 2018).
- GOST 31867-2012; Drinking Water. The Determination of Anions Content by Chromatography and Capillary Electrophoresis Method. Standartinform: Moscow, Russia, 2019. Available online: https://docs.cntd.ru/document/1200097406 (accessed on 17 June 2018).
- GOST 31957-2012; Water. Methods for Determination of Alkalinity and Mass Concentration of Carbonates and Hydrocarbonates. Standartinform: Moscow, Russia, 2014. Available online: https://docs.cntd.ru/document/1200096960 (accessed on 17 June 2018).
- Soromotin, A.V.; Demidova, V.R.; Prikhodko, N.V.; Sizov, O.S. Morphometric characteristics of small thermokarst lakes of the lower Taz river. In Modern Studies of the Transformation of the Cryosphere and Issues of Geotechnical Safety of Structures in the Arctic; Arctic Scientific Research Centre: Salekhard, Russia, 2021; pp. 394–396. [Google Scholar]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar]
- Diagnosis and treatment of arterial hypertension. Recommendations of the Russian Medical Society for Arterial Hypertension and the All-Russian Scientific Society of Cardiology. Syst. Hypertens. 2010, 3, 5–26.
- Arterial Hypertension in Adults. Clinical Guidelines; Russian Society of Cardiology: Moscow, Russia, 2020; 136p.
- Rebrova, O.Y. Statisticheskij Analiz Medicinskih Dannyh. Primenenie Paketa Prikladnyh Programm Statistica [Statistical Analysis of Medical Data. Application of the Application Package Statistica]; MediaSfera: Moscow, Russia, 2002; 312p. [Google Scholar]
- Bühl, A.; Zöfel, P. SPSS Version 10. Einführung in die Moderne Datenanalyse Unter Windows; DiaSoft: Sankt-Petersburg, Russia, 2005; p. 287. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley: New York, NY, USA, 2013; 500p. [Google Scholar]
- Al’bom, A.; Norell, S. Vvedenie v sovremennuyu epidemiologiyu [Introduction to modern epidemiology]; AO RHE: Tallinn, Russia, 1996; 122p. [Google Scholar]
Lake | Water Volume, mln m2 | Maximum Depth, m | Average Depth, m |
---|---|---|---|
Lake 1 | 0.270 | 1.5 (very shallow) | 0.61 (very shallow) |
Lake 2 | 0.572 | 1.8 (very shallow) | 0.82 (very shallow) |
Lake 3 | 0.052 | 4.0 (shallow) | 0.99 (very shallow) |
Lake 4 | 0.042 | 2.1 (very shallow) | 0.62 (very shallow) |
Lake 5 | 0.095 | 1.8 (very shallow) | 0.84 (very shallow) |
Physicochemical characteristics of the water of the studied thermokarst lakes | |||
Indicator | Mean (min–max) | SD | |
Total mineralization, mg·L−1 | 6.6 (4.9–8.9) | 1.8 | |
pH | 5.7 (5.0–6.5) | 0.6 | |
Colour, degrees | 77 (55–130) | 27.0 |
Trace Element (Heavy Metal) | Water of Thermokarst Lakes, mg·L−1 (Mean) | Melt Snow Filtrate, mg·L−1 | Maximum Permissible Concentrations, mg·L−1 [91] | ||||
---|---|---|---|---|---|---|---|
Our Data | Agbalyan et al., 2019 [87] (Tazovsky District) | Manasypov et al., 2015 [88] (Lakes < 500 000 m2, Summer) | Manasypov et al., 2014 [89] (Lakes > 200,000 m²) | Our Data | Pozhitkov et al., 2019 [90] (Insoluble and Soluble Forms, Background Areas) | ||
Fe | 0.338 | - | 0.251 | 0.13 | 0.009 | 0.023 | 0.3 |
Mn | 0.018 | 0.02 | 0.016 | 0.0016 | 0.003 | 0.005 | 0.1 |
Cd | 1.1 × 10−5 | - | 2.4 × 10−5 | 3.0× 10−5 | 9.5 × 10−6 | 7.3 × 10−5 | 0.001 |
Pb | 0.0001 | - | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.01 |
Ni | 0.0015 | - | 0.0003 | 0.0026 | 0.0003 | 0.0004 | 0.02 |
Cu | 0.0012 | 0.005 | 0.0005 | 0.0005 | 0.003 | 0.0014 | 1.0 |
Zn | 0.007 | 0.02 | 0.062 | 0.027 | 0.057 | 0.018 | 1.0 |
Water Sources, % | ||||
---|---|---|---|---|
water supply system | ice | river | lake | snow |
52.6 | 20.2 | 16.0 | 8.7 | 2.4 |
Water preparation, % | ||||
direct consumption | filtering | boiling | settling | freezing |
13.2 | 12.9 | 58.8 | 12.3 | 2.8 |
Type of Water Source | b0 (Constanta) | Ice | Water Supply System | River | Lake | Snow |
---|---|---|---|---|---|---|
Estimate | 0.114 | −1.025 | 0.175 | 1.190 | 0.405 | 1.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanova, E.; Lobanov, A.; Andronov, S.V.; Soromotin, A.; Popov, A.; Skalny, A.V.; Shaduyko, O.; Callaghan, T.V. Challenges of Changing Water Sources for Human Wellbeing in the Arctic Zone of Western Siberia. Water 2023, 15, 1577. https://doi.org/10.3390/w15081577
Bogdanova E, Lobanov A, Andronov SV, Soromotin A, Popov A, Skalny AV, Shaduyko O, Callaghan TV. Challenges of Changing Water Sources for Human Wellbeing in the Arctic Zone of Western Siberia. Water. 2023; 15(8):1577. https://doi.org/10.3390/w15081577
Chicago/Turabian StyleBogdanova, Elena, Andrey Lobanov, Sergei V. Andronov, Andrey Soromotin, Andrei Popov, Anatoly V. Skalny, Olga Shaduyko, and Terry V. Callaghan. 2023. "Challenges of Changing Water Sources for Human Wellbeing in the Arctic Zone of Western Siberia" Water 15, no. 8: 1577. https://doi.org/10.3390/w15081577