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Abstract: Stream and river monitoring have an influential role in agriculture, the fishing industry,
land surveillance, the oil and gas industry, etc. Recognizing sudden changes in the behavior of
streamflow could also provide tremendous insight for decision-making and administration purposes.
The primary purpose of this study is to offer a new robust Regime Shift Change Detection (RSCD)
algorithm which can identify periods and regime changes without any assumptions regarding the
length of these periods. A regime shift algorithm using two different refined method approaches is
proposed in this article. The RSCD with Relative Difference (RSCD-RD) and RSCD with Growth Rate
(RSCD-GR) are the two main specializations of this regime shift algorithm. We compared these two
specializations on train and test datasets and commented on the advantages and each specialization.
RSCD-GR and RSCD-RD were equally effective in detecting regime changes when thresholds were
pinpointed for each station and season. However, RSCD-RD outperformed RSCD-GR when general
thresholds were used for cold and warm months. A strength of RSCD-GR is the ability to investigate
newly observed data separately, while RSCD-RD may require re-investigation of historical data in
some cases. A regime change was detected in the monthly streamflow data of the Athabasca River at
Athabasca (07BE001) in May 2007, while no such change was observed in the monthly streamflow
data of the Athabasca River below Fort McMurray (07DA001). The discrepancy could be attributed to
factors such as the clarity of the river water from Saskatchewan or the utilization of industrial water.
Additional investigation might be required to determine the underlying causes.

Keywords: time series analysis; data segmentation; machine learning; SARIMA; random forest
regression

1. Introduction

Studying streamflow variation is an important topic due to the significance of man-
agement and monitoring of water resources for maintaining life and mitigating extreme
seasonal discharge variation [1,2]. Human endeavors such as withdrawals, land cover
transformations, and building reservoirs can modify steady discharge regimes and induce
changes in the volume, timeframe, and period of flood occurrences [3,4]. Mountain water-
sheds play a crucial role in supplying water resources in semiarid and dry regions [5]. For
watersheds dominated by snow, meltwater is the most considerable contributor to stream-
flow, and streamflow is vastly influenced by shifts in snowfall, snow-covered areas, and
meltwaters [6,7]. Studying and identifying regime shifts resulting from temperature varia-
tion, meltwaters, precipitations, etc., is vital for overseeing water resources and managing
climate change-associated hazards [7,8].

Online (real-time) and offline are the two primary classes of change detection tech-
niques. In online change detection procedures, a given number of data points are investi-
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gated ahead of the candidate change point [9]. The main purpose of such methods is to
pinpoint changes in comparative real-time with negligible delays [10]. On the other hand,
offline change detection presumes that all data for a time series is known, and the main
objective is to detect when the aspects of the time series change. The entire time series is
processed at once using these online algorithms [9].

Rodionov categorized the regime shifts detection methods into four families of algo-
rithms [11]. One of the most common regime shift algorithm families is those that include
“Shifts in the Mean”, such as the Mann–Kendall test [12], the Pettitt test [13], Bayesian
analysis [14], etc. Another family of regime shift algorithms is “Shifts in the Variance”,
including the Downton–Katz test [15] and the Rodionov method [11]. The next family
of regime shift detection, according to Rodionov, is “Shifts in the Frequency Structure”.
The Nikiforov method [16] is an example of such a method. Finally, “Shifts in the System”
are the last family of regime shift detection. As an example, the Vector auto-regressive
method [17] and Principal component analysis (PCA) [18] are two methods from this family
of regime shift detection.

There has been a number of studies dedicated to identifying regime shift detection
of streamflow. Zhang et al. [4] proposed a method for analyzing regime change detection
in the Yellow River basin in China between 1919 and 2011. The authors recommended
comparing trends in four distinct annual stages: 1919–1933, 1934–1969, 1970–1986, and
1987–2011, and examining changes between each group. To investigate the regime shift
between the stages, the authors employed the Breaks For Additive Seasonal and Trend
(BFAST) method in conjunction with the Mann–Kendall (MK) test. However, the use of the
MK test for detecting regime shifts has limitations because it requires dividing the period
of interest into multiple stages [11]. Wang et al. [19] applied Rodionov’s Sequential T-test
Analysis of Regime Shifts (STARS) to identify regime shifts in sediment and runoff loads for
China’s Yellow River basin region. According to Rodionov [11], this algorithm is a “Shifts in
the Mean” algorithm. While it can automatically pinpoint several change points and regime
shifts in online mode (real-time), it mandates some examination when selecting the cutoff
length and the confidence interval [11]. Khan et al. [20] incorporated the Mann–Kendall
trend test [21] and change point investigation [22] for six different watersheds within the
state of Illinois, USA, from the 1930s to the 2010s. As stated by Rodionov [11], although the
Mann–Kendall test is very convenient to employ and it has a strong theoretical background,
the data needs to not be influenced by a trend, and only a single change-point can be
detected using the traditional version of this method.

Many regime shift algorithms suffer from a significant limitation in that they heavily rely
on pre-existing assumptions and prior knowledge of the system being investigated. This can
lead to inaccuracies and biases if the assumptions are inadequate or incorrect [11,23,24]. In
addition, these algorithms may not be capable of detecting slow or gradual changes that occur
over longer periods of time and instead can only identify sudden or rapid shifts. Furthermore,
the accuracy of regime shift algorithms is highly dependent on the quality and quantity of
available data, which can be limited in some cases [11,23,24].

Athabasca River Basin (ARB) has been one of the main contributors to the economy
of Alberta province since the rise of the oil and gas industry in 1967. In addition to the
oil industry, agriculture, forestry, mining, and tourism are other primary activities of this
region [25]. The majority (approximately 82% of its land area) of the ARB is covered
by boreal forest [26]. As a consequence of urban expansion and industrial commodity
production, including agricultural expansion, forest degradation, mining of coal and oil,
etc., the ARB has transformed abruptly over recent decades. Apart from these man-made
activities, natural hazards such as wildfire also altered the landscape of the basin [25,26].

The objective of this research was to develop a regime shift change detection algorithm
capable of operating in real-time or offline mode. The proposed algorithm requires only
the mean and standard deviation of a baseline period, a threshold for pinpointing the
period, and the time series itself. Our intention was to minimize requirements and provide
efficient algorithms that can be easily implemented in real-time or offline mode. Since the
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accuracy and amount of available data significantly influence regime shift detection, we
also employed Random Forest Regression and Seasonal Autoregressive Integrated Moving
Average (SARIMA) models to mitigate the effects of data on our analysis and threshold
identification. The paper is structured as follows: Section 2 details the study region, data
sets, the Regime Shift Change Detection (RSCD) algorithm, and the threshold selection
process. The results of the RSCD algorithm and exploratory analysis are presented in
Section 3, followed by a discussion of the findings in Section 4. Finally, the paper concludes
in Section 5.

2. Materials and Methods
2.1. Study Region

The Athabasca River Basin (ARB) is close to 160,000 km2, which is just under a
quarter of Alberta’s province [27] and comprises numerous named/unnamed rivers and
lakes. Both cold and warm seasons are available in this region. During cold months, a
substantial portion of precipitation is in the form of snow, while during the warm months,
meltwater and rainfall merge and contribute to river streamflow. Water from sub-basins
likewise amalgamates with the main river as the river flows in the direction of Lake
Athabasca [26,28]. The ARB region is shown in Figure 1, whose background gradient color
was generated utilizing Shuttle Radar Topography Mission (SRTM) data sampled at 30 m.
The ARB region includes three main subregions, namely, lower, middle, and upper [29].
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Figure 1. A map of the Athabasca River Basin (ARB). The gradient background color was produced
using Shuttle Radar Topography Mission (SRTM) data sampled at 30 m. The right corner window
demonstrates the location of the ARB within Canada. Stations selected for training the RSCD
algorithm are exhibited with circles, whereas stations selected for testing the algorithm are illustrated
with stars.



Water 2023, 15, 1571 4 of 18

2.2. Streamflow Data

The streamflow data used in this study were acquired from the Water Survey of
Canada (WSC) (https://wateroffice.ec.gc.ca, accessed on 1 July 2022). The WSC gathers
concurrent hydrometric data (streamflow and water level) at hydrometric gauging stations
across Canada. In order to eliminate small gaps in the data for station 07DA006/S38
in the WSC dataset, the data from the Regional Aquatics Monitoring Program (RAMP)
(http://www.ramp-alberta.org, accessed on 1 July 2022) were fused. Hydrometric stations
shown in Table 1 were selected based on the period of records considering the availability
of continuous data and extended periods of gaps in monitoring. Five of these stations
(i.e., 07AA002, 07AD002, 07AE001, 07BE001, and 07DA001) were selected to train the
RSCD algorithm in this study, and another five stations (i.e., 07AH001, 07BB002, 07BK005,
07BK007, and 07DA006/S38) were used to test the algorithm. Figure 1 depicts the spatial
locations of these ten stations.

Table 1. Hydrometric stations used in this study.

Set ID Name
Considered

Period for This
Study

Gross
Drainage

Area (km2)
Elevation (m)

07AA002 Athabasca River near Jasper 1960–2021 3870 1041
07AD002 Athabasca River at Hinton 1960–2021 9760 963

Train 07AE001 Athabasca River near Windfall 1960–2021 19,600 735
07BE001 Athabasca River at Athabasca 1960–2021 74,600 513

07DA001 Athabasca River below Fort
McMurray 1960–2021 133,000 246

07AH001 Freeman River near Fort Assiniboine 1965–2020 1660 661
07BB002 Pembina River near Entwistle 1960–2015 4400 727

Test 07BK005 Saulteaux River near Spurfield 1969–2015 2600 585
07BK007 Driftwood River near the Mouth 1968–2020 2100 569

07DA006/S38 1 Steepbank River near Fort McMurray 1972–2021 1320 277

Note(s): 1 WSC and RAMP (The Regional Aquatics Monitoring Program (RAMP), 2022) dataset for this station
were fused.

2.3. Methods
2.3.1. Seasonal Modeling and Gap Filling of Hydrometric Data Time Series

Seasonal modeling and gap filling of streamflow time series data were accomplished to
qualify the data for materializing the Regime Shift Change Detection (RSCD) algorithm and
identifying thresholds used within this algorithm. This modeling and gap-filling of stream-
flow data time series were completed using Seasonal Autoregressive Integrated Moving
Average (SARIMA) models [30,31] and Random Forest Regression (RFR) method [32,33].
Using inspection and analysis, we found that the streamflow time series associated with
stations 07AD002 and 07BE001, from Table 1, were prominent candidates for SARIMA
modeling, and very short gaps in 07DA001 were filled through interpolation methods. The
streamflow time series data extended by SARIMA modeling (07AD002 and 07BE001) and
gap-free data from 07DA001 were then used in conjunction with the RFR method to extend
the streamflow time series associated with 07AA002 and 07AE001 stations.

Box et al. [30] extended the Autoregressive Integrated Moving Average (ARIMA)
model (a generalization of ARMA [31]) to incorporate seasonality, which is generally
known as SARIMA. The SARIMA time series model has an augmentative form of SARIMA
(p, d, q) × (P, D, Q)s, where the first part contains the order of the non-seasonal parameters
and the second part comprises the orders of the seasonal parameters. In this expression, p
is the order of non-seasonal autoregression, d shows the number of regular differencing,
q is the order of non-seasonal Moving-Average (MA), p denotes the order of seasonal
autoregression, D is the number of seasonal differencing, Q is the order of seasonal MA, s is
the seasonal length, for example, s = 12 for monthly, L is the lag operator, and εt is assumed

https://wateroffice.ec.gc.ca
http://www.ramp-alberta.org
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to be a Gaussian white-noise process with zero average and variance σ2 [34–36]. For time
series yt, the mathematical formulation of SARIMA can be expressed as follows [34–36]:

Φ
(

LS)φ(L)∆d∆s
Dyt = θ0 + Θ

(
LS)θ(L)εt , (1)

where

• Φ: Seasonal Autoregressive Parameter,
• φ: Autoregressive Parameter,
• ∆d: the difference operator where d specifies the order of differencing,
• ∆s

D: the seasonal difference operator where D is the order of seasonal differencing,
• θ: Moving Average Parameter,
• Θ: Seasonal Moving Average Parameter.

Ensemble methods combine various regression/classification methods to enhance
the accuracy of regression/classification iteratively [33]. Random Forest Regression is an
ensemble method that combines several decision-tree algorithms for predictions [37,38].
We developed a few multi-variable RFR models for predicting missing values of streamflow
time series associated with 07AA002 and 07AE001 stations. For testing the accuracy of
these methods, some of the most popular accuracy metrics were used, including the
Explained Variance Score (EVS) [39], the Mean Absolute Error (MAE) [40], the Mean
Squared Error (MSE) [41], and the coefficient of determination (R2) [42]. Moreover, the
longest continuous periods with only short gaps from the streamflow time series associated
with 07AH001, 07BB002, 07BK005, 07BK007, and 07DA006/S38 were selected for testing the
RSCD algorithm. Short gaps in these datasets were filled through interpolation methods.

2.3.2. Regime Shift Change Detection (RSCD)

Let X = {x0, x1, . . . , xn} be a set associated with a time series whose elements occur
in successive order over some period of time. For a given mean µ and standard deviation
σ values, entries that satisfy |xi − µ| > 1.5 σ with 1 ≤ j ≤ n− 1 are herein referred to as
change-point candidates. Let Y = {y0, y1, . . . , ym} denote a potential set of change point
candidates with Y ⊂ X (Y is a strict subset X). A set of possible consecutive points from Y
is shown with C ⊆ Y. Set C would be either empty (no consecutive points) or contain at
least two points, as at least two points are required to form consecutive points. In order to
explain this procedure further, the following functions require definition. The Growth Rate
(GR) and Relative Difference (RD) functions can be defined as follows:

GR
(

xj, xk
)
=

∣∣∣∣∣ xj − xk

xj

∣∣∣∣∣, (2)

RD
(
µj, µk

)
=

∣∣∣∣∣∣ µj − µk

max
1≤i≤n

{xi} − min
1≤i≤n

{xi}

∣∣∣∣∣∣, (3)

where

• µj and µk are average values of a subset of X,
• n = n(X) is the number of elements of set X,
• m = n(Y) is the number of elements of set Y,
• 0 ≤ GR

(
xj, xk

)
≤ 1 for 0 ≤ j, k ≤ n,

• 0 ≤ RD
(
µj, µk

)
≤ 1 for 0 ≤ j, k ≤ m + 1.

Consecutive change point candidates are treated as follows. Let cj and cj+1 be two con-
secutive change point candidates, and µl and µr, respectively, denote the average pe-
riod before cj and the average period after cj+1. Then, cj+1 is removed from set C if
GR(µl , cj) > GR(cj+1, µr). Otherwise, cj is removed from set C. This process is carried
forward iteratively until there are no two consecutive change point candidates.
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By the end of the above process, set Y would be free of consecutive change point
candidates. Using these points, set P = {p0, p1, . . . , pm, pm+1}which consist of periods is
formed. There are two approaches that we use here for merging excessive periods. Herein,
we refer to these approaches as Refined Method (RM). The first RM method is Relative
Difference. Using this method, for two periods pj and pj+1, these periods are merged
if RD

(
pj, pj+1

)
< ε for some value of ε. The second approach uses Growth Rate (GR):

two periods pj and pj+1 are combined if GR
(

pj, pj+1
)
< ε. We will discuss a procedure

for the selection of ε for each hydrometric station and each season (warm and cold) in
the following sections. This Regime Shift Change Detection (RSCD) can be summarized
as Algorithm 1. The key difference between the two RSCD variations is how excessive
periods are identified and merged. In the next section, we discuss how µ, σ, and ε can be
determined. We investigate a few ways for determining µ, σ, and ε in the next section.

2.3.3. RSCD Thresholds

How µ, σ, and ε are determined can have a monumental influence on the output of
Algorithm 1. One may consider a subset of the time series as the baseline. We selected the
period 1961–1990, recommended by Carter et al. [43], as a baseline period and calculated µ
and σ using this period. Another approach would be calculating µ and σ using the entire
period. However, this approach could be less desirable as if one desires to investigate
regime shift change for ten newly observed data points, they have to enclose all historically
available data and recalculate µ and σ for an entirely new set of data points (all previously
available points plus ten new points). This is why the emphasis here is on computing µ
and σ using a baseline period. Moreover, for convenience, from now on, RSCD-GR and
RSCD-RD represent the RSCD algorithm with Growth Rate and Relative Difference as their
RM, respectively.

To define some threshold for ε, we divided our analysis into two sets of months,
namely, cold months and (open) warm months. Figure 2 demonstrates averaged normalized
monthly streamflow data distribution for the train and test sets. It can be observed from this
figure that different cold months and (open) warm months may need to be considered for
each of these stations due to substantial differences in average streamflow for each month.
For the training data, according to Figure 2a, the month of April can be regarded as a warm
month for 07BE001 and 07DA001; however, for the rest of the stations considered for this
study, this month can be considered a cold month. Consequently, for 07AA002, 07AD002,
and 07AE001, January, February, March, April, November, and December are considered
to be cold months, and May, June, July, August, September, and October are regarded as
warm months. Similarly, for the stations from the test set, according to Figure 2b, January,
February, March, November, and December are regarded as cold months, while April, May,
June, July, August, September, and October are regarded as warm months.

To identify ε thresholds from Algorithm 1 for each streamflow time series, we recorded
all RD and GR values produced in each iteration for each station. Let T = {t1, t2, . . . , tr}
denote a set containing all GR/RD values generated in all iterations of Algorithm 1 for each
season (warm or cold) and each hydrometric station. For pinpointing the Relative Difference
ε thresholds, observe that violin plots available in Figure 3a demonstrate probability density
functions (PDF) [44–46] of each T set, and the left side of each violin plot (shaded with
blue) is responsible for the data distribution of set T for the cold months while the right
side of each violin plot (shaded with pink) highlight the data distribution of set T for the
cold months. The bandwidth of these PDFs was calculated using Scott’s rule of thumb [47].
It is important to note that the probability density function is nonnegative everywhere, and
the area under the whole curve equals one [48]. The three dashed lines on each side of each
violin plot correspond to the lower edge, middle, and upper edge of their corresponding
box plots available in Figure 3b. These dashed lines and box plots show the first quartiles
(Q1), second quartiles (Q2), and third quartiles (Q3) [49] for each set T, for the bottom to up
direction, respectively. These three quartiles split the distribution into four equal successive
subsets, and the second quartile (Q2) represents the median of each T set [49]. As for ε,
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based on our analysis and investigation, third quartiles (Q3) for each set T were designated
as ε thresholds. Growth Rate ε thresholds were also determined likewise using Figure 3c,d.
Table 2 provides a summary of these ε thresholds.
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Algorithm 1 Regime Shift Change Detection (RSCD) algorithm, * Refine Method (RM). This
parameter determines the two specializations of this method. ** xr is a point right after point c(j+1)

Input: X = x0, x1, . . . , xn, µ, σ, ε, and RM *
Output: Periods P
Y = {y0, y1, . . . , ym} ← potential change point candidates through

|xi − µ| > 1.5σ with 1 ≤ j ≤ n − 1;
if n(Y) ≥ 2 then

C = {c0, c1, . . . , ck} ← consecutive potential change point candidates;
while n(C) ≥ 2 do

for (cj, cj+1) do
if there is a period after cj+1 then

if GR
(

µl , cj

)
> GR

(
cj+1, µr

)
then

Remove cj+1 from C
else

Remove cj from C
end

else
if GR(µl , cj) > GR(cj+1, xr) ** then

Remove cj+1 from C
else

Remove cj from C
end

end
end
Update C

end
Update Y

end
if n(Y) ≥ 1 then

P = {p0, p1, . . . , pm, pm+1} ← periods defined using m change points;
while n(P) ≥ 2 do

for
(

pj, pj+1

)
do

if RM = Relative-Difference then
if RD(µj, µj+1) < ε then

Merge periods pj and pj+1
end

end
if RM = Growth Rate then

if GR(µj, µj+1) < ε then
Merge periods pj and pj+1

end
end

end
Update P

end
else

There is no regime shift.
End

These general ε thresholds were employed for testing the RSCD algorithm on the
streamflow data for five hydrometric stations from the test set. As pointed out in
Section 2.3.1, the longest continuous periods were chosen for these stations, and short
gaps were filled utilizing interpolations. The available period of record between 1961–1990
was used to calculate µ and σ for test stations, as often monitoring record is not available
for the entire baseline period (1961–1990).
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Table 2. ε thresholds separated by cold and warm sets of months (seasons) for each hydrometric
station. At the bottom part of the table, general ε thresholds are separated by cold and warm sets of
months (seasons) for all hydrometric stations from the ARB region.

ID Season Growth Rate ε Relative Difference ε

07AA002 Cold 0.322 0.130
07AA002 Warm 0.215 0.135
07AD002 Cold 0.231 0.160
07AD002 Warm 0.257 0.202
07AE001 Cold 0.293 0.197
07AE001 Warm 0.193 0.174
07BE001 Cold 0.288 0.202
07BE001 Warm 0.285 0.174
07DA001 Cold 0.271 0.200
07DA001 Warm 0.350 0.230

General Cold 0.288 0.197
General Warm 0.257 0.174

2.3.4. RSCD for Newly Observed Data

Algorithm 1 can be adapted for usage on newly observed data which is paramount
for the usage of this algorithm in comparative real-time. For a new set of observed data
X∗ = {xn+1, xn+2, . . .}, the same µ and σ can be employed for determining candidate
points as the reference baseline period would still be the same. As for thresholds, the
same thresholds that were identified for each station in Table 2 (or the general threshold
from Table 3 for cold and warm months) can be used. The primary difference would
be how Growth Rate and Relative Difference refined methods utilized at this step. Since
Relative Difference requires the maximum and minimum of set X, new data from set X* and
previously observed data from X need to be taken into consideration. Therefore, if either
max0≤i≤n {xi} or min0≤i≤n {xi} is smaller than some value from set X*, Algorithm 1 needs to
be applied again on X ∪ X∗ = {x0, x1, . . . , xn, xn+1, xn+2, . . .}. However, using the RSCD
with Growth Rate (RSCD-GR), only the newly observed data needs to be investigated.

Table 3. Accuracy test by various metrics for SARIMA modeling (07AD002 and 07BE001) and RFR
modeling (07AA002 and 07AE001). The ideal value for Explained Variance Score (EVS) and the
coefficient of determination (R2) is a number close to one, while the ideal value for the Mean Absolute
Error (MAE) and the Mean Squared Error (MSE) is a number close to zero.

Metrics 07AA002 07AD002 07AE001 07BE001

Train: EVS 1.00 ± 2.32 × 10−4 0.901 0.99 ± 1.50 × 10−3 0.789
Test: EVS 0.98 ± 2.20 × 10−3 0.96 ± 4.15 × 10−2

Train: MAE 2.89 ± 9.64 × 10−2 30.692 9.74 ± 1.01 × 100 104.842
Test: MAE 7.60 ± 6.00 × 10−1 27.83 ± 8.83 × 100

Train: MSE 23.16 ± 2.01 × 100 2982.181 294.80 ± 8.40 × 101 30,943.826
Test: MSE 159.69 ± 2.07 × 101 2563.86 ± 2.70 × 103

Train: R2 1.00 ± 2.32 × 10−4 0.901 0.99 ± 1.50 × 10−3 0.788
Test: R2 0.98 ± 2.21 × 10−3 0.95 ± 4.31 × 10−2

3. Results
3.1. Seasonal Modeling and Gap Filling of Hydrometric Data Time Series

The acquired streamflow time series data were aggregated monthly. Some missing
data points were observed in each aggregated dataset. The analysis completed in this
study could be sensitive to the quality of the data. To ensure that these missing data were
predicted accurately, Seasonal Autoregressive Integrated Moving Average (SARIMA) was
used to develop models for each set using available data. SARIMA models in forwarding
and backward directions were used for backcasting, forecasting, and filling gaps. By the
end of this process, the streamflow time series associated with 07AD002 and 07BE001
were extended.
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By investigations, we found that modeling through RFR can provide more promising
results than SARIMA modeling for monthly aggregated streamflow datasets from 07AA002
and 07AE001. As a result, two separate multi-variable Random Forest Regression (RFR)
models for predicting missing values of streamflow time series associated with 07AA002
and 07AE001 stations using streamflow time series from 07AD002, 07BE001, and 07DA001.
In order to reduce the bias, fivefold cross-validation was used [50,51]. Table 3 illustrates the
result of modeling using SARIMA and the Random Forest Regressor (RFR).

The observed and extended streamflow data using SARIMA and RFR modeling for
07AA002, 07AD002, 07AE001, 07BE001, and 07DA001 are available in Figure 4. In this
figure, the observed/available streamflow data, extended streamflow data using SARIMA,
and extended streamflow data using RFR are represented by solid black lines, solid blue
lines, and solid red lines, respectively.
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Figure 4. The observed and extended streamflow (m3/s) monthly time series through SARIMA (solid
blue line) and RFR (solid red line) modeling for 07AA002 (Athabasca River near Jasper), 07AD002
(Athabasca River at Hinton), 07AE001 (Athabasca River near Windfall), 07BE001 (Athabasca River at
Athabasca), and 07DA001 (Athabasca River below Fort McMurray).

3.2. Regime Shift Change Detection (RSCD)

In this section, Algorithm 1 was applied to the streamflow time series extended by
SARIMA and RFR from Section 3.1, where µ and σ were calculated using a baseline period
1961–1990 and ε thresholds from Table 2. As pointed out in Section 2.3.2, the months from
April to October were considered warm months for 07BE001 and 07DA001, and the months
from May to October were considered warm months for 07AA002, 07AD002, and 07AE001.
The outputs of the RSCD algorithm using the same µ and σ and ε thresholds from Table 2
for both RSCD-RD and RSCD-GR were similar for the majority of the time series from the
train set. We investigated a total of 60 time series, with 12 time series per station from the
train set. Neither RSCD-RD nor RSCD-GR detected a regime shift in the 33 time series. For
the nine time series, the same regime shifts detect. In the five time series, only RSCD-GR
detected regime shifts, while in another six time series, only RSCD-RD detected regime
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shifts. Both methods detected regime shifts in seven time series, but the detections were
slightly different.

Figures 5 and 6 highlight the output of RSCD-RD and RSCD-GR with the above
settings for µ, σ, and ε for warm and cold months, respectively. Two criteria were used for
the selection of these set months for presentation in Figure 5. First, whether some regime
shift change was detected by the RSCD algorithm, and second, whether there were some
differences between the output of RSCD-RD and RSCD-GR. The main idea was to highlight
the key differences between RSCD-RD and RSCD-GR.
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Figure 5. RSCD Results for warm months using Growth Rate (a), Relative Difference (b), and a
30-year (1961–1990) period for calculating µ and σ, and ε thresholds from Table 2. The streamflow
(m3/s) is shown on the y-axis in each panel. The use of red and blue shades aids in distinguishing
between the different regimes.
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Figure 6. RSCD Results for cold months using Growth Rate (a), Relative Difference (b), and a 30-year
(1961–1990) period for calculating µ and σ, and ε thresholds from Table 2. The streamflow (m3/s) is
shown on the y-axis in each panel. The use of red and blue shades aids in distinguishing between the
different regimes.

Figure 5a includes some periods that were identified by RSCD-GR but not by RSCD-
RD. The streamflow fluctuations were greater during the warm months, as expected, and
some of the identified periods were intriguing. For example, RSCD-GR identified two
periods that appear to be correct for 07BE001 (May) and 07AA002. However, the period
identified from 2000 to 2002 appears to be superfluous for 07AD002 (May). Similarly,
Figure 5b has several periods detected by RSCD-RD but not by RSCD-GR. The identified
periods were of a shorter duration: for example, 07AE001 (August), between 1965 and 1969,
seems to be identified properly by RSCD-RD. In the middle ARB, 07BE001, a regime shift
was identified in May 2007. However, at the beginning of the lower ARB, 07DA001, we
did not identify a regime shift in the same month. We could assume that the streamflow
at the beginning of the lower ARB increased. However, clear river water coming from
the adjacent province, Saskatchewan, might have a lower stream flow. Another potential
reason could be some water extracted from the river for industrial reasons. In either case,
further investigations might be required.
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Figure 6a,b exhibit that the two periods identified by RSCD-GR and RSCD-RD were
slightly mismatched for 07AD002 (March). Similarly, for 07AE001 (April), RSCD-GR
identified two periods, whereas RSCD-RD detected three. Likewise, RSCD-GR found more
periods than RSCD-RD for 07DA001 (November). There were some regime shifts during
the cold months; however, flow changes within the month are insignificant.

3.3. RSCD Algorithm for the Test Set

Figure 7 highlights RSCD Results for the test set using a 30-year (1961–1990) period
for calculating µ and σ, general ε thresholds from Table 2, and RSCD-RD and RSCD-GR,
respectively. General thresholds for the warm and cold seasons were used according to
Figure 2b.
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In the case of 07AH001 (April), RSCD-GR identified more periods than RSCD-RD.
The same holds true for 07BK005 (October), where RSCD-GR identified more periods than
RSCD-RD. Both methods generated the same results for 07BK007 (July). For the remaining
months from Figure 6a, RSCD-GR identified those periods, yet RSCD-RD did not identify
any. Correspondingly, we investigated 60 time series from the test set. In the nine time
series, neither RSCD-RD nor RSCD-GR detected a regime shift. Identical regime shifts
were detected in eight time series. In 40 time series, only RSCD-GR detected regime shifts,
while in no time series, only RSCD-RD detected regime shifts. Both methods detected
regime shifts in seven time series, but the detections were slightly different. Evidently, we
primarily highlighted the differences in the output of the RSDC using these two refined
methods; however, some of the additional periods and regime changes recognized through
RSCD-GR appeared to be excessive, and RSCD-RD seemed to output more accurate results.

4. Discussion

Due to the importance of quality and accuracy of data for developing a Robust Regime
Shift Change Detection (RSCD) Algorithm, Seasonal Autoregressive Integrated Moving
Average (SARIMA) models and Random Forest Regression (RFR) method was used to
extend the observed data for five stations from the train set. During our preliminary
analysis, we discovered that the streamflow time series associated with stations 07AD002
and 07BE001 were great prospects for SARIMA modeling. These data sets were extended.
Then, in addition to gap-free data from 07DA001, they were used for RFR modeling to
extend the streamflow time series data from 07AA002 and 07AE001 stations. Table 3 and
Figure 4 summarize the output of these methods in terms of accuracy and identify in which
periods these extensions took place. As per Table 3, SARIMA provided a more reliable
model for the streamflow data from 07AD002 than that of 07BE001. However, this could
be due to the more fluctuating nature of observed data for 07BE001 in comparison to that
of 07AD002. In addition to the significance of the quality and precision of data, we made
sure that the period 1961–1990, indicated by Carter et al. [43], was available in all these
observed/extended streamflow data for preparing the RSCD algorithm.

The RSCD algorithm takes a set associated with a time series whose elements appear
in consecutive order over some period of time X = {x0, x1, . . . , xn}, given mean µ and
standard deviation σ values and a threshold ε for refining methods (Relative Difference
and Growth Rate), and outputs a set P = {p0, p1, . . . , pm, pm+1} which consist of periods.
Although we determined the period 1961–1990 as a baseline period and calculated µ and σ
using this period, with analysis and further considerations, another period can be chosen
as the baseline period.

In using Figure 2, the months from April to October were deemed as warm months
for 07BE001 and 07DA001, while the months from May to October were regarded as warm
months for 07AA002, 07AD002, and 07AE001. Using the baseline period 1961–1990 that µ
and σ are calculated upon, ε thresholds from Table 2, the output of RSCD-RD and RSCD-GR
were roughly comparable for training stations. Figure 7 displayed the RSCD results for
the test set using a 30-year (1961–1990) period for calculating µ and σ, and ε thresholds
from Table 2. When general ε thresholds were employed on time-series data from the
test set, the RSCD-RD looked significantly better in some cases. We primarily highlighted
the months and stations that demonstrate substantial dissimilarities between these two
methods. Nonetheless, this exhibited some of the downsides of RSCD-GR as it might not
perform as well as RSCD-RD on untrained data. The main reason behind this difference
can be found in Figure 3. The probability density functions (PDF) for Relative Difference
(both Cold and Warm months) were denser than those of Growth Rate around the median
of each set T. Likewise, as it was visible in panels (b) and (d) from Figure 3, the average
distance between the medians and the Q3 quartiles for Relative Difference was a bit less
than those of the Growth Rate. Therefore, theoretically speaking, a median of these Q3
quartiles, which is here considered a general threshold, should work better for RSCD-RD.
In other words, the RSCD-GR might need to be trained to identify a specific ε threshold
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for each cold and warm month. If the total observed data is not excessively large, we
recommend using RSCD-RD instead of RSCD-GR because it may perform better.

One of the key advantages of the RSCD-GR over the RSCD-RD is the way it treats
newly observed data. Using either RSCD-RD or RSCD-GR on a new set of observed data,
the same µ and σ could be employed for determining candidate points. However, due
to the definition of Relative Difference, if either the maximum/minimum of the newly
observed data X* is large/smaller than those of the original set X, then all data points, i.e.,
X ∪ X∗, are required to be investigated again using RSCD-RD. For the RSCD-GR, newly
observed data could be investigated separately, regardless.

Some of the challenges that we faced during this study was a lack of long continuous
streamflow data, which was consequential for identifying regime shift changes. This issue
was tackled for the streamflow data from hydrometric stations designated for training the
RSCD algorithm; however, further investigation may be required to draw a conclusion
about a relationship between almost all time series associated with hydrometric stations
from the ARB region. Furthermore, the baseline period selected for this study is from
1961 to 1990; however, some of the hydrometric stations, especially from the lower ARB,
initiated their data collection in the late 1990s or 2000s. Additional analyses are required to
identify a baseline period for those hydrometric stations.

5. Conclusions

This study desired to propose a new robust Regime Shift Change Detection (RSCD)
algorithm. The new proposed algorithm does not require any assumption on the length of
each period for identifying regime changes. The analysis for purposing the RSCD algorithm
could be susceptible to the quality of the data. This modeling and gap filling of hydrometric
data time series were done by employing Seasonal Autoregressive Integrated Moving
Average (SARIMA) models and Random Forest Regression (RFR) method, and short gaps in
07DA001 were filled through interpolation methods. The streamflow time series associated
with 07AD002 and 07BE001 were extended by SARIMA modeling. Then gap-free data from
07AD002, 07BE001, and 07DA001 were utilized in concurrence with the RFR method to
extend the streamflow time series associated with 07AA002 and 07AE001 stations.

The RSCD algorithm takes a time series, a given mean and standard deviation values,
for a subset of this time series, and a threshold ε for refining methods, Relative Difference
(RD), and Growth Rate (GR), outputs a set of periods. Even though the period 1961–1990
was chosen in this study as a baseline period, and the mean and standard deviation values
were calculated using this period, with analysis and further considerations, other baseline
periods can be chosen as well. Both RSCD-GR and RSCD-RD performed similarly in
recognizing regime changes when threshold ε was pinpointed for each station and season
(cold and warm); nonetheless, when it comes to testing set and using general thresholds for
cold and warm months, the RSCD-RD performed substantially more favorable. One
of the main strengths of RSCD-GR, over RSCD-RD, is that newly observed data can
be investigated separately regardless, whereas for RSCD-RD, in some cases, the entire
historical data needs to be re-investigated.

In May 2007, a regime change was found in the middle ARB, 07BE001. Nonetheless, at
the beginning of the lower ARB, 07DA001, we did not discover a regime shift in the month
of May. We could presume that the streamflow did rise at the beginning of the lower ARB;
nevertheless, clear river water from the neighboring province of Saskatchewan could have
a lower stream flow. Another possible explanation is that some river water was removed
for industrial applications. In either situation, more study may be necessary.

The proposed general thresholds in this article were considered for the ARB region.
With proper assumptions regarding cold and warm months, new thresholds can be obtained
for other regions. An extension of this work could be applying this method to other regions
and comparing the new general thresholds with those available from this study.
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