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Abstract: This article analyzes six probability distributions from the Generalized Pareto family, with
three, four and five parameters, with the main purpose of identifying other distributions from this
family with applicability in flood frequency analysis compared to the distribution already used in
the literature from this family such as Generalized Pareto Type II and Wakeby. This analysis is part
of a larger and more complex research carried out in the Faculty of Hydrotechnics regarding the
elaboration of a norm for flood frequency analysis using the linear moments method. In Romania,
the standard method of parameter estimation is the method of ordinary moments, thus the transition
from this method to the method of linear moments is desired. All the necessary elements for the dis-
tribution use are presented, such as the probability density functions, the complementary cumulative
distribution functions, the quantile functions, and the exact and approximate relations for estimating
parameters, for both methods of parameter estimation. All these elements are necessary for a proper
transition between the two methods, especially since the use of the method of ordinary moments is
done by choosing the skewness of the observed data depending on the origin of the maximum flows.
A flood frequency analysis case study, using annual maximum and annual exceedance series, was
carried out for the Prigor River to numerically present the analyzed distributions. The performance
of this distribution is evaluated using a linear moments diagram.

Keywords: floods; frequency analysis; extreme value statistics; Pareto; Wakeby; estimation parameters;
approximate form; method of ordinary moments; method of linear moments

1. Introduction

The frequency analysis of extreme events in hydrology is of particular importance tothe
aim of determining the probability of occurrence of extreme events of a given magnitude.

Flood frequency analysis is important because it determines the maximum flow with
certain exceeding probabilities; they have a defining role in the design of dams [1] and in
water management [2], and can have significant impacts on human lives, infrastructure,
and the environment.

Together with the distributions from the Gamma family and generalized extreme
values, the Generalized Pareto Type 2 distribution (PGII) represents one of the most used
distributions in flood frequency analysis [3–5], especially in the analysis of partial series
using the Annual Exceedance Series (AES) or Peak Over Thresholds (POT).

Among the Generalized Pareto distributions analyzed in this article, the ones that
received considerable attention in flood frequency analysis are the Generalized Pareto
distribution Type II (PGII) using AES or POT [3–5], respectively, the Generalized Pareto
distribution Type III (PGIII) and the Wakeby (WK5) distribution [4,6–8] in the analysis
with the Annual Maximum Series (AMS). The PGIII is also known in the literature as the
log-logistic distribution or generalized logistic distribution [4,6,7,9].

The PGII distribution has a broad use in the analysis of extreme events such as
precipitation frequency analysis [10–15], low flow frequency analysis [16] and in flood
frequency analysis [4,5,17–20].
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Based on Rao and Hamed [4] and Hosking and Wallis [21], respectively, the General-
ized Pareto distribution “is the logical choice for modeling flood magnitudes that exceed
a fixed threshold when it is reasonable to assume that successive floods follow a Poisson
process and have independent magnitudes”.

In the case of the Wakeby distribution, it is a quantile distribution (a distribution
expressible in inverse form) that in certain situations [4,8,22] turns into the Generalized
Pareto Type II distribution. Its application, using the close-form equations for the first four
central moments, was realized for the first time by Anghel and Ilinca [22,23], both for the
four and five parameters of Wakeby distributions.

Other distributions from the Generalized Pareto family have received little to no
attention, such as the four parameters Generalized Pareto Type IV (PGIV4), the three
parameters Generalized Pareto Type IV (PGIV3) and the Generalized Pareto Type I (PGI)
also known as Pearson XI distribution.

Taking this into account, one of the objectives of the article consists of the analysis of
the applicability of other distributions belonging to the same family of Generalized Pareto
distribution in flood frequency analysis. For a comprehensive analysis, in this article, all the
distributions belonging to this family are comparatively analyzed. Although some of these
distributions have been used in the frequency analysis of extreme events in hydrology, this
article brings new elements for these distributions that help to better understand and apply
them in hydrology and beyond.

The research from this article is part of a larger and more complex research carried
out in the Faculty of Hydrotechnics to identify the distributions from different families
of distributions, which have applicability in frequency analysis of extreme values; partial
results are presented in other materials [22–24].

In this article, the estimation methods of the parameters of these distributions are the
method of ordinary moments (MOM) and the method of linear moments (L-moments);
for some of them, it is necessary to solve nonlinear systems of equations, which leads
to some difficulties in using these distributions. Thus, for the ease of applications of
these distributions, parameter approximation relations are presented, using polynomial,
exponential or rational functions.

Only these two methods of estimating parameters are analyzed in this article, because
the MOM is the “parent” method in Romania, and the L-moments method is the method
that is intended to be used in the new regulations regarding the analysis of extreme
phenomena in hydrology, being much more stable and less biased to small lengths of
data [3,4,8], as is the general case of hydrometry in Romania.

However, in recent years it has been demonstrated that this also requires certain cor-
rections of both the statistical indicators and the parameters of the theoretical distributions
obtained with this method [25,26].

All the mathematical elements necessary to use these distributions in the flood fre-
quency analysis are presented.

New elements are presented, such as the first six raw and central moments for the PGII
and PGI distributions; the relations for estimating the parameters with the L-moments for
the PGIV4, PGIV3 and PGI distributions; new approximate parameter estimation relations
for the PGII, PGI and PGIII distributions; the frequency factors for all analyzed distributions,
both for the MOM and the L-moments and approximation relations of the frequency factors
for the PGI, PGII and PGIII distributions.

Thus, all these novelty elements for these distributions presented in Table 1 will help
hydrology researchers to better understand and easily apply these distributions.

The raw and central moments of the analyzed distributions were determined using
the methodology presented in the Supplementary File, based on the probability density
functions. It is for the first time that, for the Generalized Pareto distributions Type II and
Type III, the raw and central moments up to order six are presented, important, along with
the frequency factor, in establishing the confidence interval (for the MOM) using the Kite
approximation [4]. In addition, for the first time, the frequency factor of these distributions
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is presented based on the L-moments method, an important aspect in determining the
confidence interval using the Chow approximation [4], the latter was used in hydrology
only based on the estimation of parameters with the MOM.

Table 1. Novelty elements.

New Elements Distribution

Exact parameter estimation PGIV4, PGI
Approximate estimation of parameters PGIII, PGII, PGI

The frequency factor for MOM PGIV4, PGIV3, PGIII, PGII, PGI, WK5
The frequency factor for L-moments PGIV4, PGIV3, PGIII, PGII, PGI, WK5

Approximate estimation of the frequency factor PGIII, PGII
Raw and central moments * PGIV, PGIII, PGII

* are presented in the Supplementary File.

In order to verify the performances of the proposed distributions, a flood frequency
analysis is carried out, using the Annual Maximum Series (AMS) and the Annual Ex-
ceedance Series (AES) for the Prigor River as a case study. All results are presented in
comparison with the Pearson III distribution, which is the “parent” distribution in flood
frequency analysis in Romania [22]. The purpose of this article was to identify other dis-
tributions from this family with applicability in flood frequency analysis compared to the
distributions already used in the literature from these families such as the PGIII and PGII.
This article does not exclude the applicability of other distributions from other families
(Gamma, GEV, Beta) in flood frequency analysis, especially since these families were also
analyzed within the research carried out in the Faculty of Hydrotechnics and are presented
in other materials [22–24].

Comparing the results and choosing the best-fitted distribution is based on the L-
skewness (τ3) and L-kurtosis (τ4) values and diagram. The values of the RME and RAE
indicators are presented indicatively, knowing that they only properly evaluate the prob-
ability area of the observed values. Outside of this domain (left hand, upper part of the
graph), they lose their relevance, because, in general, the data sets in Romania are not large
enough (n > 80).

This article is organized as follows: The description of the statistical distributions by
presenting the density function, the complementary cumulative function and the quantile
function is in Section 2.1. The presentation of the relations for exact calculation and the
approximate relations for determining the parameters of the distributions is in Section 2.2.
Case studies by applying these distributions in flood frequency analysis for the Prigor River
are in Section 3. Results, discussions and conclusions are in Sections 3–5.

2. Methods

The frequency analysis consists of determining the flows with certain exceedance
probabilities using the AMS and the AES, respectively, with the Prigor River as a case study.

The series of maximum annual flows consists of choosing the maximum value cor-
responding to each year. In many cases, the lower maximum values of the annual data
series do not always represent ”flood”. Thus, the use of frequency analysis using the AES
is required, which allows secondary events, which exceed certain annual maximum values,
which are to be considered as “flood”.

The AES was established by a descending sorting of all independent maximum
values and choosing the first “n” values corresponding to the “n” number of years of
analysis [14,15].

Using this criterion, it is important to verify that two or more maximum flow values
do not come from the same flood. The independence of flows was verified and established
based on the Cunnane criterion and the USWRC 1976 criterion, respectively [27].

The determination of the maximum flows was carried out in stages according to
Figure 1. The verification of the character of outliers (Grubbs, Pilon, Quartile method),
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homogeneity and independence of flows was carried out in the data curation phase. No
outliers were detected.
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Figure 1. Methodological approach.

The estimation of the parameters of the analyzed distributions was done with MOM
and L-moments. The MOM estimation has the disadvantage that for high-order moments
and small data series, in many cases, it generates unrealistic values because the high-order
moments require correction [4,5,28,29]. For skewness, the correction can be made using the
Bobee relation [26] or, as is the practice in Romania [22,30–33], being established according
to the origin of the maximum flows by multiplying the coefficient of variation (Cv) by
a coefficient reflecting this origin. In many cases, the choice is subjective and without
rigor [22,34].

Considering that in many cases it is necessary to solve some systems of non-linear
equations to estimate the parameters of the analyzed distributions, approximate relations
for estimating the parameters were determined in the case of distributions where skewness
and L-skewness depend on a single parameter. In addition, for a simplified and fast
calculation that takes into account the fact that the inverse function can be expressed
with the frequency factor for both MOM [4,23,34] and L-moments [23], the approximation
relations of the factor of frequency (and the coefficients of these relations) are for the most
frequent exceedance probabilities in the analysis of maximum flows. The estimation errors
of both the parameters and the frequency factors are between 10−3 and 10−4.



Water 2023, 15, 1557 5 of 22

The quantile results are compared with those of the Pearson III distribution, which
is the “parent” distribution in Romania in the analysis of extreme events in hydrology,
especially in the flood frequency analysis [22,30,31].

2.1. Probability Distributions

In Table 2 the probability density function, f (x); the complementary cumulative
distribution function, F(x), and the quantile function, x(p), are presented for analyzed
distributions [4–9,14–17]. All F(x) and x(p) of the analyzed distributions were determined
using the methodology presented in the Supplementary file using only f (x).

Table 2. The analyzed probability distributions.

Distr. f(x) F(x) x(p)

PGIV4 λ·
(

x−γ
β

) 1
α −1
·
((

x−γ
β

) 1
α
+1

)−λ−1

α·β

((
x−γ

β

) 1
α
+ 1
)−λ

γ + β ·
(

1
p

1
λ

− 1
)α

PGIV3 λ·
(

x
β

) 1
α −1
·
((

x
β

) 1
α
+1

)−λ−1

α·β
1−

((
x
β

) 1
α
+ 1
)−λ

β ·
(

1
p

1
λ

− 1
)α

PGIII α·
(

x−γ
β

)α−1
·
((

x−γ
β

)α
+1
)−2

β

(
1 +

(
x−γ

β

)α)−1
γ + β ·

(
1
p − 1

) 1
α

PGII 1
β ·
(

1− α
β · (x− γ)

) 1
α−1 (

1− α
β · (x− γ)

) 1
α γ +

β
α · (1− pα)

PGI α
β ·
(

x−γ
β

)−α−1 (
x−γ

β

)−α
γ + β · p− 1

α

WK5 No closed form No closed form
ξ + α

β ·
(

1− pβ
)
− γ

δ ·(
1− p−δ

)
2.2. Parameter Estimation

The parameters estimation of the analyzed statistical distributions is presented for
the MOM and the L-moments method, some of the most used methods in hydrology for
parameter estimation [3–5,7,22].

2.2.1. Generalized Pareto Type IV (PGIV4)

The equations needed to estimate the parameters with MOM have the following
expressions:

µ = γ +
β · α · Γ(α) · Γ(λ− α)

λ · Γ(λ) (1)

σ2 =
β2

λ · Γ(λ) ·
(

Γ(2 · α + 1) · Γ(λ− 2 · α)− Γ(α + 1)2 · Γ(λ− α)2

λ · Γ(λ)

)
(2)

Because they are too long, the relations for estimating the skewness and the kurtosis
are presented in Appendix F.

The equations needed to estimate the parameters with L-moments have the following
expressions:

L1 = γ + β · Γ(λ− α) · Γ(1 + α)

Γ(λ)
(3)

L2 = β ·
(

Γ(λ− α) · Γ(1 + α)

Γ(λ)
− Γ(2 · λ− α) · Γ(1 + α)

Γ(2 · λ)

)
(4)

L3 = β ·
(

Γ(λ− α) · Γ(1 + α)

Γ(λ)
− 3 · Γ(2 · λ− α) · Γ(1 + α)

Γ(2 · λ) + 2 · Γ(3 · λ− α) · Γ(1 + α)

Γ(3 · λ)

)
(5)
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L4 = β ·
(

Γ(λ− α) · Γ(1 + α)

Γ(λ)
− 6 · Γ(2 · λ− α) · Γ(1 + α)

Γ(2 · λ) + 10 · Γ(3 · λ− α) · Γ(1 + α)

Γ(3 · λ) − 5 · Γ(4 · λ− α) · Γ(1 + α)

Γ(3 · λ)

)
(6)

where L1, L2, L3, L4 represent the first four linear moments.

2.2.2. Generalized Pareto Type IV (PGIV3)

The distribution represents a particular case of the Pareto IV distribution when the po-
sition parameter γ = 0. It is also known as the beta_p or Singh–Maddala distribution [9,35].

The equations needed to estimate the parameters with MOM have the following
expressions:

µ = β · Γ(α + 1) · Γ(λ− α)

Γ(λ)
(7)

σ2 =
β2

Γ(λ)
·
(

Γ(2 · α + 1) · Γ(λ− 2 · α)− Γ(α + 1)2 · Γ(λ− α)2

Γ(λ)

)
(8)

Cs =

Γ(λ)2 · Γ(λ− 3 · α) · Γ(1 + 3 · α) + 2 · Γ(λ− α)3 · Γ(1 + α)3

−3 · Γ(λ) · Γ(λ− 2 · α) · Γ(1 + 2 · α) · Γ(λ− α) · Γ(1 + α)(
Γ(λ) · Γ(λ− 2 · α) · Γ(1 + 2 · α)− Γ(λ− α)2 · Γ(1 + α)2

)1.5 (9)

The equations needed to estimate the parameters with L-moments have the following
expressions [35]:

L1 = β · Γ(λ− α) · Γ(1 + α)

Γ(λ)
(10)

L2 = β ·
(

Γ(λ− α) · Γ(1 + α)

Γ(λ)
− Γ(2 · λ− α) · Γ(1 + α)

Γ(2 · λ)

)
(11)

L3 = β ·
(

Γ(λ− α) · Γ(1 + α)

Γ(λ)
− 3 · Γ(2 · λ− α) · Γ(1 + α)

Γ(2 · λ) + 2 · Γ(3 · λ− α) · Γ(1 + α)

Γ(3 · λ)

)
(12)

2.2.3. Generalized Pareto Type III (PGIII)

The equations needed to estimate the parameters with MOM have the following
expressions [3,4]:

µ = γ + β · Γ
(

1 +
1
α

)
· Γ
(

1− 1
α

)
(13)

σ2 = β2 ·
(

Γ
(

1 +
2
α

)
· Γ
(

1− 2
α

)
− Γ

(
1 +

1
α

)2
· Γ
(

1− 1
α

)2
)

(14)

Cs =
Γ
(
1 + 3

α

)
· Γ
(
1− 3

α

)
+ 2 · Γ

(
1 + 1

α

)3
· Γ
(

1− 1
α

)3
− 3 · Γ

(
1 + 2

α

)
· Γ
(
1− 2

α

)
· Γ
(

1 + 1
α

)
· Γ
(

1− 1
α

)
(

Γ
(
1 + 2

α

)
· Γ
(
1− 2

α

)
− Γ

(
1 + 1

α

)2
· Γ
(

1− 1
α

)2
)1.5 (15)

The shape parameter can be obtained approximately depending on the skewness
coefficient using the following function:

If 0.1 ≤ Cs ≤ 7:

α = exp

 2.2463456− 0.8505372 · ln(Cs) + 0.1230871 · ln(Cs)
2+

0.0511417 · ln(Cs)
3 + 0.0024655 · ln(Cs)

4 − 0.006948 · ln(Cs)
5−

0.0017015 · ln(Cs)
6 + 0.0004746 · ln(Cs)

7 + 0.0001676 · ln(Cs)
8

 (16)
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β =
σ√

Γ
(
1 + 2

α

)
· Γ
(
1− 2

α

)
− Γ

(
1 + 1

α

)2
· Γ
(

1− 1
α

)2
(17)

γ = µ− β

α
· Γ
(

1
α

)
· Γ
(

1− 1
α

)
(18)

The equations needed to estimate the parameters with L-moments have the following
expressions:

α =
1
τ3

=
L2

L3
(19)

β =
α2 · L2

Γ
(

1
α

)
· Γ
(

1− 1
α

) (20)

γ = L1 −
β

α
· Γ
(

1
α

)
· Γ
(

1− 1
α

)
(21)

2.2.4. Generalized Pareto Type II (PGII)

The equations needed to estimate the parameters with MOM have the following
expressions [3–5,36]:

µ = γ +
β

α + 1
(22)

σ2 =
β2

(α + 1)2 · (2 · α + 1)
(23)

Cs =
α

|α| ·
2 · (α− 1) · (2 · α + 1)0.5

3 · α + 1
(24)

The shape parameter can be obtained approximately depending on the skewness
coefficient using the following functions:

If Cs < 2:

α = 0.999946019− 1.154837085 · Cs + 0.559584297 · C2
s − 0.152516332 · C3

s − 0.018234805 · C4
s (25)

If Cs ≥ 2:

α =
1.680766638− 0.91819165 · Cs + 0.043608198 · C2

s − 0.002324901 · C3
s

1 + 1.805341085 · Cs
(26)

β = σ · (α + 1) ·
√

2 · α + 1 (27)

γ = µ− β

α + 1
(28)

The frequency factor (for MOM), presented in Appendix B, can be obtained approxi-
mately using a polynomial function of skewness and probability, whose coefficients are
presented in Table A4 from Appendix D.

The equations needed to estimate the parameters with L-moments have the following
expressions:

L1 = γ +
β

α + 1
(29)

L2 =
β

(α + 1) · (α + 2)
(30)
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L3 =
−β · (α− 1)

(α + 1) · (α + 2) · (α + 3)
(31)

Based on these equations, the parameters have the following expressions:

α =
1− 3 · τ3

τ3 + 1
(32)

β = L2 · (α + 1) · (α + 2) (33)

γ = L1 − L2 · (α + 2) (34)

The frequency factor (for L-moments) can be obtained approximately using a polyno-
mial function depending on skewness and probability, whose coefficients are presented in
Table A5 from Appendix D.

2.2.5. Generalized Pareto Type I (PGI)

The equations needed to estimate the parameters with MOM have the following
expressions:

µ = γ +
β · α
α− 1

(35)

σ2 =
α · β2

(α− 1)2 · (α− 2)
(36)

Cs =
α

|α| ·
2 · (α + 1) · (2 · α− 2)0.5

(α− 3) ·
√

α
(37)

The shape parameter can be obtained approximately depending on the skewness
coefficient using the following functions:

If 0.1 ≤ Cs ≤ 1.5:

α =
−1.00404609− 2.127093299 · Cs − 1.230376348 · C2

s − 0.100951553 · C3
s

1 + 1.163661138 · Cs − 0.532187406 · C2
s

(38)

If 1.5 < Cs < 2.8:

α =

25953.828411268− 70057.489315297 · Cs + 66202.507287974 · C2
s−

34489.86058943 · C3
s + 8475.284356191 · C4

s − 823.56972663 · C5
s

1 + 2982.326081943 · Cs − 1054.442301104 · C2
s

(39)

β = σ · (α− 1) ·
√

α− 2
α

(40)

γ = µ− β · α
α− 1

(41)

The equations needed to estimate the parameters with MOM have the following
expressions:

L1 = γ +
β · α
α− 1

(42)

L2 =
α · β

(α− 1) · (2 · α− 1)
(43)

L3 =
α · β · (α + 1)

(α− 1) · (2 · α− 1) · (3 · α− 1)
(44)
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Based on these equations, the parameters have the following expressions:

α =
τ3 + 1

3 · τ3 − 1
(45)

β =
2 · L2

3
− 4 · L2 · (7 · τ3 − 5)

3 · (τ3 + 1) · (3 · τ3 − 1)
(46)

γ =
L2 + 3 · L1

3
− 8 · L2

9 · τ3 − 3
(47)

2.2.6. The Five-Parameter Wakeby Distribution (WK5)

The equations needed to estimate the parameters with MOM have the following
expressions:

µ = ξ +
α

β + 1
− γ

δ− 1
(48)

σ2 =
α2

(β + 1)2 · (2 · β + 1)
− 2 · α · γ

(β + 1) · (β + 1− δ) · (δ− 1)
− γ2

(δ− 1)2 · (2 · δ− 1)
(49)

The equations for skewness and kurtosis are presented in Appendix E.
The equations needed to estimate the parameters with L-moments have the following

expressions [7,8]:

L1 = ξ +
α

β + 1
+

γ

1− δ
(50)

L2 =
α

(β + 1) · (β + 2)
+

γ

(2− δ) · (1− δ)
(51)

L3 =
γ · (δ + 1)

(1− δ) · (2− δ) · (3− δ)
+

α · (1− β)

(β + 1) · (β + 2) · (β + 3)
(52)

L4 =
γ · (δ + 1) · (δ + 2)

(4− δ) · (3− δ) · (2− δ) · (1− δ)
+

α · (2− β) · (1− β)

(β + 1) · (β + 2) · (β + 3) · (β + 4)
(53)

3. Case Study

The presented case study consists in the determination of the maximum annual flows,
on the Prigor River, Romania, using the proposed probability distributions.

The Prigor River is the left tributary of the Nera River, and it is located in the south-
western part of Romania, as shown in Figure 2. The geographical coordinates of the location
are 44◦55′25.5′′ N 22◦07′21.7′′ E.

Water 2023, 15, 1557 10 of 23 
 

 

 
Figure 2. The location of Prigor River and Prigor hydrometric station. 

The main morphometric characteristics of the river are presented in Table 3 [37]. 

Table 3. The morphometric characteristics. 

Length 
[km] 

Average  
Stream Slope [‰] 

Sinuosity 
Coefficient [-] 

Average 
Altitude [m] 

Watershed 
Area [km2] 

33 22 1.83 713 153 

In the section of the hydrometric station, the watershed area is 141 km2 and the aver-
age altitude is 729 m. The river has a length of 33 km, with an average slope of 22‰ and 
a sinuosity coefficient of 1.83. 

There are 31 annual maximum flows; the values are presented in Table 4.  
For the analysis with the AES, the maximum flows resulting from the selection are 

presented in Table 5. 

Table 4. The AMS from the Prigor hydrometric station. 

AMS 
 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Flow [m3/s] 9.96 15 10.1 14.8 7.30 21.2 18.2 21.4 13.1 14.5 35 
  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Flow [m3/s] 19.9 22.1 11.8 80.3 88 51.6 72.2 16.2 42.6 28.5 12.8 
  2012 2013 2014 2015 2016 2017 2018 2019 2020   

Flow [m3/s] 31.2 24.1 52.2 21.1 18.9 6.40 24.9 15.1 36.6   

Table 5. The AES from the Prigor hydrometric station. 

AES 
 1995 1996 1997 2000 2001 2002 2004 2004 2004 2005 2005 

Flow [m3/s] 21.2 18.2 21.4 35 19.9 22.1 80.3 22.2 19.2 88 38.9 
  2005 2005 2006 2007 2007 2007 2008 2009 2009 2010 2012 

Flow [m3/s] 24 17.5 51.6 72.2 33.8 15.9 16.2 42.6 23.1 28.5 31.2 
  2012 2012 2013 2014 2015 2016 2016 2018 2020   

Flow [m3/s] 27.3 18.7 24.1 52.2 21.1 18.9 16.8 24.9 36.6   

The main statistical indicators of the data series are presented in Table 6. 
  

Figure 2. The location of Prigor River and Prigor hydrometric station.



Water 2023, 15, 1557 10 of 22

The main morphometric characteristics of the river are presented in Table 3 [37].

Table 3. The morphometric characteristics.

Length
[km]

Average
Stream Slope

[‰]

Sinuosity
Coefficient [-]

Average
Altitude [m]

Watershed
Area [km2]

33 22 1.83 713 153

In the section of the hydrometric station, the watershed area is 141 km2 and the average
altitude is 729 m. The river has a length of 33 km, with an average slope of 22‰ and a
sinuosity coefficient of 1.83.

There are 31 annual maximum flows; the values are presented in Table 4.
For the analysis with the AES, the maximum flows resulting from the selection are

presented in Table 5.

Table 4. The AMS from the Prigor hydrometric station.

AMS

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Flow [m3/s] 9.96 15 10.1 14.8 7.30 21.2 18.2 21.4 13.1 14.5 35
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Flow [m3/s] 19.9 22.1 11.8 80.3 88 51.6 72.2 16.2 42.6 28.5 12.8
2012 2013 2014 2015 2016 2017 2018 2019 2020

Flow [m3/s] 31.2 24.1 52.2 21.1 18.9 6.40 24.9 15.1 36.6

Table 5. The AES from the Prigor hydrometric station.

AES

1995 1996 1997 2000 2001 2002 2004 2004 2004 2005 2005

Flow [m3/s] 21.2 18.2 21.4 35 19.9 22.1 80.3 22.2 19.2 88 38.9
2005 2005 2006 2007 2007 2007 2008 2009 2009 2010 2012

Flow [m3/s] 24 17.5 51.6 72.2 33.8 15.9 16.2 42.6 23.1 28.5 31.2
2012 2012 2013 2014 2015 2016 2016 2018 2020

Flow [m3/s] 27.3 18.7 24.1 52.2 21.1 18.9 16.8 24.9 36.6

The main statistical indicators of the data series are presented in Table 6.

Table 6. The statistical indicators of the data series.

Prigor River

Statistical Indicators

µ σ Cv Cs Ck L1 L2 L3 L4 τ2 τ3 τ4

[m3/s] [m3/s] [-] [-] [-] [m3/s] [m3/s] [m3/s] [m3/s] [-] [-] [-]

AMS 27.6 21.1 0.762 1.66 5.16 27.6 10.7 4.26 2.43 0.386 0.399 0.228
AES 31.7 18.9 0.595 1.83 5.77 31.7 9.30 4.22 2.14 0.293 0.454 0.230

µ, σ, Cv, Cs, Ck , L1, L2, L3, L4, τ2, τ3, τ4 represent the mean, the standard deviation, the coefficient of variation, the
skewness, the kurtosis, the four L-moments, the L-coefficient of variation, the L-skewness and the L-kurtosis,
respectively. For parameter estimation with the L-moments, the data series must be in ascending order for the
calculation of natural estimators and L-moments, respectively.
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4. Results

The proposed distributions from the Generalized Pareto family, were applied to
perform a flood frequency analysis using the annual maximum series (AMS) and the
annual exceedance series (AES) analysis, on the Prigor River.

The MOM and the L-moments method were used to estimate the parameters of the
distributions. For the MOM, the skewness coefficient was chosen depending on the origin
of the flows according to Romanian regulations [22,30] based on some multiplication
coefficients for the coefficient of variation (Cv). For the Prigor River, the multiplication
coefficient 3, applied to the coefficient of variation, resulted in a skewness of 2.29 for AMS
and 1.786 for AES. In Tables 7 and 8 the resulted values of quantile distributions for some
of the most common exceedance probabilities in flood frequency analysis are presented.

Table 7. Quantile results of the analyzed distributions for AMS.

Distribution

Annual Maximum Series (AMS)

Exceedance Probabilities [%]

MOM L-Moments

0.01 0.1 0.5 1 2 3 5 80 0.01 0.1 0.5 1 2 3 5 80

PE3 214 160 123 107 90.7 81.5 69.5 12.0 231 172 130 113 95.4 85.3 72.7 11.4
PGIV4 265 166 118 100 84.7 76.2 66.1 11.3 364 217 145 119 96.9 84.9 70.9 11.7
PGIV3 260 166 118 101 85.5 76.9 66.6 11.3 813 323 169 128 96.8 82.1 66.5 12.6
PGIII 279 169 117 98.7 82.7 74.2 64.3 12.0 800 320 168 128 95.7 82.1 66.6 12.5
PGII 225 162 122 106 89.6 80.4 69.1 11.8 329 207 142 118 96.8 85.1 71.4 11.7
PGI 171 138 112 100 87.6 80 70.2 10.5 329 207 142 118 86.8 85.1 71.4 11.7

WK5 227 163 122 106 89.4 80.3 69.00 11.8 358 216 145 120 97.0 85.0 71.0 11.7

Table 8. Quantile results of the analyzed distributions for AES.

Distribution

Annual Exceedance Series (AES)

Exceedance Probabilities [%]

MOM L-Moments

0.01 0.1 0.5 1 2 3 5 80 0.01 0.1 0.5 1 2 3 5 80

PE3 178 138 110 97.7 85.4 78.2 69.1 16.6 233 172 130 113 95.3 85.3 72.9 18.0
PGIV4 233 150 108 93.5 80.3 73.2 64.9 17.2 277 190 137 116 96.0 85.1 72.0 18.1
PGIV3 219 146 108 94.3 81.6 74.6 66.1 16.6 836 327 170 128 96.4 81.7 66.4 19.2
PGIII 232 150 109 93.7 80.4 73.2 64.7 17.4 940 338 168 126 94.4 80.1 65.3 18.8
PGII 170 136 110 98.0 86.0 78.9 69.7 16.6 452 240 150 121 96.4 83.9 69.9 18.3
PGI 134 117 101 92.6 83.5 77.7 70.0 15.6 452 240 150 121 96.4 83.9 69.9 18.3

WK5 150 128 108 98.1 87.3 80.5 71.4 17.0 202 164 130 114 96.7 86.6 73.7 18.2

Figures 3 and 4 show the fitting distributions for AMS and AES for the Prigor River.
For plotting positions, the Alexeev formula was used [2].

In Figure S1, from the Supplementary Material, the confidence interval for each
analyzed distribution is presented, both for the MOM and L-moments, using Chow’s
relation [4,36] for a 95% confidence level.

Table 9 shows the values of the distributions parameters for the two methods of
estimating and for both the AMS and AES.
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Table 9. Parameter values of each distribution for MOM and L-moments.

Distri.

AMS AES

MOM L-Moments MOM L-Moments

α β γ λ δ ξ α β γ λ δ ξ α β γ λ δ ξ α β γ λ δ ξ

PE3 0.766 24.1 9.2 - - - 0.694 26.9 9.0 - - - 1.254 16.9 10.6 - - - 0.526 28.2 16.9 - - -
PGIV4 0.505 47.4 −2.51 2.66 - - 0.940 80.0 7.47 5.19 - - 0.222 49.3 −17 1.26 - - 1.29 1649 16.2 42.9 - -
PGIV3 0.58 52.7 - 3.27 - - 0.37 20.3 - 0.92 - - 0.431 46.7 - 2.55 - - 0.15 19.6 - 0.36 - -
PGIII 5.23 52.9 −28.5 - - - 2.51 20.3 0.90 - - - 6.075 57.1 −28 - - - 2.2 14.2 11.2 - - -
PGII −0.042 19.3 7.5 - - - −0.14 17.1 7.78 - - - 0.039 20.4 12.1 - - - −0.25 12.2 15.4 - - -
PGI −15.4 −367 373 - - - 7.14 122 −114 - - - −6.735 −166 176 - - - 4.023 49.2 −33.8 - - -

WK5 3.317 4.014 19 - 0.047 7.057 2.82 2.09 16 - 0.17 7.56 −20.5 1.82 27.5 - −0.133 14.7 −508 0.28 515 - −0.25 16.33

Considering that it is desired to apply the distributions using the L-moments method,
choosing the best distribution is based on the L-skewness (τ3) and L-kurtosis (τ4) values and
diagram. The values of the RME and RAE indicators [38–40] are presented informatively,
knowing that they are relevant only in the area of the observed data.

The distribution performance values are presented in Tables 10 and 11. The values for
the best-fitted model are highlighted in bold.
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Table 10. Distribution performance values for AMS.

Distr.

Statistical Measures

Methods of Parameters Estimation
AES Values

MOM L-Moments

RME RAE RME RAE τ3 τ4 τ3 τ4

PE3 0.0238 0.0879 0.0224 0.0902

0.399

0.192

0.399 0.228

PGIV4 0.0352 0.1574 0.0184 0.0772 0.228
PGIV3 0.0300 0.1394 0.0183 0.0750 0.303
PGIII 0.0533 0.2081 0.0181 0.0736 0.299
PGII 0.0228 0.1047 0.0190 0.0787 0.221
PGI 0.0470 0.2327 0.0646 0.2671 0.221

WK5 0.0184 0.0807 0.0185 0.0775 0.228

Table 11. Distribution performance values for AES.

Distr.

Statistical Measures

Methods of Parameters Estimation
AES Values

MOM L-Moments

RME RAE RME RAE τ3 τ4 τ3 τ4

PE3 0.0219 0.1063 0.0093 0.0405

0.454

0.220

0.454 0.230

PGIV4 0.0395 0.1736 0.0094 0.0376 0.230
PGIV3 0.0347 0.1556 0.0156 0.0680 0.348
PGIII 0.0399 0.1747 0.0153 0.0656 0.338
PGII 0.0195 0.0967 0.0108 0.0394 0.272
PGI 0.0269 0.1313 0.0108 0.0394 0.272

WK5 0.0137 0.0689 0.0086 0.0359 0.230

5. Discussions

In this article, the applicability of the distributions from the Generalized Pareto family
in flood frequency analysis was analyzed using the Prigor River as a case study.

The analysis was performed using the AMS and AES. As can be seen both graphically
(Figure 4) and tabularly (Table 7), the analysis with the AMS is more conservative than the
analysis with the AES.

The main advantage of the AMS analysis is the ease of data selection, these being
chosen as the maximum flow corresponding to each year. The disadvantage of the analysis
is the use of maximum flows characteristic of each year, which do not always represent
floods. These values located in the right-hand (high probabilities) lead to a steeper graph
with higher values of quantiles in the field of low probabilities (left-hand).

The advantage of the analysis with AES is that the flows of the data series always
represent floods. The disadvantage is the greater effort in data selection, through additional
analyzes regarding data independence, respecting the condition that these maximum flows
do not come from the same flood.

The estimation methods of the analyzed distribution parameters were performed for
the MOM (standard method in Romania) and L-moments, two of the most used estimation
methods in hydrology.

For the MOM analysis, the skewness was chosen depending on the origin of the flows,
as is the hydrological practice in Romania. The use of multiplication coefficients for the
calculation of the corrected skewness is an outdated method based on principles from the
abrogated norms and a legacy from the USSR normative standards.

All analyzed distributions represent particular cases of the Generalized Pareto distri-
bution, which are distributions of three and four parameters. The Wakeby distribution,
which is a five-parameter distribution, was analyzed because it has as its particular case the



Water 2023, 15, 1557 14 of 22

PGII distribution, which is a quantile function whose structure is made up of two quantile
functions of the PGII distribution.

All the results obtained in the case study are presented in comparison to the Pearson
III distribution, which is considered the “parent” distribution in Romania, for the most
used exceedance probabilities in hydrology.

Considering that it is desired to implement the L-moments method in Romania,
according to Tabel 10 and Tabel 11, the best-fitted distributions are the PGIV4 and WK5
distributions, which best approximate the statistical indicators of the data set, τ3 and τ4.
The PGII and PGI distributions give satisfactory results because the natural values τ3 and
τ4 of the distributions are close to those of the data sets.

For the PE3, PGIV3, PGIII, PGII and PGI, which are three parameter distributions, the
resulting values are characterized by a high degree of uncertainty, especially in the area of
small exceedance probabilities (left-hand), due to the fact that a proper calibration of the
higher moments cannot be done. The confidence intervals for the analyzed distributions
are presented in the Supplementary Material.

As observed in other materials [24], the apparent stability of the Pearson III distribution
is due to the fact that the variation of the shape parameter for the two estimation methods
does not differ much, except in the upper area of Cs and τ3. The same cannot be said, for
example, about the PGI, PGII and PGIII distributions, in which the variation is extremely
large. Figure 5 shows the variation graph of the shape parameter for the PE3, PGIII,
PGII and PGI distributions. As it could be observed in Section 2.1, both skewness and
L-skewness depend only on the shape coefficient α.
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The results of the quantiles obtained with the L-moments method, for the PGII and
PGI distributions, both for the AES and AMS, presented in Tables 4 and 5, are the same,
the two distributions being mutual special cases. The WK5 and PGIV4 distributions best
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approximate, as expected, the values of the indicators obtained with L-moments, which are
distributions of five and four parameters, respectively.

Figure 6 shows the τ3 − τ4 variation diagram of the distributions as well as their
relation to the values of the two indicators of the data sets.
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Regarding the results obtained with MOM, for AES it can also be observed that the
PGII and WK5 distributions have extremely close quantile values, which is due to the
fact that for the same Cs they correspond to the same value of Ck, the WK5 distribution
becoming the PGII distribution, as it was highlighted in other materials [4,8,9,22]. This is
due to the choice of skewness based on the origin of the maximum flows. This is another
disadvantage of using MOM in Romania.

Concerning the WK5 distribution, although it is a distribution that was introduced
in flood frequency analysis to achieve the so-called “separation effect” described by
Matalas [9,22], it can be seen that it is extremely sensitive depending on the analysis used
(AMS or AES), and this is due to the particular cases in which it can take.

Figure 7 shows the skewness (Cs)-kurtozis (Ck) variation diagram of the distributions.
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6. Conclusions

The Generalized Pareto distribution represents a usual distribution used in the analysis
of extreme events in hydrology. In flood frequency analysis this is especially applied using
the partial series of maximum flows.

This article presents five distributions of three, four and five parameters that represent
different forms of the Generalized Pareto distribution, some of them received limited
attention in flood frequency analysis.

These distributions were analyzed (besides other families of distributions) in the
research carried out in the Faculty of Hydrotechnics regarding the elaboration of a norm in
Romania for the frequency analysis using the L-moments method.
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The main purpose of the article was to identify other distributions from the same
family that have applicability in flood frequency analysis using both AMS and AES.

For the transparency and ease of use of these distributions, all the necessary elements
for their use are presented, such as the exact and approximate relations of the parameters’
estimation, and of the frequency factors, which eliminates the need for iterative numerical
calculation, thus facilitating their applicability.

The performances of these distributions were verified in flood frequency analysis of
the Prigor River, using the Annual Maximum Series and the Annual Exceedance Series.

The results were evaluated using the values of τ3 and τ4, based on the τ3 − τ4 diagram,
compared to that of the data sets, which is the easiest and most accessible selection criterion.

Based on this study’s results, and also from the research carried out in the Faculty of
Hydrotechnics for other sites, for flood frequency analysis and the L-moments estimation
method, good candidates, from the Generalized Pareto family, are the PGIV4 and WK5
distributions, which are distributions of four and five parameters, which have the advantage
that they can calibrate all linear moments.

Regarding the Wakeby distribution, this requires an additional analysis because in
some cases it turns into the PGII distribution, which is a three-parameter distribution that
does not achieve a satisfactory calibration of the linear moments.

In general, the three parameters distributions can be used in the analysis with L-
moments, but the selection of their use must be made based on the τ3-τ4 diagram so that
the natural values τ3 and τ4 of the distribution to be very close to those of the observed
data. Based on the work of Anghel si Ilinca [23], in Appendix A the τ3 − τ4 diagram for a
wide range of distributions used in hydrology is presented.

Mathematical support in statistical analysis is useful because the use of software
(EasyFit, HEC-SSP, etc) without knowledge of mathematical foundations often leads to
superficial analyzes with negative consequences. Another important aspect of the presenta-
tion of all the mathematical elements necessary for the application of these distributions is
the fact that the software dedicated to statistical analysis is limited and does not offer the
possibility of choosing the skewness coefficient depending on the origin of the maximum
flows, as is the practice in Romania.

The research in this article is part of a more complex research carried out within the
Faculty of Hydrotechnics, with the main aim of establishing the necessary guidelines for a
robust, clear and concise norm regarding the determination of the maximum flow using
the L-moment estimation method.
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Abbreviations

MOM the method of ordinary moments
L-moments the method of linear moments
µ expected value; arithmetic mean
σ standard deviation
Cv coefficient of variation
Cs coefficient of skewness; skewness
Ck coefficient of kurtosis; kurtosis
L1, L2, L3 linear moments
τ2, LCv coefficient of variation based on the L-moments method
τ3, LCs coefficient of skewness based on the L-moments method
τ4, LCk coefficient of kurtosis based on the L-moments method
Distr. Distributions
RME relative mean error
RAE relative absolute error
xi observed values

Appendix A. The Variation of the L-Kurtosis—L-Skewness

In the next section the variation of the L-kurtosis depending on the positive L-
skewness, obtained with the L-moments method, for certain theoretical distributions often
used in hydrology is presented.
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Appendix B. The Frequency Factors for the Analyzed Distributions

Table A1 shows the expressions of the frequency factors for MOM and L-moments.
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Table A1. Frequency factors.

Distribution

Frequency Factor, Kp(p)

Quantile Function (Inverse Function)

Method of Ordinary Moments (MOM) L-Moments

x(p)=µ+σ·Kp(p) x(p)=L1+L2·Kp(p)

PGIV4
Γ(λ)·

(
p−

1
λ −1

)
−Γ(α+1)·Γ(λ−α)√

Γ(2·α+1)·Γ(λ−2·α)·Γ(λ)−Γ(α+1)2·Γ(λ−α)2

(
p−

1
λ −1

)α

− Γ(α+1)·Γ(λ−α)
Γ(λ)

Γ(α+1)·
(

Γ(λ−α)
Γ(λ) −

Γ(2·λ−α)
Γ(2·λ)

)

PGIV3
Γ(λ)·Γ

(
p−

1
λ −1

)α

−Γ(α+1)·Γ(λ−α)√
Γ(2·α+1)·Γ(λ−2·α)·Γ(λ)−Γ(α+1)2·Γ(λ−α)2

Γ
(

p−
1
λ −1

)α

− Γ(α+1)·Γ(λ−α)
Γ(λ)

Γ(α+1)·
(

Γ(λ−α)
Γ(λ) −

Γ(2·λ−α)
Γ(2·λ)

)

PGIII

(
1
p−1

) 1
α − π

α·sin( π
α )√

2·π
α·sin( 2·π

α )
− π2

α2 ·sin( π
α )2

(
1−p

p

) 1
α ·α2·sin( π

α )
π − α

PGII
√

1−2·α
α · (1− (1 + α) · pα) 1+ 2

α · (1− pα)− (α+ 3) ·pα

PGI α
|α| ·

(α−1)·
√
α−2·

(
(1−p)−

1
α − α

α−1

)
√
α

α
|α| ·

(α−1)·(2·α−1)·
(
(1−p)−

1
α − α

α−1

)
α

WK5

α
β ·
(
1− pβ

)
− γ

δ ·
(
1− p−δ

)
−

α
β+1 + γ

δ−1√√√√√√√
α2

(β+1)2·(2·β+1)
− 2·α·γ

(β+1)·(β+1−δ)·(δ−1)

− γ2

(δ−1)2·(2·δ−1)

α
β
·(1−pβ)−γ

δ
·(1−p−δ)− α

β+1−
γ

1−δ
α

(β+1)·(β+2)+
γ

(2−δ)·(1−δ)

Appendix C. Estimation of the Frequency Factor for the PGIII Distribution

The frequency factor, for MOM, can be estimated using the following polynomial
function:

Kp(p) = a + b ·Cs + c ·C2
s + d ·C3

s + e ·C4
s + f ·C5

s + g ·C6
s + h ·C7

s

Table A2. The frequency factor for estimation with MOM.

P [%] a b c d e f g h

0.01 5.111737 2.313409 1.34999 −0.776028 0.182704 −0.0232091 1.5563 × 10−3 −4.330 × 10−5

0.1 3.808941 1.377403 345331 −0.318752 0.0903167 −0.0130843 9.7470 × 10−4 −2.960 × 10−5

0.5 2.912620 0.812083 0.0170251 −0.114635 0.0394326 −6.29710 × 10−3 4.9970 × 10−4 −1.590 × 10−5

1 2.527259 0.600436 −0.0535487 −0.0565675 0.0233015 3.98010 × 10−3 3.2800 × 10−4 1.070 × 10−5

2 2.140031 0.411098 −0.0911407 −0.0147256 0.0107835 −2.10400 × 10−3 1.8480 × 10−4 −6.200 × 10−6

3 1.911447 0.311395 −0.100372 2.88960 × 10−3 5.08580 × 10−3 −1.21600 × 10−3 1.1520 × 10−4 −4.100 × 10−6

5 1.619324 0.197967 −0.100797 0.0185338 −4.64200 × 10−4 −3.15600 × 10−4 4.3000 × 10−5 −1.700 × 10−6

10 1.208950 0.066749 −0.0847851 0.0291844 −5.24780 × 10−3 5.25900 × 10−4 −2.7400 × 10−5 6.000 × 10−7

20 0.763538 −0.0362722 −0.0531111 0.0286703 −6.99220 × 10−3 9.32800 × 10−4 −6.5700 × 10−5 1.900 × 10−6

40 0.224364 −0.103222 −6.80020 × 10−3 0.0162353 −5.34190 × 10−3 8.40400 × 10−4 −6.63000 × 10−5 2.100 × 10−6

50 0.001255 −0.111838 0.0119116 8.67100 × 10−3 −3.76100 × 10−3 6.53200 × 10−4 −5.44000 × 10−5 1.8000 × 10−6

80 −0.762791 −0.0547579 0.0593627 −0.0207334 3.89270 × 10−3 −4.16000 × 10−4 2.37000 × 10−5 −6.000 × 10−7

90 −1.210684 0.0415455 0.0668030 −0.036012 8.85020 × 10−3 −1.19170 × 10−3 8.48000 × 10−5 −2.500 × 10−6

The frequency factor, for L-moments, can be estimated using the following rational
function:

Kp(p) =
a + b · τ3

1 + c · τ3 + d · τ2
3 + e · τ3

3 + f · τ4
3 + g · τ5

3 + h · τ6
3
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Table A3. The frequency factor for estimation with L-moments.

P
[%] a b c d e f g h

0.01 9.0865 −9.0870 −5.6824 14.136 −19.532 15.682 −6.8872 1.2851
0.1 6.8300 −6.8367 −4.3709 8.5137 −9.3692 6.1000 −2.2178 0.35120
0.5 5.3161 −5.3440 −3.2817 4.4099 −2.2009 −1.0766 1.7928 0.61653
1 4.6040 −4.6529 −2.9168 3.6177 −1.7699 −0.69899 1.2546 −0.43830
2 3.8961 −3.9826 −2.5218 2.8156 −1.2339 −0.62320 0.99972 −0.35026
3 3.4784 −3.5994 −2.2840 2.4127 −1.0762 −0.39996 0.73125 −0.26304
5 2.9457 −3.1313 −1.9655 1.9096 −0.81060 −0.29906 0.55319 −0.20219
10 2.1976 −2.5343 −1.4975 1.3114 −0.53308 −0.15403 0.33379 −0.12411
20 1.3864 −2.0186 −0.95952 0.81735 −0.27803 −0.074878 0.18663 −0.059390
40 0.40582 −0.40582 −0.25879 0.38534 0.16327 −0.042751 −0.062078 0.088377
50 1.934 × 10−4 −1.6511 0.033144 0.37384 0.19857 0.011770 −0.031091 0.064863
80 −1.3869 −0.52845 −0.095705 1.2009 −0.42838 0.047547 0.40683 −0.21635
90 −2.1977 1.0582 −0.12265 0.70118 −0.41310 −0.11862 0.17678 −0.084297

Appendix D. Estimation of the Frequency Factor for the PGII Distribution

The frequency factor, for MOM, can be estimated using the following polynomial
function:

Kp(p) = a + b ·Cs + c ·C2
s + d ·C3

s + e ·C4
s + f ·C5

s + g ·C6
s + h ·C7

s

Table A4. The frequency factor for estimation with MOM.

P [%] a b c d e f g h

0.01 1.932014 0.061904 2.87112 −0.795586 0.0495418 1.03747 × 10−2 −1.7871 ×
10−3 7.910 × 10−5

0.1 1.809609 0.670411 2.12699 −1.15732 0.284537 −3.77979 ×
10−2 2.6299 × 10−3 −7.530 × 10−5

0.5 1.704417 1.213220 0.762347 −0.651934 0.198072 −3.05909 ×
10−2 2.3988 × 10−3 −7.580 × 10−5

1 1.664419 1.314780 0.178438 −0.355564 0.125632 −2.09008 ×
10−2 1.7176 × 10−3 −5.610 × 10−5

2 1.622183 1.265729 −0.290832 −0.0764258 0.0500117 −9.92700 ×
10−3 8.9160 × 10−4 −3.080 × 10−5

3 1.590286 1.151049 −0.479305 0.0583412 0.0103575 −3.85500 ×
10−3 4.1630 × 10−4 −1.570 × 10−5

5 1.530888 0.909001 −0.598849 0.179061 −0.0288591 2.47620 × 10−3 −9.6700 ×
10−5 9.000 × 10−7

10 1.377562 0.424384 −0.522494 0.228357 −0.0536328 7.14020 × 10−3 −5.0690 ×
10−4 1.490 × 10−5

20 1.047703 −0.1346753 −0.197916 0.136073 −0.0393659 5.98720 × 10−3 −4.6780 ×
10−4 1.480 × 10−5

40 0.355375 −0.4660863 0.182363 −0.0347085 2.20900 × 10−3 2.60000 × 10−4 −4.8700 ×
10−5 2.100 × 10−6

50 0.0051002 −0.428129 0.242055 −0.0758534 0.0142094 −1.57970 ×
10−3 9.61000 × 10−5 −2.5000 ×

10−6

80 −1.042946 0.1095022 0.0744175 −0.0546187 0.0156946 −2.36020 ×
10−3 1.82600 × 10−4 −5.700 × 10−6

90 −1.389758 0.3823067 −0.0662687 −9.67300 ×
10−3 6.70430 × 10−3 −1.27020 ×

10−3 1.09700 × 10−4 −3.700 × 10−6

The frequency factor, for L-moments, can be estimated using the following polynomial
function:

Kp(p) = a + b · τ3 + c · τ2
3 + d · τ3

3 + e · τ4
3 + f · τ5

3 + g · τ6
3 + h · τ7

3 + i · τ8
3 + j · τ9

3
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Table A5. The frequency factor for estimation with L-moments.

P [%] a b c d e f g h i j

0.01 2.8976 16.049 −166.33 2107.2 −11711 41260 −84364 1.0671 ×
105 −68465 14604

0.1 2.9921 7.9122 21.160 46.340 207.03 −394.80 1467.1 −2026.5 667.72 −
0.5 2.9751 7.0733 21.320 5.3452 97.924 −99.393 −95.564 −59.326 − −
1 2.9389 6.8741 14.223 10.895 33.199 −116.24 47.113 − − −
2 2.8667 6.5598 3.8790 28.740 −66.614 23.564 − − − −
3 2.8214 5.3368 6.0252 1.9543 −31.305 14.174 − − − −
5 2.7060 3.9951 4.1471 −13.220 −2.6956 4.0738 − − − −

10 2.4017 2.0082 −1.6983 −9.9252 7.8868 −1.6725 − − − −
20 1.7989 −0.48676 −4.2616 1.0072 1.7490 −0.80770 − − − −
40 0.60025 −2.4049 −0.31267 2.3727 −1.6966 0.44147 − − − −

50 3.8891 ×
10−4 −2.3323 1.3905 0.48092 −0.81390 0.27475 − − − −

80 −1.8003 0.52569 1.0120 −1.3741 0.86642 −0.22985 − − − −
90 −2.4001 2.1286 −0.96924 0.23252 0.041754 −0.033573 − − − −

Appendix E. The Skewness and Kurtosis for the WK5 Distribution

Cs =

6·α·γ2·(δ2−δ·β+δ−1)
(β+1)·(β+1−2·δ)·(β+1−δ)·(δ−1)2·(2·δ−1)

+
6·α2·γ·(β2−1−β·(1+δ))

(β+1)2·(2·β+1)·(β+1−δ)·(δ−1)·(2·β+1−δ)
−

2·γ3·(1+δ)

(δ−1)3·(1+δ·(6·δ−5))
− 2·α3·(β+1)

(β+1)3·(1+β·(5+6·β))(
α4

(β+1)2·(2·β+1)
− γ2

(δ−1)2·(2·δ−1)
+ 2·α·λ

(β+1)·(δ−1)·(δ−β−1)

)1.5

Ck =

3 ·



α4·(2·β2−β+3)
(β+1)4·(24·β3+26·β2+9·β+1)

− γ4·(3+δ+2·δ2)
(δ−1)4·(4·δ−1)·(1+δ·(6·δ−5))

+

2·α2·γ2·


−9− β · (30 + β · (29 + 4 · β · (2 + β)))+
β · δ · (71 + β · (43 + 2 · β · (7 + 4 · β)))−

δ2 · (29 + β · (43 + 4 · (6 + 7 · β)))+
2 · δ3 · (4 + 7 · β · (1 + 2 · β))− 4 · δ4 · (1 + 2 · β) + 30 · δ


(β+ 1)2 · (2 · β+ 1) · (1 + β− 2 · δ) · (1 + 2 · β− 2 · δ)·

(1 + β− δ) · (1 + 2 · β− δ) · (δ− 1)2 · (2 · δ− 1)

+

4·α·γ4·

 3 + 2 · β+ β2 − δ · (12 + β · (3 + β))−
δ2
(

11 + β+ 2 · β2
)
− 2 · δ3 · (1 + 3 · β)− 4 · δ4


(1+β)·(1+β−3·δ)·(1+β−2·δ)·(1+β−δ)·(δ−1)3·(1+δ·(6·δ−5))

+

4·α3·γ·

 3 + 4 · β4 + β3 · (2− 6 · δ) + δ · (δ− 2)+
β · (12 + δ · (δ− 3)) + β2 · (11 + δ · (2 · δ− 1))


(1+β)3·(1+β·(6·β+5))·(1+β−δ)·(1+2·β−δ)·(1+3·β−δ)·(δ−1)


(

γ2

(δ−1)2·(2·δ−1)
− α4

(β+1)2·(2·β+1)
+ 2·α·λ

(β+1)·(δ−1)·(δ−β−1)

)2

Appendix F. The Skewness and Kurtosis for the PGIV Distribution

Cs =

Γ(1+3·α)·Γ(λ−3·α)
λ·Γ(λ) + 2·Γ(1+α)3·Γ(λ−α)3

Γ(λ+1)3 − 3·α·Γ(1+2·α)·Γ(λ−2·α)·Γ(α)·Γ(λ−α)

Γ(λ+1)2(
Γ(1+2·α)·Γ(λ−2·α)

λ·Γ(λ) − Γ(1+α)2·Γ(λ−α)2

Γ(λ+1)2

)3/2
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Ck =

Γ(1+4·α)·Γ(λ−4·α)
Γ(λ+1) − 4 · Γ(1+3·α)·Γ(λ−3·α)·Γ(1+α)·Γ(λ−α)

Γ(λ+1)2 +

6 · Γ(1+2·α)·Γ(λ−2·α)·Γ(1+α)2·Γ(λ−α)2

Γ(λ+1)3 − 3 · Γ(1+α)4·Γ(λ−α)4

Γ(λ+1)4(
Γ(1+2·α)·Γ(λ−2·α)

Γ(λ+1) − Γ(1+α)2·Γ(λ−α)2

Γ(λ+1)2

)2
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