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Abstract: Evapotranspiration (ET) is an important channel for water transport and energy conversion
in land–air systems, and the spatial quantification of actual ET is crucial for water resource manage-
ment and scheduling in arid areas. Using the Surface Energy Balance Algorithm for Land (SEBAL)
model and satellite images, this study determined the actual ET during the growing season of 2020 in
the Shiyang River Basin of northwest China and investigated the driving mechanism of ET using a
principal component regression. The results showed that the ET obtained using the Penman-Monteith
equation exhibited a good correlation with the ET estimated using SEBAL (R2 = 0.85). Additionally,
SEBAL overestimated ET to some extent compared to the Moderate-Resolution Imaging Spectrora-
diometer (MODIS) ET (MOD16) product. The daily ET (ETd) in the Shiyang River Basin showed
a single-peak variation during the growing season, with the maximum value occurring around
mid-July. Spatially, the ET gradually increased from northeast to southwest with the variation in
the land use/land cover (LULC) type. Among the six LULC types, ETd was higher for woodland,
water body, and grassland, all exceeding 5.0 mm/d; farmland and built-up land had ETd close to
3.9 mm/d; and barren land had the lowest ETd of below 2.5 mm/d. Furthermore, the standardized
regression coefficients indicated that the Normalized Difference Vegetation Index (NDVI) is the main
driving factor influencing ET. Overall, the SEBAL model has the potential to estimate spatially actual
ET, and the study results provide a scientific basis for water resource accounting and hydrological
analysis in arid areas.

Keywords: evapotranspiration; SEBAL; remote sensing; principal component regression; Shiyang
River Basin

1. Introduction

Evapotranspiration (ET) is a critical component of the water cycle and a major process
of surface energy exchange, and its intensity is closely related to the soil condition, crop
condition, and atmospheric environment [1–3]. In the terrestrial water balance, more than
60% of the rainfall returns to the atmosphere as ET, especially in some dry regions where
ET is considerably greater than precipitation, and the water used for ET mainly stems
from groundwater and irrigation water [4,5]. Therefore, thoroughly understanding the
spatiotemporal distribution of ET in arid regions is important for guiding agricultural
irrigation, monitoring drought on farmland, optimizing water allocation, and improving
the efficiency of agricultural water use [6,7]. Currently, the ET estimation approaches can be
classified into two types. The first type is mainly based on the traditional methods of hydrol-
ogy and meteorology, including the water balance equation [8], aerodynamic method [9],
Priestley and Taylor equation [10], eddy covariance [11], and the Food and Agriculture
Organization of the United Nations (FAO) Penman-Monteith (P-M) equation [12]. The other
type is mainly based on remote sensing satellite technology modeling approaches, such as
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the Simplified Surface Energy Balance Index (S-SEBI) [13], Surface Energy Balance System
(SEBS) [14], Two-Source Energy Balance (TSEB) [15], Mapping of Evapotranspiration with
Internalized Calibration (METRIC) [16], and Surface Energy Balance Algorithm for Land
(SEBAL) [17]. The first type mainly focuses on determining ET at the point scale or in a
small region and has difficulty obtaining ET on a wide scale. The second type provides
a way to accurately estimate ET for extensive areas through the real-time collection of
land surface information during satellite transit. Therefore, more and more studies are
applying remote sensing techniques to simulate regional ET based on spatial modeling
approaches [18–20].

Among the above-mentioned spatial modeling approaches, the SEBAL model is widely
used to simulate the regional ET [21,22]. It was first developed by Bastiaanssen et al. [17] and
then improved by Allen et al. [23]. Compared to other models, SEBAL has the advantages of
clear physical concepts, low required meteorological data, easy data access, high inversion
accuracy, and universal applicability to various climates [24]. Cheng et al. [25] generated
a long-time-series daily ET (ETd) product for China using SEBAL and found that the
ET obtained from SEBAL has better precision than the Moderate Resolution Imaging
Spectroradiometer (MODIS) ET (MOD16) data. Gao et al. [26] used SEBAL to estimate the
actual ET of the Loess Plateau in China and showed that SEBAL has good applicability.
Du et al. [27] used SEBAL and MODIS products to invert the ET of the Sanjiang Plain in
China. They showed that the deviation between the seasonal ET of SEBAL and the ground
observation was within 8.86%, indicating that the ET estimated by SEBAL could help to
solve water resource management problems. Kiptala et al. [28] used the multitemporal
MODIS and SEBAL to estimate the ET of different land use types during 2008–2010, and
they verified the feasibility of SEBAL in estimating ET from various aspects. The above
studies basically concluded that the SEBAL algorithm is sufficiently robust for determining
the spatial quantities of actual ET.

The Shiyang River Basin, a typical desert–oasis interlacing region, lies in the arid zone
of northwest China. The ecological environment of the region is very fragile and has an arid
climate, low annual precipitation, and high evaporation; thus, drought and water shortage
are the key factors limiting the agricultural and economic development in this region. In
recent years, this region has been extensively focused on and has become one of the key
management areas of the ecological environment in China. However, relatively few studies
have spatially quantified the actual ET in this region. Liu et al. [29] and Tian et al. [30]
assessed the distribution characteristics and dynamics of actual ET in the Shiyang River
Basin using MOD16 ET products. However, it is important to note that the MOD16 ET
products excluded the ET in barren/desert areas from the model calculations and set the
ET value to 0. This means that ET could not be estimated for about 60% of the area in the
Shiyang River Basin, but the ET in these areas is important for the basin water budget [31].
Therefore, an ET estimation model including barren and sparsely vegetated areas needs
to be established to address the limitations of the MOD16 ET products. Furthermore, ET
is one of the most challenging components of the water cycle to precisely quantify as it is
influenced by multiple factors. Most current studies have estimated the regional ET with
little quantitative analysis of its driving factors, especially at the basin scale.

In response to the above issues, this study aims to estimate the actual ET in the
Shiyang River Basin of northwest China based on the SEBAL model using remote sensing
technology. Moreover, a principal component regression (PCR) is used to explore the
relationship between ET and the driving factors. More specifically, this study mainly aims
to (1) determine the actual ETd in the Shiyang River Basin during the 2020 growing season
(April–October) using SEBAL, (2) analyze the variation characteristics of actual ETd under
different land use/land cover (LULC) types, and (3) quantitatively characterize the driving
factors of ET. The study results will provide a reference for crop water demand research
and a plant transpiration characteristics analysis as well as rational allocation of water
resources in arid regions.
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2. Materials and Methods
2.1. Study Area Description

The Shiyang River Basin is located at 36◦29′–39◦27′ N, 101◦22′–104◦16′ E, in the eastern
part of the Hexi Corridor, China, with a total basin area of approximately 4.06 × 104 km2

(Figure 1). The basin originates in the northern Qilian Mountains and terminates in the
Minqin Oasis, which is a typical oasis-irrigated agricultural area. The area has a temperate
continental grassland climate, with perennial drought and little rain, high evaporation, and
serious wind and sand hazards. Based on the altitude, rainfall, and evaporation, the Shiyang
River Basin can be divided into three climate zones from the south to north: (1) Southern
Qilian Mountains alpine semi-arid and semi-humid zone. This region is the water hub
of the basin, with an average annual temperature of 2–6 ◦C, elevation between 2000 and
5000 m, annual precipitation of about 300–600 mm, and potential ET of 700–1200 mm;
(2) The central plain is a cool and arid zone. In this region, the average annual temperature
is higher than that in the southern Qilian Mountains, elevation is 1500–2000 m, annual
precipitation is 150–300 mm, and potential ET is 1300–2000 mm; (3) The northern warm
arid zone. In this region, the average annual temperature is greater than 8 ◦C, elevation is
between 1300 and 1500 m, annual precipitation is less than 150 mm, and potential ET is
more than 2000 mm.
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Figure 1. Map of the study area. (a) Location of Shiyang River Basin in northwest China and locations
of meteorological stations; (b) land use/land cover map of the study area in 2020.

2.2. Data Collection
2.2.1. MODIS Data

The main input parameters of SEBAL, such as land surface temperature (LST), Nor-
malized Difference Vegetation Index (NDVI), and surface albedo, were obtained from the
MODIS products, downloaded from the NASA website (https://ladsweb.nascom.nasa.gov,
accessed on 6 March 2022), and the detailed image data information is shown in Table 1.
Satellite images of the study area from seven periods with low cloudiness from the 2020
growing season were selected, i.e., 22 April (DOY 113), 24 May (DOY 145), 25 June (DOY
177), 11 July (DOY 193), 12 August (DOY 225), 13 September (DOY 257), and 15 October
(DOY 289). During the image pre-processing, the raw remote sensing image data were
extracted, formatted, and resampled using the MODIS Reprojection Tool, which converted
the pixel size to 500 m, the coordinate system to WG-1984, and the data format to the
GeoTiff format. Then, the actual ET in the study area was estimated via vector cropping
and raster calculation of the processed images using ArcGIS 10.2 (ESRI) software.

https://ladsweb.nascom.nasa.gov
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Table 1. Detailed information of the MODIS product.

Data Product Satellite Imagery Temporal
Resolution Spatial Resolution

MOD11A1/A2 LST/Emissivity Daily/8 d 1 km
MOD13A1 NDVI 16 d 0.5 km
MOD09A1 Albedo 8 d 0.5 km
MOD16A2 ET8d 8 d 0.5 km

2.2.2. Meteorological Data

Meteorological data, including pan evaporation, temperature, relative humidity, sun-
shine hours, wind speed, and precipitation, were used as the input data for SEBAL, the
P-M equation, and the PCR explanatory variables. Data from meteorological stations in
the study area and surrounding areas (Figure 1a) were downloaded from the National
Meteorological Information Center of China (https://Data.cma.cn, accessed on 13 March
2022). These data were interpolated into a raster of 500 m pixels using an inverse distance
weighting method to obtain a spatial distribution that matched the pixels of the MODIS
images data.

2.2.3. Other Data

The digital elevation model (DEM) (Figure 1a) and 2020 LULC (Figure 1b) data were
obtained from the Center for Resources and Environment, Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 12 March 2022). The original resolutions of the DEM
and LULC data were 250 and 30 m, respectively. They were resampled to 500 m for
consistency with the resolution of the satellite images.

2.3. SEBAL Model

SEBAL is based on the principle of surface energy balance. Its general equation is as
follows [17]:

LE = Rn − G− H (1)

where Rn is the net radiation (W/m2), G is the soil heat flux (W/m2), H is the sensible heat
flux (W/m2), and LE is the latent heat flux associated with ET (W/m2).

2.3.1. Net Radiation Flux (Rn)

Rn is calculated based on the ground radiation flux balance.

Rn = (1− α)Rs ↓ +Rl ↓ −Rl ↑ −(1− εg)Rl ↓ (2)

where α is the surface albedo, Rs↓ is the incoming shortwave radiation (W/m2), Rl↓ is the
incoming longwave radiation (W/m2), Rl↑ is the outgoing longwave radiation (W/m2),
and εg is the land surface emissivity.

Surface albedo indicates the capacity of the surface to reflect solar radiation. It is
calculated as follows [32]:

α = ρ0 +
n

∑
i=1

ρiwi (3)

where n is the number of bands (n = 7); ρ0 is the intercept with a value of −0.0015; wi is a
weighting coefficient with values of 0.160, 0.291, 0.243, 0.116, 0.112, 0, and 0.081 [33]; and ρi
is the reflectance of seven MODIS bands from the MOD09A1 product.

Rs↓, Rl↓, and Rl↑ are calculated as follows [17,34]:

Rs ↓= Gsc × cos θ × dr × τsw (4)

Rl ↓= εaσT4
a (5)

https://Data.cma.cn
http://www.resdc.cn/


Water 2023, 15, 1555 5 of 21

Rl ↑= εgσT4
s (6)

where Gsc is the solar constant (1367 W/m2), dr is the inverse of the square of the relative
earth–sun distance, cosθ is the cosine of the zenith angle, σ is the Stefan–Boltzmann constant
(5.67 × 10−8 W/(m2·k4)), τsw is the atmospheric transmissivity, εa is the atmospheric
emissivity, and Ta and Ts are the air and land surface temperatures (K), respectively.

2.3.2. Soil Heat Flux (G)

G calculated formulas as follows [35]:

G =
Ts − 273.16

α
(0.0038α + 0.0074α2)(1− 0.98NDVI4)Rn (7)

2.3.3. Sensible Heat Flux (H)

H is the parameter characterizing the energy exchange between the surface and
atmosphere, which is calculated as follows [23]:

H =
ρairCpdT

rah
(8)

where ρair is the air density (kg/m3), Cp is the air specific heat (J/(kg·K)), dT is the temper-
ature difference (K), and rah is the aerodynamic resistance against heat transfer (s/m).

rah is calculated as follows:

rah =
ln
(

z1
z2

)
kUf

(9)

where k is the von Karman constant (0.41), Uf is the frictional wind speed (m/s) (Equation (10)),
and z1 and z2 are 0.01 and 2, respectively.

Uf =
ku200

ln
(

z200
z0m

) (10)

where u200 is the wind speed at height 200 m and z0m is the surface roughness (m), which
is calculated as follows [36]:

z0m = e(5.65NDVI−6.32) (11)

Because dT is difficult to directly calculate, SEBAL assumes a linear relationship
between dT and Ts, as shown in Equation (12):

dT = aTs + b (12)

To identify the values of a and b, SEBAL needs to be solved by choosing hot and cold
pixels. Hot pixels were mainly selected from areas with low vegetation cover and bare
ground surface, where LE was negligible and H≈ Rn − G. Cold pixels were selected in areas
with high vegetation cover as well as adequate and sufficient moisture supply, where H
was negligible and LE ≈ Rn − G. Herein, the specific hot and cold pixel selection was based
on LULC, albedo, Ts, and NDVI [37]. It is important to note that the atmospheric stability
conditions significantly influence the aerodynamic resistance, and the atmospheric stability
conditions should be considered in the H calculation, especially in dry conditions [23].
Therefore, the Monin-Obukhov similarity theory was adopted for iterative calculation
to obtain stable values of H and rah. Detailed computational information regarding the
iteration process can be found in Allen et al. [23] and Cheng et al. [25].

2.3.4. Daily ET

LE can be calculated using Equation (1). In this study, the concept of the evaporation
fraction (EF) was introduced to extend the instantaneous ET to the daily ET (ETd). EF refers
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to the ratio of LE to the available energy. Many researchers have shown that EF can be
considered constant throughout the day [38,39], and EF can be obtained as follows:

EF =
LE

Rn − G
=

Rn − G− H
Rn − G

(13)

Therefore, ETd can be obtained as follows:

ETd =
86400× EF× (Rn24 − G24)

(2.501− 0.002361× (Ts − 273.15))× 106 (14)

where Rn24 is the daily net radiant flux (W/m2), and G24 is the daily soil heat flux (W/m2).

2.4. Validation Methods
2.4.1. FAO P-M Equation

In this study, the daily reference evapotranspiration (ET0) was calculated using the
P–M equation suggested by the FAO in 1998 [40]. Then, the actual ETd of the five mete-
orological stations (Minqin, Wuwei, Wushaoling, Gulang, and Yongchang) in the study
area on the remote sensing image acquisition dates was determined by combining the crop
coefficients to validate the ET estimated by SEBAL. The calculation equation is as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(ea − ed)

∆ + γ(1 + 0.34U2)
(15)

ET = Kc × ET0 (16)

where γ is the dry wet table constant (kPa/◦C), T is the daily average temperature (◦C), U2
is the wind speed at 2 m height (m/s), ∆ is the slope of the saturated vapor pressure curve
(kPa/◦C), and (ea − ed) is the water-air pressure difference (kPa). Kc is the crop coefficient.

To obtain the actual ETd, the Kc value needs to be first determined. The Kc value
was calculated using the dual crop coefficient method [41], which divides the crop evapo-
transpiration into the plant transpiration coefficient and soil evaporation coefficient. The
calculation equation is as follows [42]:

Kc = Kcb + Ke (17)

Kcb = 1.07×
[

1−
(

NDVImax − NDVI
NDVImax − NDVImin

) 0.84
0.54
]

(18)

Ke = β× (1− fc) (19)

where Kcb is the basic crop coefficient; Ke is the soil evaporation coefficient; NDVImax and
NDVImin are the monthly maximum and minimum NDVI values, respectively; fc is the
effective area ratio of the vegetation cover to soil surface; and β is an empirical coefficient,
which is assumed to be 0.25 herein based on previous studies [43]. The specific values of Kc
in this study are shown in Table 2.

Table 2. Kc values for each meteorological station during the growing season.

Station April May June July August September October

Minqin 0.53 0.69 1.29 1.29 1.26 0.76 0.37
Wuwei 0.51 0.51 1.28 1.28 1.25 0.66 0.51

Wushaoling 0.38 0.86 1.12 1.13 1.08 0.97 0.48
Gulang 0.34 0.75 0.94 1.27 1.02 0.64 0.41

Yongchang 0.34 0.52 1.00 1.02 1.19 0.71 0.55
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2.4.2. Pan Evaporation

Pan evaporation (Ep) can be used to estimate the open water evaporation. In this study,
the Ep data from Minqin and Yongchang meteorological stations were used to evaluate
the inversion accuracy of SEBAL for water evaporation. Because the pan type of the
meteorological stations is E-601 (diameter 62 cm), which cannot be used during the freezing
period, only the Ep values from the non-freezing period (May–September) were employed
for the evaluation. Furthermore, because of the different evaporation conditions of the pan
and open water, a conversion coefficient needed to be introduced to correct for Ep [28]:

Ep(w) = Kp × Ep (20)

Here, Ep(w) is the water evaporation (mm) and Kp is the conversion coefficient. In
this study, based on previous related studies [44], the following Kp values were selected:
0.76 (May), 0.75 (June), 0.79 (July), 0.77 (August), and 0.81 (September).

2.4.3. MOD16 ET Product

The MOD16 product is a global ET dataset with a spatial resolution of 500 m; it
provides baseline ET flux information for regional and global terrestrial water cycles [45,46].
In this study, SEBAL ET and MOD16 ET were compared to determine whether SEBAL ET is
reasonable. However, it is important to note that MOD16 ET was the sum of 8 days within
the composite period. Therefore, to align SEBAL ET with MOD16 ET on the time scale,
the same percentage variation of ET0 between the 1-day and 8-day periods was assumed
herein. ETd can be scaled up to the 8-day scale (ET8d) as follows [47]:

ET8d = ETd ×
(

ET0−8d
ET0−d

)
(21)

where ET0-d and ET0-8d are the daily reference ET and 8-day reference ET, respectively,
which were calculated using the FAO P–M equation.

2.5. Principal Component Regression

The regression model was used to determine the degree of influence of each factor on
ET. However, a simple multiple linear regression (MLR) may lead to the distortion of the
results in the analysis of the influencing factors because strong multicollinearity usually
exists among the variables. Therefore, to eliminate multicollinearity, a PCR was employed
in this study for the driving force analysis of ET. The PCR is a regression analysis method
that comprises a principal component analysis (PCA) and MLR, which can be implemented
in the following two steps.

2.5.1. PCA

The PCA is a common multivariate statistical method that aims to reduce the dimen-
sionality of the variables while maintaining the original information as much as possible.
Its calculation process is as follows:

Variable standardization. Because of the different dimensions, the original variables
need to be standardized:

X∗ = (X− X)/SD(X) (22)

where X* denotes the standardized variables, X denotes the original variables,
−
X denotes

the mean value of X, and SD(X) denotes the standard deviation of X.

(1) Extraction of the principal component (PC). To determine the number of PCs, the cu-
mulative contribution of variance over 85% was used as the selection criterion herein.

(2) Calculation of the PC score. It is expressed as:
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PC1
PC2

...
PCi

 =


C11 C12 · · · C1j
C21 C22 · · · C2j

...
...

...
...

Ci1 Ci2 · · · Cij




X*
1

X*
2

...
X*

j

 (23)

where Cij denotes the loading coefficients, and X∗j denotes the standardized variables.

2.5.2. MLR

Using the actual ET as the explained variable and the extracted PCs as the explanatory
variables, the MLR equation was developed as follows:

y =
n

∑
i=1

aixi + b (24)

where ai and b are the regression coefficients, which are usually calculated using the least
squares method.

2.6. Technical Process

Figure 2 displays the overall framework of this study for estimating the actual ET
using SEBAL and remote sensing images, as well as analyzing the ET driving factors using
the PCR model.
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3. Results
3.1. Accuracy Validation of SEBAL ET

Because no specialized techniques such as ET meters or flux towers have been imple-
mented in the Shiyang River Basin to directly observe ET in situ, the accuracy of SEBAL
ET was indirectly assessed using the ET at meteorological stations calculated using the
FAO P–M formula (P–M ET) (Figure 3a). The determination coefficient (R2), root mean
square error (RMSE), and mean absolute error (MAE) were selected to quantify the accuracy
of SEBAL ET. The results show that SEBAL ET and P–M ET exhibited good correlation
with R2 of 0.85, MAE of 0.76 mm/d, and RMSE of 0.91 mm/d. Furthermore, the water
surface evaporation simulated by SEBAL was evaluated using the Ep(w) values from the
meteorological stations (Figure 3b). The results showed good consistency between SEBAL
ET and Ep(w), with R2 of 0.89, MAE of 0.53 mm/d, and RMSE of 0.59 mm/d. The above
results denote that the SEBAL results are reliable and valid for the study area.
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3.2. Comparison of SEBAL ET and MOD16 ET under Different Land Cover Types

To further validate the assessment performance of SEBAL, SEBAL ET and MOD16
ET were compared. It is important to note that MOD16 ET only provides ET data for
vegetation cover surfaces, and ET data for water body, barren land, and built-up land
are not available. Therefore, the ET data for the period of DOY 193–DOY 200 (sum of ET
for 8 days) in 2020 were selected for comparison because the vegetation was vigorously
growing and covering the largest area at this time. Therefore, the MOD16 ET data had
fewer missing values. Figure 4 displays the comparison results of SEBAL ET and MOD16
ET for farmland, woodland, and grassland, signifying that the correlation between SEBAL
ET and MOD16 ET was the best for grassland with R2 of 0.52, followed by farmland with
R2 of 0.49, and the worst for woodland with R2 of 0.41. Compared to MOD16 ET, SEBAL
ET was significantly overestimated for woodland and grassland with MAE of 22.79 and
20.57 mm/8d and RMSE of 17.28 and 21.88 mm/8d, respectively. Additionally, the error
was smaller for farmland than that for woodland and grassland, with MAE and RMSE of
11.89 and 13.04 mm/8d, respectively. In general, SEBAL ET was significantly higher than
MOD16 ET.
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3.3. Temporal and Spatial Variation of Actual ETd

Figure 5a–h display the spatiotemporal variation of the actual ETd in the Shiyang
River Basin simulated by SEBAL. The distribution of ETd exhibits a unimodal trend during
the growing season, with the highest value occurring on DOY 193 in 2020. Specifically,
the average ETd on DOY 113 in 2020 was 2.58 mm/d, and close to 50% of the basin had
ETd of less than 2 mm/d (Figure 5a). The average ETd on DOY 193 in 2020 increased to
4.77 mm/d, with 62.8% of the area having ETd of more than 4 mm/d (Figure 5d). The
average ETd on DOY 289 in 2020 decreased to 1.41 mm/d when the number of low-value
pixels significantly increased, with nearly three-quarters of the area having an ETd of less
than 2 mm/d (Figure 5g). This trend was observed due to the low temperature, sparse
precipitation, and low vegetation coverage in the study area at the initial stage of the
growing season, which led to weak transpiration and evaporation. In the middle of the
growing season, ET was relatively high due to the gradually increase in temperature,
relatively abundant precipitation, increase in snowmelt from the Qilian Mountain, high
soil moisture content in farmland supplemented by sufficient irrigation water, and high
vegetation cover. However, ET significantly decreased in the late growing season because
of the gradual decrease in temperature and precipitation, reduced agricultural irrigation
water, slower plant metabolic activity, and crop maturity.

To accurately understand the spatial variation of ET in the study area, the 7-day
average ETd was calculated for each pixel (Figure 5h). The mean ETd in the study area
varied between 0.23 and 7.83 mm/d during the growing season, with a mean ETd value of
3.45 mm/d for the entire region. From the overall spatial distribution, the spatial divergence
of ET from the northeast to southwest was obvious, showing a gradual increase in ET. The
reason for this variation is as follows. The southwestern region of the study area is the
Qilian Mountain region, which belongs to the upper reaches of the Shiyang River, and the
LULC in this region is mainly woodland and high-cover grassland with lush vegetation
growth and relatively sufficient precipitation. This region had high ET values. In the
middle region of the study area, the main LULC type is farmland, with high water demand
for field crops in the middle of the growing season and sufficient water for irrigation. Thus,
the ET values in this area were moderate. Additionally, because the northwestern region
of the study area comprises the lower reaches of the Shiyang River, the LULC type is
dominated by barren/desert land, precipitation is scarce, vegetation is mostly small shrubs
and drought-tolerant herbs, and the surface coverage is low. Therefore, the ET values in
this area were low.
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3.4. Comparison of ETd in Different LULC Types

The physicochemical properties and underlying surface conditions differed in different
LULC types, such as soil texture, soil water content, absorption of radiant energy, and
vegetation condition, which are the main factors affecting the spatiotemporal variation
of ET. Figure 6a,b display the ETd variation pattern and the average ETd performance
under different LULC types during the growing season. The figure shows that the ETd
values in the different LULC types first increased and then decreased during the growing
season. The ETd value was the highest for the woodland with a mean value of 6.33 mm/d,
followed by the water body and grassland with average ETd values of 5.17 and 5.05 mm/d,
respectively. The ETd values for farmland and built-up land were close to each other with
values of 3.91 and 3.88 mm/d, respectively, while the ETd value for barren land was the
lowest with an average value of 2.45 mm/d. Therefore, the ETd in different LULC types
revealed the following ET performance during the growing season: woodland > water
body > grassland > farmland > built-up land > barren land.
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Figure 6c illustrates the total ETd and area percentage for each LULC type in the
study area. As can be seen, barren land had the highest total ETd value of 5.43 × 107 m3,
followed by grassland with 4.32 × 107 m3. Farmland and woodland had total ETd values
of 2.88 × 107 m3 and 9.7 × 106 m3, respectively, while built-up and water body land had
the lowest total ETd values of 3.60 × 106 m3 and 3.71 × 105 m3, respectively. This is
closely related to the area of each LULC type in the study area. Barren land and grassland
accounted for 54.24% and 21.08% of the total area of the study area, respectively, while
water body and built-up land accounted for only 2.45%.

3.5. Analysis of Driving Factors for ET
3.5.1. Correlation Analysis

The level and distribution of ET are usually influenced by various environmental
factors. In this study, based on the principles of typicality, dynamics, quantifiability, and
availability, eight environmental factors, including NDVI, LST, albedo, DEM, slope (D),
precipitation (P), sunshine hours (H), and wind speed (W), were selected from meteorolog-
ical, vegetation, and topographic factors to determine the effects on the actual ET in the
Shiyang River Basin. P denoted the total precipitation during the growing season, while
the remaining factors represented the daily averages. The results of the correlation analysis
between ET and the eight factors are shown in Figure 7a–h. Significant negative correlations
(p < 0.01) existed between ET and LST, albedo, and H, with r values of −0.94, −0.84, and
−0.69, respectively. Significant positive correlations existed between ET and NDVI, DEM,
P, D, and W, with r values of 0.80, 0.86, 0.70, 0.66, and 0.46, respectively. Among the eight
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factors, ET was strongly correlated with LST, albedo, NDVI, and DEM, which were the
main factors affecting ET.
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Figure 8 shows the correlation analysis between all the factors. A significant negative
correlation existed between NDVI and LST and albedo, with r values of −0.75 for both.
LST was significantly negatively correlated with DEM with an r value of −0.92. DEM was
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significantly correlated with P, H, and D, with r values of 0.69, −0.67, and 0.73, respectively.
P was significantly correlated with H and W, with r values of −0.94 and 0.71, respectively.
The results show that a general correlation exists between the factors, which may lead to
some degree of overlap in the information reflected between the factors.
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3.5.2. Principal Component Regression

As shown in Figure 8, generally strong correlations existed among the factors, and
direct MLR between ET and the factors may distort the model due to the presence of
multicollinearity. Therefore, to eliminate the multicollinearity among the variables, a PCR
model was employed to explore the effects of each factor on ET. Three PCs (PC1, PC2, and
PC3) were extracted based on the principle that the cumulative contribution of variance
was greater than 85%, which is shown in Table 3. The eigenvalues of PC1, PC2, and PC3
were 5.309, 0.967, and 0.746, respectively, and the cumulative variance contribution of the
three PCs was 87.78%, signifying that the selected PCs covered almost all of the information
about the indicators.

Based on the calculated PC score coefficient matrix, the equations were listed for PC1,
PC2, and PC3 using Equation (23):

PC1
PC2
PC3

 =

 0.334 −0.393 −0.339 0.388 0.309 0.381 0.303 −0.369
−0.345 0.271 0.243 −0.156 −0.324 0.383 0.554 −0.408
−0.475 −0.141 0.496 0.324 0.594 −0.102 0.160 0.129





NDVI∗

LST∗

Albedo∗

DEM∗

D∗

P∗

W∗

H∗


(25)
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Table 3. Eigenvalues and variance contribution rates of the PCs.

Principal
Components

Initial Eigenvalues and Variance
Contribution Rates

Extracted Eigenvalues and Variance
Contribution Rates

Eigenvalues
Variance

Contribution
Rates/%

Cumulative
Contribution

Rates/%
Eigenvalues

Variance
Contribution

Rates/%

Cumulative
Contribution

Rates/%

PC1 5.309 66.362 66.362 5.309 66.362 66.362
PC2 0.967 12.085 78.448 0.967 12.085 78.448
PC3 0.746 9.331 87.779 0.746 9.331 87.779
PC4 0.379 4.741 92.52
PC5 0.306 3.827 96.346
PC6 0.191 2.390 98.736
PC7 0.052 0.645 99.381
PC8 0.05 0.619 100

Then, considering the standardized ET as the dependent variable as well as the scores
of the three extracted PCs as the explanatory variables, a linear regression model was
developed based on Equation (24), which is shown in Equation (26). Equation (26) shows
that the standardized ET well-fitted the scores of the three PCs, with R2 of 0.935:

ET* = 0.399PC1 − 0.289PC2 − 0.108PC3

(
R2 = 0.935

)
(26)

The PC in Equation (24) was substituted into Equation (26) to yield the MLR model
between the standardized ET and standardized variables (Equation (27)).

ET* = 0.284NDVI* − 0.220LST* − 0.259Albedo* + 0.165DEM* + 0.153D* + 0.052P* − 0.057W* − 0.043H* (27)

Because data standardization can eliminate the effect of dimensionality, standardized
regression coefficients can be applied to quantitatively characterize the degree of impact of
different factors on ET [48]. From Equation (27), the standardized regression coefficients of
NDVI, DEM, D, and P were positive, indicating that these four factors had positive effects
on ET. However, the standardized regression coefficients of LST, A, W, and H were negative,
showing that these four factors had negative effects on ET. Additionally, the higher the
absolute value of the standardized coefficients, the higher the degree of influence. Therefore,
the influence degree of the environmental factors on ET was in the order of NDVI > Albedo
> LST > DEM > D > W > P > H.

4. Discussion
4.1. Accuracy Assessment of ET Estimation Using SEBAL

Remote sensing has become an effective means for estimating ET at a regional or even
global scale. However, validating the accuracy of the ET results estimated using remote
sensing remains challenging [25,49]. Herein, the SEBAL model was applied using MODIS
and meteorological data to determine the actual ET during the 2020 growing season in
the Shiyang River Basin. However, due to the complex subsurface conditions and poor
ground observation techniques in the Shiyang River Basin, acquiring measured ET data
to validate the study results was difficult. Fortunately, previous studies have suggested
that the ET calculated using the FAO P-M formula can be applied to indirectly assess the
accuracy of ET estimated using remote sensing. Therefore, SEBAL ET and P-M ET were
compared. SEBAL ET was well-correlated with P–M ET, with an R2 of 0.85 and MAE and
RMSE of 0.76 and 0.91 mm/d, respectively. Additionally, the Ep(w) values observed at the
meteorological stations were used to verify the water surface evaporation simulated by
SEBAL, and the results showed a good correlation with the R2 of 0.89 and MAE and RMSE
of 0.53 and 0.59 mm/d, respectively. Compared to the results of previous studies (Table 4),
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the errors observed herein are acceptable, indicating that the estimation of the actual ET in
the study area using SEBAL is feasible.

Table 4. Validation results of SEBAL ET in previous studies.

References Study Area Validation
Methods

Temporal/
Spatial

Resolution
Time

Accuracy Evaluation Results

R2 MAE
(mm/d)

RMSE
(mm/d)

Li et al. [50] Agro-pastoral ecotone in
northwest China

FAO P-M
equation Daily/1 km 2015 0.76 0.79 0.94

Kong et al. [51] Ordos Basin in China FAO P-M
equation Daily/30 m 2015–2016 0.99 0.88 0.97

Ghaderi et al. [52] Ein Khosh Plain in Iran FAO P-M
equation Daily/1 km 2015 0.97 0.22 0.47

Rahimzadegan
and Janani [53]

A pistachio farm in
Semnan Province, Iran

FAO P-M
equation Daily/30 m 2013–2017 0.80 2.09 2.48

Liu et al. [49] Nukus irrigation
area of Amu River Basin Pan evaporation Daily/30 m 2019 0.81 / 1.76

Yang et al. [54] Agro-pastoral ecotone in
northwest China Pan evaporation Daily/30 m 2016–2017 0.81 / 0.90

Additionally, SEBAL ET was compared with MOD16 ET for different LULC types
to determine whether SEBAL ET had a better performance. The results showed that
SEBAL ET was significantly higher than MOD16 ET, especially in the woodland and
grassland, with the MAE of both exceeding 20 mm/8 d. This is consistent with the
results by Cheng et al. [25], who determined that in 84% of the areas in China, SEBAL
ET was higher than MOD16 ET, and in 14% of the areas, the difference was more than
two times. Autovino et al. [55] and Srivastava et al. [56] found that the MOD16 product
generally underestimated ET compared to the ET observed on the ground. In this study,
the reasons for this large error can be summarized in terms of two aspects: (1) the initial
MOD16 algorithm significantly underestimated the global vegetation surface ET [57],
and then, Mu et al. [58] enhanced the accuracy of the estimated ET by improving the
MOD16 algorithm. However, the improved MOD16 algorithm still makes some inherent
assumptions, such as the stomatal closure at night, which could lead to bias in plant
nocturnal transpiration and thus cause underestimation of ETd [45]. (2) Several assumptions
in the estimation of H using SEBAL could cause an overestimation of ET if not applied
correctly, especially in arid regions and/or sparse canopies [59]. To estimate H, the SEBAL
algorithm introduced a temperature gradient dependent on two extreme pixels (cold and
hot pixels), and the user’s subjective decision in selecting these hot and cold pixel points
(although there were many suggestions) could introduce uncertainty into the modeling
results. In addition to H, the calculation of Rn and G through some empirical formulae
could result in uncertainties in ET estimates [60,61].

4.2. Analysis of the ETd with Different LULC Types

During the growing season, the ETd distribution in the Shiyang River Basin showed a
unimodal variation, with the maximum value occurring in mid-July. The same conclusion
was reported by Liu et al. [29] using the MOD16 ET product, who suggested that the distri-
bution trend of ETd was related to changes in irrigation water, temperature, precipitation,
and vegetation within the Shiyang River Basin. Spatially, ET in the study area decreased
from the southwest to northeast. Although the southwest region of the basin has a higher
altitude and lower temperature, there are more woodlands and high cover grasslands with
high precipitation and a sufficient water supply. The northeastern region of the basin is at a
lower altitude, but it is mostly sparse grassland and barren land with insufficient water
supply. Therefore, in the study area, the ET in the northeast is much lower than that in
the southwest.
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The results also showed that the ETd values of different LULC types had the order
of woodland > water body > grassland > farmland > built-up land > barren land. This
is similar to the findings of Kiptala et al. [28], who suggested that the ET values were the
highest in the water body and woodland, followed by irrigated farmland, while grassland
and barren land had the lowest ET values. Woodland has the dual functions of water
conservation and transpiration, which can provide a good water supply for ET; therefore,
its ET is relatively high. However, the percentage of woodland in the study area was less
than 4%, while barren and grassland accounted for more than 75% of the study area. Thus,
the total ETd of the barren land and grassland was much higher than that of the woodland.
Moreover, farmland accounted for about 18% of the study area and had a high ET; therefore,
farmland is the third highest LULC type in terms of total ETd. The built-up land and water
body only accounted for approximately 2.5% of the study area, and hence, both had a
considerably low total ETd.

4.3. Impact of Environmental Factors on ET

A correlation analysis was performed to investigate the relationship between envi-
ronmental factors and ET. The results showed that ET was strongly correlated with LST,
albedo, NDVI, and DEM, with r values greater than 0.8. Among them, ET was positively
correlated with NDVI and DEM and negatively correlated with LST and albedo, which
is consistent with the findings of previous studies. Using SEBAL, Li et al. [50] found that
ET and NDVI were positively correlated (r = 0.53) and ET and LST (r = −0.86) and albedo
(r = −0.57) were negatively correlated in northwest China. Yang et al. [62] revealed that
ET was positively correlated with NDVI and negatively correlated with LST, and the r
value between ET and LST was higher than that between ET and NDVI. Additionally,
a PCR model was introduced herein to quantitatively characterize the degree of impact
of each environmental factor on ET, and the results showed that there was good fitness
between ET and the environmental factors, with an adjusted R2 of 0.935. The standardized
regression coefficients showed that the influence degree of environmental factors on ET
in descending order was NDVI, albedo, LST, DEM, D, W, P, and H. Lin et al. [63] used
a ridge regression model to investigate the driving forces of ET in the Sanjiang Plain of
China and showed that precipitation was the primary factor impacting ET in this region,
followed by NDVI, which is somewhat different from the findings of this study. This is
because the Sanjiang Plain belongs to the humid zone, where precipitation is the main
source of ET. However, precipitation is scarce in the Shiyang River Basin and the main
source of ET is irrigation or groundwater, which leads to a reduced effect of precipitation
on ET. Additionally, Yang et al. [64] explored the influencing factors of ET in the Haihe
River Basin using the structural equation model. They showed that the direct effect of
meteorological factors on ET was not significant and that it tended to indirectly affect ET
by influencing vegetation changes, providing a reasonable explanation for the fact that the
degree of influence of the meteorological factors (P, W, and H) on ET was less than that of
NDVI on ET in this study.

4.4. Limitations and Outlook

In this study, remote sensing images (e.g., NDVI, LST, and surface albedo) were the
main input data of SEBAL. However, previous studies found that the accuracy of the
original MODIS data is uncertain to some extent, which leads to errors between the ET
estimated by SEBAL and the actual ET in the study area [25,65]. The low resolution of
remote sensing images and improper parameter calculation methods in the algorithm
also affect the simulation accuracy of SEBAL. Future studies should use high-resolution
images as model inputs, while continuously improving the SEBAL algorithm, for example,
calibrating the empirical equation of daily mean net radiation to improve ETd estimates,
and developing automatic identification procedures for cold and hot pixels to eliminate
user subjectivity. Additionally, the present study area lacks in situ flux data to validate the
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estimates of ET and other fluxes. Therefore, the estimation results should be validated by
multiple in situ flux data as far as possible in the future.

5. Conclusions

Using SEBAL, the actual ET during the 2020 growing season in the Shiyang River
Basin of northwest China was estimated. Subsequently, the spatiotemporal distribution
and dynamics of ET for different LULC types were investigated and the driving forces of
ET were explored. The results showed that SEBAL ET exhibited good correlation with P-M
ET (R2 = 0.85) and Ep(w) (R2 = 0.89), indicating that SEBAL has the potential to estimate
the actual ET in the Shiyang River Basin. Moreover, SEBAL significantly overestimated ET
compared to MOD16, which could be caused by the underestimation of ET from the MOD16
algorithm and the uncertainty of SEBAL itself. The ET in the study area exhibited a single-
peak variation during the growing season, with the peak occurring in mid-July. Spatially,
the ET values were higher in the woodland and grassland in the southwestern part of the
study area and lower in the sparse grasslands and desert areas in the northeastern part. The
ET values in different LULC types were in the order of woodland > water body > grassland
> cropland > building land > barren land. Additionally, the correlation analysis showed
that ET was significantly correlated with LST, DEM, albedo, and NDVI, with r values
exceeding 0.8. The PCR concluded that NDVI was the major driving factor impacting ET,
and the direct effect of meteorological factors (precipitation, wind speed, and sunshine
hours) on ET was not significant. Furthermore, it is important to note that there was still
uncertainty in the estimation of the surface energy components using SEBAL as well as
difficulty in validating the accuracy of the estimation results. Therefore, future studies
will concentrate on the improvement of the SEBAL algorithm and the multi-scale and
multi-method accuracy validation of the simulation results.
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