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Abstract: The Tarim Basin in Xinjiang is located in the northwest inland arid region of China, but
research shows that the region is rich in groundwater resources. To understand the hydrochemical
characteristics and water quality of shallow groundwater in the desert area of the southern margin of
the Tarim Basin, the groundwater was systematically sampled and tested. The ion characteristics
and evolution mechanism of groundwater were analyzed by mathematical statistics, Schukarev
classification, Piper three-line diagram, Gibbs model and ion ratio. Water quality was evaluated by
the water quality index method (WQI) and irrigation water suitability-related parameters. The results
indicated that the dominant cation in the study area is Na+, and the main dominant anions are SO4

2−

and Cl−. According to total dissolved solids (TDS), the groundwater mainly belongs to brackish water
and semi-saline water. The hydrochemical chemistry types are mainly Cl·SO4-Na·Mg type, followed
by Cl-Na type, and the ion source is mainly the weathering and dissolution of evaporation rock,
silicate and sulphate. The hydrochemical process is primarily controlled by evaporation concentration
and rock weathering, and the cation exchange is weak. Furthermore, the WQI spatial distribution
map shows that the groundwater in the middle of the study area is unsuitable for drinking and there
are two areas with high WQI values greater than 500. In contrast, the good-excellent groundwater
is scattered in the East. The groundwater generally has high to very high salinity, with significant
changes in alkalinity. In addition, 54% of the water samples exceed the magnesium hazard (MH) limit.
Therefore, certain measures should be taken before irrigation. This study has important implications
for the rational development and reasonable utilization of local groundwater.

Keywords: desert area; groundwater; water quality; hydrochemical characteristics; water quality index

1. Introduction

As an indispensable source of water supply, groundwater is a vital strategic resource
to support social and economic development and it plays a significant role in maintaining
ecological equilibrium [1,2]. However, in the process of urbanization, industrialization
and agricultural activities have a negative impact on groundwater quality. At the same
time, excessive exploitation of groundwater leads to enormous pressures put on water
supply demand, especially for developing countries such as China [3–5]. China has a
shortage of water resources, with a low per capita share. On the other hand, major river
basins and lakes are generally polluted, which further exacerbates the current situation of
water shortage [6,7]. The severe water resource problem has become a hot topic of close
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attention and an unavoidable century challenge in Chinese society [8]. Therefore, there is an
urgent need to develop effective water resources management strategies and to strengthen
research on the evolution mechanism of groundwater in order to ensure the sustainable
development and utilization of water resources.

By analyzing the hydrochemical characteristics and influencing factors of groundwater,
its formation and evolution pattern can be better revealed, which provides an essential basis
for studying the origin of groundwater. Groundwater quality assessment is very helpful to
understand its applicability, and is also necessary for its sustainable planning and manage-
ment [9]. Among them, the water quality index (WQI) is not only an important parameter
to evaluate whether the quality of drinking water meets the standard, but also a reference
basis for the development, utilization and scientific allocation of water resources [10,11].
Previous researchers have conducted a large number of investigations and research on
groundwater quality related issues: Chitsazan [12] investigated the groundwater chemical
characteristics in the suburb of Urmia, Iran, and evaluated the quality of drinking water
with an index model. It was found that the important processes to control the hydrochem-
ical characteristics are mineral weathering, ion exchange, and human activities; affected
by human activities, there are low-hazard pollutants in the suburbs. Tiwari et al. [13]
conducted a qualitative evaluation of the mine water in the Sibocaro coalfield through the
Piper diagram, saturation index (SI) and relevant parameters of irrigation water suitability.
The results showed that the dissolution of minerals and ion exchange are the main processes
to control the chemical change of water. The index value of most mine water samples
does not exceed the standard, which is suitable for drinking and can be directly used for
irrigation. To evaluate the genesis of water quality in Songyuan City, Northeast China,
Yan et al. [14] measured the hydrogen and oxygen isotope composition and ion content of
groundwater. The results show that the weathering and dissolution of silicate rock is the
main factor affecting the ion composition of deep and shallow groundwater. At the same
time, long-term artificial exploitation has caused the dispersion of pollutants in the shallow
aquifer. In addition, scholars have conducted comprehensive evaluations of groundwater
quality based on WQI, combined with multiple statistical analyses, fuzzy logic, geographic
information systems, and other methods [15–19].

Due to the scarcity of surface water and atmospheric precipitation, groundwater has
become the primary source of water supply in arid and semi-arid areas and is an essential
factor affecting the sustainable development of these areas [20,21]. Therefore, scientific
evaluation and sustainable development of groundwater are especially important in these
areas [22]. The Tarim Basin in Xinjiang is a typical arid and semi-arid area with an arid
climate and strong evaporation. Groundwater is an important water resource in this area.
In recent years, there have been many studies on the hydrochemical characteristics of
groundwater in the Tarim Basin [23–26]. However, these studies are primarily concentrated
in the western and southern edge oasis areas of the Tarim Basin, lacking research on ionic
characteristics and genetic mechanism of groundwater in desert areas. Furthermore, they
mainly focus on the trace elements that affect human health in groundwater, and the
comprehensive evaluation of groundwater quality is lacking. For this reason, this paper
selects the Kunyu desert area in southern margin of the Tarim Basin as the study area.
Combined with a large number of hydrological wells and hydrological borehole data,
we analyze the hydrochemical types and causes of groundwater, and reveal the content
changes and distribution laws of various chemical components of groundwater in the
study area. At the same time, the water quality index method and relevant parameters
of irrigation water suitability are used to evaluate water quality. It not only provides
theoretical guidance for local groundwater protection and desertification prevention, but
also provides a reference for the industrialization process of local reclamation agriculture.
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2. Materials and Methods
2.1. Overview of the Research Area

Kunyu City is located in the southwest of Xinjiang Uygur Autonomous Region, at the
northern foot of the Kunlun Mountains and the southern margin of the Tarim Basin. Based
on the latest Gaofen-2 remote sensing image, the topography of the area was interpreted
using remote sensing interpretation markers for each landform. Subsequently, GIS was
used to calculate the proportion of each landform, and the interpretation results were
verified through field investigations. The interpreted data was authentic and reliable. The
mountainous area accounts for 33.3%, the Gobi desert accounts for 63%, and the oasis area
only accounts for 3.7%, sporadically scattered among the Gobi desert. The study area is
situated at the desert area of the lower Duwa River. The terrain is relatively open and flat,
and the topography of small areas is relatively complex with many dunes. The topography
is high in the west and low in the east, high in the south and low in the north, mainly
developing mobile dunes, fixed-semi-fixed dunes and alluvial plain landforms. According
to the information published by the local meteorological office, it belongs to a typical warm
temperate inland arid climate. The main climatic characteristics are hot in summer, cold in
winter, large diurnal temperature difference, scarce precipitation and strong evaporation.
The average annual precipitation is 29 mm, and annual evaporation is 4410 mm. The Duwa
River is the major surface water system flowing through the region, flowing from south to
northeast, and gradually disappearing in the Gobi desert after passing through the Duwa
Reservoir (Figure 1).
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Figure 1. Geomorphology type and location of sampling sites in the study area.

According to field geological surveys and remote sensing image data, the land uti-
lization rate in the research area is relatively low. The southeast and southwest of the
study area are mainly residential areas, the southern and central eastern parts are mainly
farmland, with jujube trees planted, and the northern parts are vast deserts that have not
been utilized.

2.2. Hydrogeological Conditions

According to the lithology and hydrogeological characteristics of Quaternary sedi-
ments, combined with pumping tests and previous hydrological borehole data, the Quater-
nary Holocene (Qh)-Pleistocene (Qp) aquifer group in the study area belongs to pore water
in loose rocks. The aquifer is primarily composed of fine sand and silt, with a thickness
ranging from 50 to 76 m (the comprehensive histogram in the study area is shown in



Water 2023, 15, 1563 4 of 17

Figure S1 of the Supplementary Materials). The depth of the water table varies significantly
across different geomorphic types. The flowing dune area in the northwest has a depth of
over 5 m, while the fixed and semi-fixed dune area in the southwest and northeast ranges
from 3 to 5 m. In the alluvial plain, the water table depth is 1–3 m, whereas, in the central
swampy depressions and some parts of the northwest riverbed and floodplain, the depth is
less than 1 m. Generally, the water table depth decreases from northwest to southeast, as
shown in Figure 2. Combined with the hydrogeological borehole and previous geological
data, the area shows a distribution pattern of weak water richness in the northwest and
medium in the southeast.
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In terms of recharge sources, the phreatic water in the area is mainly recharged later-
ally from the Duwa River, as well as from irrigation infiltration and groundwater lateral
recharge. The main discharge methods include artificial mining, evaporation, and transpi-
ration. The overall flow direction is from southwest to northeast, but local areas are affected
by rivers, canal systems, field irrigation and groundwater exploitation, which makes the
groundwater flow field change to some extent. The ground slope of the floodplain area
outside the southern part of the area is small, about 1.67%, and the aquifer particles are
mainly sand gravel and gravelly silt. After entering the working area to the north, the slope
of the terrain continues to decrease, to only 0.15~0.30‰. Furthermore, the lithology of the
aquifer becomes fine sand, and the groundwater flow rate gradually becomes smaller. In
Yawa Township in the eastern part of the study area, diving flows from the southeast to the
northwest and north under the influence of the Krakash River and the Yawa Dry Drain.
The burial depth of groundwater mostly ranges from 1 to 3 m, with a slight topographic
slope, and the lithology of the aquifer consisting of fine powder sand, and a hydraulic slope
of 0.5‰ to 2‰. The burial depth of groundwater in the middle is mostly less than 1 m,
and the groundwater runoff rate is sluggish. In the vertical direction, the shallow vertical
runoff is stronger. With the increase in depth, the aquifer compactness increases and the
groundwater runoff weakens.

2.3. Sample Collection and Testing

The specific sampling location is shown in Figure 1. Ninety (90) groups of groundwater
samples were analyzed altogether in this study, which were obtained from machinery wells,
hydrological boreholes, and the Duval River in the study area. The sample collection time
was concentrated in late July 2021, with two water samples taken from each borehole and
only one sample taken from other locations. The water samples were collected in 500 mL
narrow-mouth polyethylene bottles. Before sampling, the sample bottles were washed
with the water to be tested 2–3 times. After sampling, the sample bottles were sealed to
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prevent leakage and sent to the laboratory for testing as soon as possible. The water sample
testing was completed by the Experimental Testing Center of Xi’an Geological Survey
Center of China Geological Survey. The main testing indexes included pH, total dissolved
solids (TDS), K+, Na+, Ca2+, Mg2+, Cl−, SO4

2−, HCO3
−, NO3

−, F−, total hardness (TH),
chemical oxygen demand (COD) and other related components. Electrical conductivity
(EC), total dissolved solids (TDS), and pH of the water samples were measured in situ
using a pH meter and portable EC instrument. In the laboratory, all water samples were
filtered through 0.45 µm membrane filters to separate suspended particles before testing.
Major anions (F−, Cl−, SO4

2−, NO3
−) were tested using ion chromatography; major cations

(Ca2+, Mg2+, Na+, K+) were tested by inductively coupled plasma mass spectrometry,
and bicarbonate (HCO3

−) concentrations were measured using an automatic titrator. TH
were measured using EDTA complexometric method. The COD value was determined by
potassium permanganate method. The accuracy of test results was examined according to
the charge balance error E [27], and it was maintained within 5% for all.

2.4. Analysis Method

IBM SPSS 23.0 software was used for the statistical analysis of the data. The ground-
water was classified using the Shukarev classification method, and the map of groundwater
mineralization distribution and hydrochemical types area was drawn using MapGIS soft-
ware based on kriging interpolation. The primary ion source of groundwater and the
influencing factors of hydrochemical characteristics were determined through the Gibbs
diagram and major ion ratio relationship. The quality of drinking water was evaluated by
the WQI, and the quality of irrigation water was evaluated by sodium percentage (Na%),
sodium adsorption ratio (SAR), permeability index (PI) and magnesium hazard (MH).

2.4.1. Water Quality Index Method (WQI)

WQI can express the comprehensive impact of different water quality parameters on
the suitability of drinking water. These parameters were given different weight values (wi)
according to the impact on water quality. Through the analysis of sample test results, nine
of these indicators were selected as evaluation factors, and their weights were distributed
as follows: TDS and NO3

− were 5, pH, SO4
2−, COD and F− were 4, Cl− was 3, Na+ was 2,

and total hardness (TH) was 1 [28–30].
The water quality index (WQI) can be determined by calculating the relative weight

(Wi), quality rating (qi) and sub-index (SIi) of each parameter using the equation.

Wi =
wi

∑n
i=1 wi

(1)

qi =
Ci
Si
× 100 (2)

SIi = Wi × qi (3)

where: Wi is the relative weight, wi is the weight of each parameter, and n is the number
of parameters; Qi is the quality rating, Ci is the value or concentration of each parameter
in each water sample; Si is the drinking water standard of each parameter, and SIi is the
sub-index of each parameter.

WQI is the sum of all sub-indexes SIi calculated for each parameter of the sample:

WQI = ∑n
i=1 SIi (4)

2.4.2. Evaluation Method for Suitability of Irrigation Water

When evaluating the suitability of irrigation water, salinity, alkalinity and toxicity are
usually considered. High salinity irrigation water will bring about the emergence of saline
soil, while high alkalinity irrigation water will cause soil alkalization and hardening, and
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high sodium will increase soil alkalinity. The sodium hazard of irrigation water can be
expressed by the sodium adsorption ratio (SAR). A higher SAR value indicates that the
alkalinity of irrigation water is high [13]. Similarly, the percentage of sodium (Na%) is also
a standard index for evaluating the suitability of irrigation water and can be used as the
basis for the classification of irrigation water.

If the concentration of Mg2+ in irrigation water reaches a high level, magnesium
alkalization may occur, thus affecting the organic matter content in the soil and causing
crop yield reduction. Therefore, Szaboles and Darab proposed magnesium hazard (MH) to
evaluate the applicability of agricultural irrigation water [31]. The permeability index (PI)
is another important parameter to measure the suitability of groundwater for irrigation.
It represents the ability of water and minerals to migrate through pore space to the plant
roots, and is mainly influenced by dissolved ions such as Na+, Ca2+, Mg2+and HCO3

−,
based on which Doneen developed the relevant evaluation criteria according to PI [32].
The calculation formulas of each indicator are listed in Table 1.

Table 1. Evaluation index and calculation formula of irrigation water suitability.

Evaluation Parameters Calculation Formulas

SAR SAR = Na/[(Ca + Mg)/2]0.5

Na% Na% = (Na + K)/(Ca + Mg + Na + K) × 100%
MH MH = Mg/(Ca + Mg) × 100%
PI PI = (Na +

√
HCO3)/(Ca + Mg + Na) × 100%

3. Results and Discussion
3.1. Basic Characteristics of Hydrochemistry

The physicochemical parameters of groundwater in the study area, including statistical
indicators such as minimum, maximum, mean and standard deviation, are given in Table 2.
From the overall content of each ion, the cation order is Na+ > Mg2+ > Ca2+ > K+, of
which the content of Na+ is the largest, with a mean concentration of 696.1 mg/L, which
is 5.2, 5.8 and 19.0 times of the content of Mg2+, Ca2+ and K+, respectively. The anion
content is ranked as Cl− > SO4

2− > HCO3
− > NO3

− > F−, of which Cl− and SO4
2− are the

primary anions in groundwater, with an average content of 950.4 mg/L and 824.1 mg/L,
respectively. The pH of water samples ranges from 6.9 to 9.3, with a mean value of 7.9,
which is weakly alkaline overall, and its coefficient of variation (CV) is only 4.9%, indicating
that the spatial variability of groundwater pH is small. The total hardness (TH) of the water
samples varies between 126.4 and 35,350.0 mg/L, with an average value of 1232.8 mg/L.
The overall hardness of the groundwater is relatively high, dominated by hard water.

Table 2. Statistical results of main hydrochemical parameters of groundwater.

Project Na+ K+ Ca2+ Mg2+ Cl− SO42− HCO3− NO3− CODMn F− TDS TH pH EC

Min 54.5 1.8 10.9 10.9 49.4 71.3 51.7 0.1 0.8 0.3 714 126.4 6.9 1320.0
Max 4830.0 171.0 592.0 750 7575.0 6416.0 913.0 354.0 7.0 2.9 19,100.0 35,350.0 9.3 8660.0

Mean 696.1 36.8 118.3 135.0 950.4 824.1 341.9 15.2 2.3 1.2 3028.7 1232.8 7.9 3953.4
SD 821.4 30.7 93.6 103.0 1139.6 872.4 212.3 45.3 1.6 0.9 3030.3 3665.5 0.4 1842.9

CV% 118.0 83.5 79.1 76.3 119.9 105.9 62.1 297.3 68.1 74.5 100.0 297.3 4.9 46.6

Note: pH has no unit, the unit of EC is µs/cm, and the unit of other parameters is mg/L.

The distribution map of TDS in the research area is shown in Figure 3. The variation of
TDS ranges from 714.0 to 19,100.0 mg/L, and the average value is 3028.7 mg/L. According
to its classification standard [33], the groundwater in study area mainly belongs to brackish
water and semi-saline, and its distribution area accounts for 63.06% and 20.06% of the total
area, respectively. Freshwater is scattered in the southeastern of the study area, making
up only 2.59% of the total area. In comparison, saline water is mainly distributed near the
Kekderik, with a strip distribution area of about 82.15 km2, accounting for 20.06%. Mainly
due to the slow groundwater runoff, shallow water level, and strong evaporation, the TDS
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value in this area is relatively high. COD is an indicator that characterizes organic pollution
in water. The CODMn range in the study area is between 0.8 and 7.0, with an average of
2.3. Most water samples have low CODMn values, which comply with the Class III water
regulations in the Sanitary Standard for Drinking Water (GB5749-2006) [34]. Only seven
water samples exceed the Class III water limit.
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Correlation analysis can show the close degree between different hydrochemical
parameters, which is helpful to better understand the hydrochemical process and ion
source. The Pearson correlation analysis results of various indicators are shown in Figure 4.
It can be observed from the figure that Na+ has a strong correlation with K+, Mg2+, SO4

2−,
Cl− and TDS, indicating that sodium ions may have many sources. Ca2+, Mg2+ strongly
correlate with SO4

2−, but have a poor correlation with HCO3
−. TDS has a strong positive

correlation with Cl−, indicating that saline rock may be dissolved along the flow path [35].
However, the correlation between NO3

− and other parameters is weak because its source
is mainly artificial, such as the application of nitrogen fertilizer in jujube trees.
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3.2. Hydrochemical Evolution Characteristics

The Shukarev method is used to classify hydrochemical types based on the concentra-
tion and mineralization degree of six common major ions in groundwater. According to
the Shukarev method classification [36], the hydrochemical types in the study area can be
divided into seven categories (Figure 5). The Cl-SO4-Na-Mg type and Cl-Na type are pre-
dominant, among which the Cl-SO4-Na-Mg type groundwater is generally distributed in
the flowing dunes and fixed-semi-fixed dunes. The groundwater runoff conditions in these
areas are poor, and water alternation is medium. The concentration of Cl−, SO4

2−, Na+,
and Mg2+ in groundwater is relatively high, while the content of other ions is relatively low.
The Cl-Na type groundwater is found in the northeast desert and the vicinity of Kekderik.
Its groundwater depth is shallow, runoff is slow, evaporation is strong, local groundwater
is stagnant, salt accumulation is serious, and Na+ content is high. The groundwater in the
southern swamp depression primarily belongs to the Cl-SO4-Na type. Due to the influence
of Karakash River and Yawa diversion channel, the groundwater in the eastern Yawa
Township is mainly of Cl-HCO3-Na-Mg type and Cl-HCO3-SO4-Na-Mg type. In addition,
Cl-Na-Mg type groundwater is only sporadically distributed in the east near Chalchik.
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Figure 6 shows the piper trilinear diagram of groundwater hydrochemistry in the
study area. In this diagram, water samples are relatively concentrated, basically falling into
Zones IV and II, and more than 90% are distributed in Zone IV. The main anions are close
to the Cl− and SO4

2− ends, and their milligram equivalent percentages are mostly between
40% and 70%, with strong acids (Cl−, SO4

2−) exceeding weak acids (HCO3
−). The main

cations are close to the Na+ and Mg2+ ends, followed by Ca2+, and the concentration of
alkali metal ions (Na+, K+) is higher than that of alkaline earth metal ions (Ca2+, Mg2+).
The hydrochemical types mainly showed Cl-SO4-Na type and Cl-Na type. This result is
similar to the water chemistry types classified by the Shukarev method.
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3.3. Analysis of Hydrochemical Origin of Groundwater

The influence of rock weathering, atmospheric precipitation, evaporation and con-
centration on groundwater hydrochemistry can be qualitatively analyzed by the Gibbs
diagram [37]. In the Gibbs diagram, when the TDS value is low and the ratio of γNa+/γ(Na+

+ Ca2+) or γCl−/γ(Cl− + HCO3
−) is greater than 0.5, the groundwater chemical compo-

nents are mainly influenced by atmospheric precipitation [38]. While higher TDS values
and also high γNa+/γ(Na+ + Ca2+) ratio or γCl−/γ(Cl− + HCO3

−) ratio indicate that the
groundwater chemical fraction is affected by evaporative concentration, otherwise by rock
weathering. It can be seen from Figure 7 that the TDS values of water samples in the study
area are high and 98% of them fall within the range of γNa+ /γ(Na+ + Ca2+) > 0.5, while
the ratio of γCl−/γ(Cl− + HCO3

−) is relatively dispersed, and parts of samples distributed
in the region of rock weathering. This shows that the groundwater in this area is affected
by both evaporation concentration and rock weathering, and the former is more significant.
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Groundwater formed under different genesis or conditions often has a large difference
in the content ratio between components. Therefore, such ratio coefficients can be used to
determine the source of groundwater components. Among them, the relationship of γ(Na+

+ K+)/γCl− can be used to determine the sources of K+ and Na+ in groundwater. When the
γ(Na+ + K+)/γCl− distribution is around the line y = x, the K+ and Na+ in groundwater are
primarily from rock salt dissolution [39]. Figure 8a shows that K+ and Na+ in groundwater
in the study area mainly originate from rock salt dissolution, 90% of the water samples fall
in the zone where γ(Na+ + K+)/γCl− > 1, only a few water sample points fall below. This
indicates that the content of Na+ and K+ is more than that of Cl−, which may be caused
by the dissolution of silica-aluminate minerals containing sodium and potassium (e.g.,
feldspar), or there may be alternating cation adsorption.
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The dissolution of carbonate rocks in groundwater can be judged by the relationship
of γ(SO4

2− + Cl−)/γ(HCO3
−) [39]. As seen from Figure 8b, the groundwater samples

all fall above the line y = x, indicating that the chemical composition of groundwater is
mainly influenced by the dissolution of evaporite, and the influence of carbonate rocks
is weak. The main sources of Mg2+ and Ca2+ can be determined by analyzing the ratio
relationship between γ(Ca2+ + Mg2+) and γ(HCO3

− + SO4
2−) [40]. Figure 8c indicates

that over 80% of the groundwater samples are located below γ(Ca2+ + Mg2+)/γ(HCO3
− +

SO4
2−), indicating that Mg2+ and Ca2+ in groundwater of the study area are primarily from

the weathering dissolution of silicate and evaporite, and only a tiny part is related to the
weathering dissolution of carbonate rocks. Meanwhile, in Figure 4, both Ca2+ and Mg2+are
strongly correlated with SO4

2−, which further explains that the dissolution of gypsum and
magnesium sulfate is an important source of Ca2+ and Mg2+.

The ratio relationship between γ(Na+ − Cl−) and γ (Ca2+ + Mg2+ − SO4
2− − HCO3

−)
is usually used to reveal the cation exchange rate [40]. Groundwater samples fall near
the line y = −x, confirming the existence of cation exchange adsorption. The strength
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and direction of cation exchange can be inferred from the CAI-1 and CAI-2 indices in the
Scholler method [41], which are calculated by Equations (5) and (6), respectively:

CAI-1 =
C(Cl−)−

[
C
(
Na+

)
+ C

(
K+

)]
C
(
Cl−

) (5)

CAI-2 =
C(Cl−)−

[
C
(
Na+

)
+ C

(
K+

)]
C(HCO3−) + C(SO4

2−) + C(CO3−) + C(NO3−)
(6)

where: C is the ion concentration, in meq/L.
When CAI-1 and CAI-2 are all positive values, it suggests that there is a positive cation

exchange, that is, Na+ and K+ in water exchange with Ca2+ and Mg2+ on the surface of
mineral particles. Otherwise, if values are negative, the reverse cation exchange occurs, and
the greater the absolute value, the stronger the cation alternation [42]. CAI-1 and CAI-2
are negative, with average values of −0.52 and −0.47, respectively. The absolute value is
relatively small, indicating that reverse cation alternation has occurred, and this effect is
relatively weak.

The analysis results of the ion combination ratio show that Na+ and K+ mainly come
from salt rock and silica-aluminate minerals dissolution, Mg2+ and Ca2+ mainly come
from weathering dissolution of silicate rocks and evaporite, and SO4

2− mainly comes from
sulfate dissolution, which is more consistent with the regional geological background. In
the south of the study area, the Late Permian K-feldspar granite strata are exposed near
Kunlun Mountain, and the Jurassic, Cretaceous and Paleoproterozoic strata in the area
contain evaporites such as gypsum and rock salt of varying thickness. At the same time, a
large-scale gypsum mine is developed in the Piaman anticline near the south of Kunyu city.
Carbonate rocks have a feeble influence on the chemical composition of groundwater, and
it is assumed that desulfurization is one of the important sources of HCO3

− in water.

3.4. Drinking Water Quality Evaluation

The drinking water quality in the study area was comprehensively evaluated with the
Sanitary Standard for Drinking Water (GB5749-2006) [34] as an evaluation index. The limit
values and weight values of each factor are shown in Table 3. Meanwhile, the WQI spatial
distribution map was drawn according to the calculation results (Figure 9).

Based on the WQI values, groundwater quality can be classified as excellent water
(<50), good water (50–100), poor water (100–200), very poor water (200–300) and unsuitable
(>300) [43]. The WQI values in the study area range from 43.0 to 1442.9, with a mean value
of 224.2, which is relatively large. Only 16 samples belong to the grade of excellent water to
good water, and 11 samples belong to the unsuitable category. The rest of the water samples
are poor or very poor water. The WQI spatial distribution map shows that most areas in the
study area have high WQI values and are not suitable for drinking. Only the groundwater
in parts of the eastern regions has low WQI values and is suitable for drinking.

Table 3. List of parameters, weight factors and limits of water quality index.

Indicators TDS NO3− SO42− COD PH F− Cl− Na+ TH

Limit value 1000 mg/L 10 mg/L 250 mg/L 3 mg/L 6.5–8.5 1 mg/L 250 mg/L 200 mg/L 450 mg/L
Weight 5 5 4 4 4 4 3 2 1

Relative weights 0.156 0.156 0.125 0.125 0.125 0.125 0.094 0.063 0.031
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The spatial distribution map of WQI shows that the water quality in the central part
of the study area is in the unsuitable category, and two high value areas occur in the lower
DuWa River area and near Kekderik. The slow groundwater runoff, shallow depth of burial
and strong evaporation in the vicinity of Kekderik result in high TDS values, and the TDS
values have a greater weight on the WQI values, which lead to the high WQI values in
this area. The sampling survey along the river from the upstream to the downstream of
the Duval River found that the water near the starting survey site belonged to brackish.
However, the TDS value along the way gradually increased, and the TDS content reached
3960 mg/L at the tail, which was semi-saline water. It reflects that the ion concentration of
Duwa River increases with the runoff distance, among which SO4

2−, Na+ content and TDS
value increase more significantly. The river water with high ion concentration recharges the
groundwater, causing an increase in the corresponding ion concentration of groundwater in
the downstream area; in addition, the dissolution of gypsum mine near this area also has a
certain influence on the groundwater quality. The eastern part of the study area is scattered
with excellent and good water areas. This is mainly due to the swampy depressions
in the area, which mainly receive recharge from irrigation infiltration and river channel
infiltration, and the main mining method is artificial mining. The groundwater alternation
is stronger, the influence of evaporation is relatively weak, and the ion concentration value
is relatively low.

3.5. Irrigation Water Quality Evaluation

Salinity has a significant effect on soil alkalinity and crop growth, and when irrigated
with high salinity groundwater, it can lead to soil hardening and inhibit crop growth [44].
The hazard of salinity and alkalinity can be better understood using the United States
Salinity Laboratory diagrams (USSL diagrams), where salinity and alkalinity are expressed
in terms of electrical conductivity (EC) and sodium adsorption ratio (SAR), respectively [13].
The USSL classification map of the study area was plotted (Figure 10), in which 27% of the
groundwater samples distributed in the high salinity region and the remaining 73% fell in
the very high salinity region. The SAR values varied between 1.64 and 30.33, with a mean
value of 8.47, which were evenly dispersed in the four classification regions S1–S4, and
about half of the water samples fell in the high-very high alkalinity region. In summary, the
study found that the groundwater in the study area has high-very high salinity overall, but
the alkalinity is highly variable and the SAR value is high in some areas, which requires
certain measures before it can be used for irrigation.
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Wilcox plots reflecting salinity and sodium percentage (Na%) allow for the classifica-
tion of irrigation water [45]. Plotting the samples data into the Wilcox plot (Figure 11), it is
found that about 56% of the groundwater samples are in the unsuitable zone, 20% are in
the doubtful-unsuitable category, 6% are in the permissible-doubtful category, and only
18% are in the good-permissible category. Most water samples fall within the doubtful
or unsuitable range, indicating that the groundwater in this area is not suitable for direct
irrigation, mainly due to the high salinity of the groundwater.
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Soil permeability is affected by long-term water use and the concentration of calcium,
magnesium, sodium, and bicarbonate in the water. The Doneen diagrams based on total
salt concentration and permeability index (PI) can be used to characterize the suitability
of groundwater for irrigation. In this regard, the PI can be classified into three categories.
Class I and II have a maximum permeability of 75% or more and are suitable for irrigation,
while class III water indicates a maximum permeability of 25% of the soil and is unsuitable
for irrigation [46]. As shown in Figure 12, most of the groundwater samples in the study
area belong to category I and only five samples belong to category II, indicating that
from the irrigation index (PI), long-term irrigation of groundwater has little impact on
soil permeability.
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The concentration of magnesium in water is one of the most important parameters
to test the suitability of irrigation water. Calcium and magnesium must be present in
suitable concentrations to maintain a balance between them. The increase in magnesium
concentration in irrigation water will lead to an increase in alkalinity and a decrease in
crop yield. Therefore, water with MH value greater than 50% is considered unsuitable for
irrigation. The calculated MH values in the study area range from 21.0% to 90.2%, with a
mean value of 50.6%, of which 54% of the samples were above the MH limit, indicating
that the groundwater magnesium concentration was high and unsuitable for irrigation.

4. Conclusions

In this study, mathematical statistics, Shukalev classification, Gibbs model and ion
ratio were applied to analyze the ion characteristics and evolution mechanism of shallow
groundwater in Kunyu desert area in the southern edge of Tarim Basin. The research
results indicate that the abundance of major cations was in the order of Na+ > Mg2+ >
Ca2+ > K+, while the major anions trend in the study area was in the following order:
Cl− > SO4

2− > HCO3
− > NO3

− > F−. Influenced by the depth of the water table and strong
evaporation, the TDS value of groundwater is relatively high and is primarily semi-saline
water. The hydrochemical type in the study area is mainly the Cl-SO4-Na-Mg type. The ions
in groundwater are mainly derived from the weathering dissolution of saline rock, silicates
and sulfates. The hydrochemical characteristics are mainly controlled by the combination
of evaporation concentration and rock weathering. In addition, the desulfation may also
have some influence on it.

A comprehensive evaluation of drinking water quality was conducted based on WQI.
The overall WQI value in the study area is relatively high, and only parts of the eastern
regions have groundwater suitable for drinking. Two high-value WQI areas occur in the
lower DuWa River and near Kekdric, which is residential area and farmland. Residents in
this area should not use untreated groundwater as drinking water.

Through the USSL classification chart, Wilcox chart, Doneen chart and combining
with the SAR and other indicators to evaluate the water quality of irrigation water, it is
found that although the PI of groundwater in the study area is suitable, the overall salinity
is high-very high, the alkalinity is greatly variable, and the magnesium concentration is
high. Therefore, the direct use of groundwater for irrigation will lead to soil hardening and
low crop yield, and certain measures need to be taken before it can be used for irrigation.

These water samples are from the same batch, and the sampling time is concentrated
in late July 2021. Due to the difficulty of drilling and sampling deep into the desert, there
are few samples taken in the northwest region of the study area. Based on data from other
parts of the study area, the water level depth values inferred using interpolation methods
may slightly differ from the actual values. Furthermore, in a future project research,
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batch sampling in different seasons will be considered, so as to compare and study the
hydrochemical characteristics and water quality status under different seasons and climatic
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15081563/s1, Figure S1: Comprehensive histogram in the
study area.
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