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Abstract: The production efficiency and quality of tomatoes is affected by the mode of irrigation
and the nitrogen forms. This study explored the impacts of different irrigation regimes, nitrogen
forms, and their coupled effects on tomato production. The various irrigation regimes were set at
50%FC~90%FC (W1), 60%FC~90%FC (W2), 70%FC~90%FC (W3), and 80%FC~90%FC (W4) Fur-
thermore, the control (CK) group followed a conventional drip irrigation regime in the local area.
Nitrogen forms in this study comprised urea-based fertilizer (urea N 32%, F1), nitrate-based fertilizer
(calcium ammonium nitrate N 15%, F2), and ammonium-based fertilizer (ammonium sulfate N 21%,
F3). Combining these two factors yielded 15 treatment groups. The experiment was conducted in a
solar greenhouse, and the soil type was sandy loam soil. The research focused on observing the yield,
quality, and water–fertilizer use efficiency of tomatoes under these 15 treatment groups. The results
demonstrate that irrigation had a more significant impact on the yield and nutrient accumulation rate
compared to the nitrogen forms. To comprehensively evaluate the yield, quality, and water–fertilizer
use efficiency of tomatoes, a combination evaluation method was employed. W3F2 produced the
highest yield, CKF2 achieved the highest comprehensive quality score, and W2F2 had the highest
comprehensive water and fertilizer use efficiency score. Using the fuzzy Borda model, the evaluation
information of the three dimensions was combined. W3F2 ranked first, suggesting the adoption of an
irrigation control regime of 70%FC to 90%FC, along with the application of nitrate-based nitrogen
fertilizer during the fruit set to the harvest stage. It presented the best performance of tomato yield,
quality, and water–fertilizer use efficiency across multiple dimensions.

Keywords: facility tomato; controlled irrigation; field capacity; moving averages; comprehensive
evaluation; fuzzy Borda model

1. Introduction

Tomato is one of the most popular fruit and vegetable crops worldwide, and in recent
years, growers around the world have achieved higher yields and superior taste through
improved cultivation techniques [1]. Water and fertilizer control are two important factors
related to tomato yield and quality, but blindly increasing the amount of irrigation and
fertilizer could lead to lower water and fertilizer use efficiency, environmental pollution,
and nitrate accumulation [2]. Therefore, using irrigation sensing and control devices,
such as soil moisture sensors, is an effective way to improve tomato yield, quality, and
water–fertilizer use efficiency. In addition, it can improve the understanding of crop water
and fertilizer requirements [3].
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Sensor-based irrigation strategy, which can monitor soil content in real-time and
determine when irrigation should be turned on or off, could exert significant effects on
tomato production. It is generally believed that higher soil moisture content can increase
crop yield [4]. Meanwhile, the reduction of irrigation can promote the accumulation of the
reducing sugar, total acid, vitamin C (Vc), and total soluble solids (TSS) in fruit [5]. This
effect is further impacted by other factors, particularly nitrogen fertilization. Nitrogen is
the most important nutrient affecting crop growth and development, and it is a component
of many essential metabolites.

There is a growing body of research on the response of various crops, such as rice [6],
tobacco [7], potato [8], and lettuce [9], to different nitrogen forms. These studies have
indicated that various crops exhibit differences in utilizing different nitrogen forms. Tomato,
being a typical nitrate-loving crop with high nitrogen fertilizer requirements, has received
considerable attention in this field. However, previous studies have primarily focused on
single-factor trials or quantitative evaluations of water and fertilizer [10,11]. For example,
deficit irrigation is a well-recognized water-saving strategy, achieved by the deliberate
application of a sub-optimal amount of water, which may or may not result in some yield
reduction. It does not enhance growth and yield as such but modifies plants’ physiological
processes. It can influence the efficiency of water use, which would lead to considerable
water saving [12]. According to the existing research, for tomato cultivation, the application
of N30-70 (30% as a basal fertilizer and 70% as a topdressing) presents higher tomato yield,
lycopene and vitamin C contents, and sugar–acid ratio in fruits, but it has lower organic
acid content in fruits [13].

Additionally, the interaction between different nitrogen forms and irrigation has been
noted in the literature [14,15]. For example, Chu et al. showed that the application of
alternate partial root-zone irrigation (APRI) should consider the soil moisture conditions
combined with the appropriate nitrogen forms, and tomato plants supplied with am-
monium nitrogen at the flowering period grew better than those supplied with nitrate
nitrogen [16]. However, the interaction effect still requires a comprehensive evaluation,
such as that regarding the fruit yield, quality, and other indicators, especially ecological
benefit indicators, such as water–fertilizer utilization efficiency, rather than merely the crop
growth rate.

The tomato planting effect is a comprehensive concept that includes not only the
fruit yield and quality directly related to economic benefits, but also water and fertilizer
utilization efficiency related to ecological benefits. It is the sum of the interactions between
different individual attributes [17]. The fruit quality is also generally classified as the taste
(total soluble solids, sugar, and acid) and nutritional value (lycopene and vitamin C) [18].
Water and fertilizer utilization efficiency include the productivity of water consumption
and the partial factor productivity of fertilizer application [19]. When evaluating the effects
of irrigation and fertilization systems on tomato production, a comprehensive evaluation
should be conducted based on three aspects: tomato yield, quality, and water–fertilizer
use efficiency. A comprehensive evaluation of multiple indicators generally involves three
steps: indicator selection, weight determination, and scoring evaluation [20]. There are
various methods for determining the weights and evaluation scores, including a hierar-
chical analysis based on operations research [21], factor analysis based on multivariate
statistics [22], neural networks based on computer science, and algorithms that integrate
multiple evaluation methods [23]. However, it is important to note that different evalua-
tion methods may produce different results due to varying arithmetic principles. In this
regard, the fuzzy Borda method can effectively synthesize single evaluations from multiple
dimensions by utilizing both the evaluation value and ranking value information [24].

The primary objectives of this study are listed as follows: (1) Investigate the effects of
irrigation, nitrogen forms, and their interaction on tomato leaf growth, yield, quality, and
water–nutrient use efficiency. This will clarify the different forms and interactive effects of
irrigation and nitrogen on various aspects of tomato growth. (2) Determine the optimal
irrigation and fertilizer system and establish a pluralistic evaluation system for tomatoes.
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This was accomplished by utilizing principal component analysis to evaluate the effects of
tomato quality and water–fertilizer use efficiency. Additionally, the fuzzy Borda method
was employed to perform a comprehensive evaluation of yield, quality, and water and
fertilizer use efficiency.

2. Materials and Methods
2.1. Overview of the Test Site and Test Materials

The test was conducted at the Modern Agricultural Park of Zhao County, Hebei, China
(114◦78′ E, 37◦76′ N). The solar greenhouse utilized in the experiment was a steel-framed
structure, with a length of 90 m, a width of 8 m, and a top height of 4.5 m. The back
wall was 0.5 m thick and covered with polyethylene film. The planting area was 489 m2.
Sandy loam soil was used in the test site, and the nutrient conditions of the soil from 0 to
80 cm depth are shown in Table 1. The test material “Seminis 313” (Seminis Seeds (Beijing)
Co., Ltd., Beijing, China) is an infinite growth variety with large fruits, medium to early
maturity, and resistance to tomato mosaic virus, gray leaf spot, and yellowing leaf curl
virus. On 15 March 2022, tomato seedlings were grown until they had five leaves and a
heart and were 10–12 cm tall. The test was conducted from the beginning of the flowering
and fruiting period (15 April 2022) to the end of the harvest period (20 June 2022), with a
growth period of 66 days.

Table 1. Soil nutrient contents.

Depth (cm) Organic Matter
(g/kg)

Available
Nitrogen
(mg/kg)

Available
Phosphorus

(mg/kg)

Available
Potassium

(mg/kg)
pH Electrical Conductivity,

EC (uS/cm)

0–20 13.50 54.83 21.50 179 7.72 177.20
20–40 16.60 68.32 17.90 188 7.81 179.80
40–60 12.00 57.34 26.80 172 7.74 246.20
60–80 11.60 56.53 19.30 196 7.86 232.20

2.2. Experimental Design

The experiment was designed with two factors: irrigation systems and nitrogen forms.
According to the preliminary experiments of our group and the conclusions of existing
studies, maintaining the soil moisture content at a 70–90% field capacity (FC), during
the flowering and fruiting period, can result in good tomato growth. Consequently, the
irrigation section of this experiment was designed based on various ranges of soil moisture
content, and independent soil moisture sensors were installed for each treatment to keep
it constant. The irrigation limits were set at 50%FC~90%FC (W1), 60%FC~90%FC (W2),
70%FC~90%FC (W3), and 80%FC~90%FC (W4) [25].

The irrigation scheme of the control treatment (CK) was formulated according to
the commonly used local irrigation method and the instruction of water-soluble fertilizer.
Immediately after transplanting, 120–150 m3/hm3 of water was applied. Then, 5–7 days
post-transplanting, 120–150 m3/hm3 of water was applied for seedling establishment. Ap-
proximately 45–50 days after transplanting, at the fruit expansion stage, 140–170 m3/hm3

of water was applied per cycle every 10–15 days, totaling four cycles. Around 100–105 days
post-transplanting, at the harvest stage, an irrigation cycle was applied with 10–12 m3/hm3

of water, and the cycle was set at 9–12 days, totaling five cycles. All forms of nitrogen fertil-
izer were from China Stanley Agricultural Company. Amide nitrogen fertilizer (urea with
a nitrogen content of 32%, F1), nitrate nitrogen fertilizer (Ca(NO3)2-4H2O with a nitrogen
content of 15%, F2), and ammonium nitrogen fertilizer ((NH4)2SO4 with a nitrogen content
of 21%, F3) were used. A total of 15 treatments were established in the cross-combination of
irrigation and fertilization. During the experiment, the total nitrogen amount for each treat-
ment was kept consistent. Various nitrogen fertilizer forms were applied for each treatment
in five equal portions. All forms of nitrogen fertilization would be administered through
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the drip irrigation system, without foliar spraying. The fertilization for all treatments was
ensured to be carried out within one week. The experiment design is presented in Table 2,
which provides a clear and concise overview of the nutrient application strategy and the
experimental conditions.

Table 2. Experimental design.

Irrigation Level
Soil Moisture Content
When Irrigation
Started

Soil Moisture Content
When Irrigation
Stopped

Nitrogen
Fertilizer
Treatment

Amount of Nitrogen Applied in
Different Forms/kg·hm−2

W1 50%FC 90%FC
F1 Urinary ammonia nitrogen 610.31
F2 Calcium nitrate 1302
F3 Ammonium sulfate 930

W2 60%FC 90%FC
F1 Urinary ammonia nitrogen 610.31
F2 Calcium nitrate 1302
F3 Ammonium sulfate 930

W3 70%FC 90%FC
F1 Urinary ammonia nitrogen 610.31
F2 Calcium nitrate 1302
F3 Ammonium sulfate 930

W4 80% FC 90%FC
F1 Urinary ammonia nitrogen 610.31
F2 Calcium nitrate 1302
F3 Ammonium sulfate 930

CK Commonly used local drip irrigation system
F1 Urinary ammonia nitrogen 610.31
F2 Calcium nitrate 1302
F3 Ammonium sulfate 930

2.3. Experimental Method

The plot size was 3 m × 4.8 m, with 2 protective rows left between each plot. Raised-
bed and wide-row cultivation was adopted, with a trapezoidal cross-section. Its ridge
height was 20 cm, its bottom width was 70 cm, and its top width was 60 cm. Tomatoes
were planted on the ridge surface, with a row spacing of 50 cm and a plant spacing of
30 cm. The observation path between the furrows was 90 cm wide. Drip irrigation was
used, with an emitter spacing of 30 cm. One drip tape was placed for each row of tomatoes.
A schematic diagram is shown in Figure 1. Each treatment had 64 plants, each of which
was repeated three times, and all repetitions were studied separately nine times. Figure 2
shows the different stages of tomato production.

To determine the soil field capacity in the tomato cultivation experiment, soil mois-
ture multi-profile three-dimensional monitoring equipment (Agricore Technology, Beijing,
China) was utilized. The calculation method employed was moving averages. The equip-
ment was buried in the middle ridge of each plot, at a distance of 15 cm from the plant in
the north-south direction. In the test area, the soil 0~40 cm deep was initially found to be
supersaturated prior to planting. Continuous data of the soil water content were gathered
from the 0 to 40 cm depth layer one day before irrigation. The soil water content data were
smoothed by the sliding average method with a 4-h time interval.

The sliding average of the soil moisture content data was analyzed to identify the
inflection point during the receding process. Specifically, when the change rate between
the current time point and the previous 4th time point did not exceed 0.4%, the 4-h average
soil moisture content of the soil layer measured at the current time point and the previous
three time points was considered the field capacity of the soil layer.
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Figure 1. Schematic diagram of planting. Its ridge height was 200 mm, its bottom width was 700 mm,
and its top width was 600 mm. Tomatoes were planted on the ridge surface, with a row spacing
of 500 mm.
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Figure 2. Tomato growth stages.

Undisturbed soil samples were collected using a ring knife at the same soil layer. The
collected soil samples were then brought back to the laboratory, saturated with water, and
placed on dried soil to allow the latter to absorb the gravitational water in the undisturbed
soil. Next, 15 g of undisturbed soil was placed into an aluminum box with a constant
weight (m0) and immediately weighed (m1). The soil sample was then dried at 105 ◦C to
a constant weight, after which it was weighed again (m2). The field capacity X of the soil
layer was calculated using Equation (1) based on the measurements of the undisturbed soil
samples. The procedure was performed three times with the average value of the results
being reported.

X =
(m1 −m2)× 1000

m2 −m0
(1)

The results of the two field capacity measurement methods are presented in Table 3.
The relative error between the measurements was within ±2%, indicating that the soil
moisture multi-profile three-dimensional monitoring equipment was capable of accurately
and automatically monitoring the soil field capacity.

Table 3. The soil field capacity of each plot.

Irrigation Level Field Capacity Determined
Using a Ring Knife (%)

Field Capacity Determined
by the Monitoring

Equipment (%)

Comparison of
Results

Relative Error
(%)

W1 39.19 ± 1.74 a 39.31 −0.12 −0.31
W2 37.01 ± 1.34 a 36.90 0.11 0.30
W3 41.16 ± 1.33 a 41.97 −0.81 −1.97
W4 37.88 ± 2.05 a 37.80 0.08 0.21

Note(s): Values represent mean ± standard deviation. Different lowercase letters a indicate significant differences
among treatments (p < 0.05).



Water 2023, 15, 1546 6 of 19

During the experiment, nitrogen fertilizer was applied in each plot, and 589.95 kg/hm2

of agricultural potassium sulfate with a potassium content of 50% was applied uniformly to
ensure consistent nutrient application amounts throughout the entire growth period. The
experiment design is presented in Figure 3, which provides a clear and concise overview of
the experimental design.
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Figure 3. Experimental design.

2.4. Project Measurement and Methods
2.4.1. Solar Greenhouse Environmental Conditions and Water Consumption

The hourly air temperature and humidity were measured using a Greenhouse Doll II
(Agricore Technology, Beijing, China), and the data for environmental conditions during
the experiment are presented in Figure 4. Throughout the entire growth period, the air
temperature ranged from 8.57 ◦C to 41.22 ◦C, and the air humidity ranged from 11.9%
to 95.86%.

To monitor the water used for irrigation during the entire growth period, water meters
were installed in each treatment, and the amount of irrigation water used (in m3) was
recorded. The amount of irrigation water used per tomato plant (in m3/plant) was then
calculated based on the planting density. Throughout the growth period, the W1, W2, W3,
and W4 treatments utilized a total of 25.5 m3, 29.22 m3, 31.47 m3, and 32.48 m3 of water,
respectively. Figure 5 illustrates the cumulative daily water consumption under different
treatments, indicating an increasing trend in the total water consumption with increases
in the irrigation threshold. The CK treatment, irrigated with 26.6 m3 of water using the
local water-saving irrigation system, was used as the control. Compared to CK, the W1
treatment achieved 4.85% water savings.
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Figure 4. Air temperature and humidity in solar greenhouse.
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Figure 5. Cumulative daily water usage curves for different treatments.
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2.4.2. Tomato Yield and Quality

During the harvest period, one or two panicles of fruit were randomly selected from
three plants, and the fruit weight was measured using a balance with an accuracy of 0.01 g
to determine the yield per plant (in kg/plant). Five fruits with uniform size and hardness
were randomly selected from each treatment for analysis. The content of vitamin C (VC
in mg/100 g) was determined using the 2,6-dichlorophenol indophenol sodium titration
method [26]; the soluble sugar (in mg/100 g) was measured using the Rhein–Enon’s
method [17]; the lycopene (in mg/100 g) was measured using the spectrophotometer
method [27]; the titratable acid (%), which was determined as the major acid in tomato,
was calculated using the NaOH titration method [28]; and the total soluble solids (TSS, %)
were measured using the PAL-1 digital sweetness tester (Atago, Tokyo, Japan). According
to the Fang. L (2020), the total soluble solid includes the amount of soluble sugar in the
fruit [29]. The sugar–acid ratio was calculated as the value of total soluble solids divided
by that of the titratable acid [30]. Each measurement was repeated three times, and the
average value was used for further analysis.

2.4.3. N, P, and K Contents of Plants

During the harvest period, the samples were randomly selected from the south, middle,
and north of each plot, with a total of three samples. The process was conducted three
times in total. The roots were carefully dug, and the above-ground parts were kept intact.
The plant samples were then subjected to a controlled drying process at 105 ◦C to eliminate
all the moisture content. Subsequently, the roots, stems, and leaves were heated to 80 ◦C,
while the fruits were heated to 50 ◦C and dried to a constant mass. Finally, the dry biomass
(kg) of each plant sample was precisely weighed using a balance with an accuracy of 0.01
g. The harvested plant samples were ground and thoroughly mixed. Their N content (%)
was determined using the Kjeldahl method [31], the P content (%) was measured using
a spectrophotometer method [32], and the K content (%) was determined using a flame
photometric method [33].

2.4.4. Water Use Efficiency, Nutrient Accumulation, and Use Efficiency

The water use efficiency was calculated based on the yield and water consumption:

IWUEy = Y/ET (2)

where IWUEy is the water use efficiency (kg/m3), Y is the yield per plant (kg/plant), and
ET is the water consumption per plant (m3/plant).

The nutrient use efficiency was calculated based on the plant biomass and the N, P,
and K contents [34,35]:

NUE =
B× NC

A
× 100% (3)

where NUE is the nutrient use efficiency (%), B is the plant biomass (g), NC is the nutrient
accumulation (%), and A is the nutrient supply (g/plant).

2.5. Data Analysis Methods

The measured tomato data were averaged, and the standard error of the mean (SEM)
was included in the graph. One-way analysis of variance (ANOVA) [36] was employed to
determine whether differences between the data were significant. Additionally, two-way
ANOVA [37] was utilized to investigate whether interactions existed among the two factors,
the irrigation, and the nitrogen forms. If the null hypothesis was rejected, Duncan’s multiple
range test (Duncan’s MRT, p < 0.05) was utilized as a post-hoc test for variance analysis [38].

The data were subjected to multivariate statistical analysis using IBM SPSS Statistics
23 [39]. Spearman correlations (p < 0.05) were calculated for all indicators, and all indicators
were normalized and then evaluated using principal component analysis [40] for the tomato
yield, quality, water–fertilizer use efficiency. Then, the evaluation values and rankings of
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these three dimensions were evaluated in combination with the fuzzy Borda method [41].
The experimental data were organized and plotted using Microsoft Excel 2007 software.

The fuzzy Borda method calculated the membership degree of each evaluation item
to the evaluation index score according to Equation (4), determining the ability of the
evaluation items to obtain good evaluation results.

µij =
xij −min

i

{
xij

}
max

i

{
xij

}
−min

i

{
xij

} × 0.9 + 0.1 (4)

where xij represents the score of the ith treatment in the jth evaluation method; µij represents
membership degree of the ith item under the jth evaluation method.

The fuzzy number and fuzzy frequency of the ith item in the hth position were
calculated according to Equations (5)–(7).

ρhi = ∑n
j=1 δhiµij (5)

Whi =
ρhi

∑h ρhi
(6)

where h is the number of evaluation item indicators.

δhi =

{
1, the ith item in the hth position

0, others
(7)

Converted the ranking into scores based on Equation (8):

Qhi =
1
2
(q− h)(q− h + 1) (8)

where Qhi is the score of the ith item in the hth position, and q is the total number of
evaluation indicators.

The fuzzy Borda count of the ith term was calculated based on Equation (9):

Bi = ∑ WhiQhi (9)

3. Results
3.1. Effect of Different Treatments on Tomato Yield and Quality

Table 4 shows that there were significant differences in the tomato yield under different
irrigation levels (p < 0.05). The nitrogen fertilizer treatment and the interaction effect of
the water and fertilizer had no significant effects on the tomato yield. The highest yield
was observed in W3F2, with 72.21%, 97.92%, 44.67%, and 56.16% increases compared to the
CKF2, W1F2, W2F2, and W4F2 treatments, respectively, and 9.62% and 34.75% increases
compared to W3F1 and W3F3 at the same irrigation level. The yield per plant demonstrated
an increasing trend followed by a decreasing trend with the increase in the irrigation
lower limit, and the highest yield was achieved under the W3 irrigation level, showing
increases of 51.81%, 46.51%, 18.59%, and 25.69% when compared to CK, W1, W2, and W4,
respectively. The highest yield was obtained under the F1 treatment, showing increases of
13.08% and 17.91% compared to F2 and F3, respectively.

Different treatments had significant effects on the Vc, soluble sugar, TSS, sugar–acid
ratio, and lycopene content of the tomato fruits. Meanwhile, different irrigation and nitro-
gen forms as well as the water–fertilizer interaction presented effects on all the indicators
of tomato quality, which reached highly significant levels (p < 0.01). The Vc, soluble sugar,
and TSS contents were the highest under the CK1F2 treatment, where the Vc content
increased by 31.25%, 10.53%, 13.50%, and 19.98% compared to W1F2, W2F2, W3F2, and
W4F2, respectively. The soluble sugar increased by 3.61% to 36.08%, and the TSS increased
by 8.00% to 29.50%, respectively.
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Table 4. Effects of different treatments on tomato yield and quality.

Irrigation Level
Nitrogen
Fertilizer
Treatment

Yield per Plant
(kg/Plant)

Vc
(mg/100 g)

Soluble Sugar
(g/100 g) TSS (%) Sugar–Acid

Ratio
Lycopene
(mg/100 g)

W1
F1 3.82 ± 0.85 abc 38.40 ± 1.96 cde 32.73 ± 1.59 bc 4.17 ± 0.06 f 9.70 ± 0.47 bc 12.20 ± 0.20 cde
F2 2.88 ± 0.64 c 36.14 ± 1.96 def 37.60 ± 1.38 a 5.00 ± 0.17 b 11.14 ± 0.41 a 15.20 ± 0.40 b
F3 3.62 ± 0.52 abc 40.66 ± 0.00 bc 30.39 ± 0.60 cd 4.60 ± 0.00 cde 8.15 ± 0.90 cd 16.10 ± 0.30 b

W2
F1 5.14 ± 1.37 ab 36.14 ± 1.96 def 28.24 ± 0.61 d 4.20 ± 0.100 f 8.36 ± 0.18 cd 11.53 ± 0.35 def
F2 3.94 ± 1.69 abc 42.91 ± 1.96 b 29.22 ± 1.44 d 4.50 ± 0.17 de 7.09 ± 0.28 d 17.50 ± 0.60 a
F3 3.68 ± 1.31 abc 35.01 ± 1.96 ef 30.13 ± 1.00 cd 4.43 ± 0.06 e 8.50 ± 0.80 cd 11.93 ± 0.25 cdef

W3
F1 5.20 ± 0.41 ab 32.75 ± 1.96 fg 27.76 ± 1.41 d 4.03 ± 0.06 f 7.46 ± 1.20 d 17.57 ± 0.95 a
F2 5.70 ± 1.19 a 41.79 ± 1.96 bc 37.68 ± 1.66 a 4.73 ± 0.06 c 9.57 ± 0.42 bc 10.53 ± 1.05 ef
F3 4.23 ± 0.32 abc 30.49 ± 0.00 g 26.80 ± 0.65 d 4.60 ± 0.10 cde 6.80 ± 0.16 d 10.53 ± 1.05 ef

W4
F1 4.44 ± 1.31 abc 38.40 ± 1.96 cde 26.59 ± 0.56 d 3.07 ± 0.06 g 5.47 ± 0.46 e 13.20 ± 0.40 cd
F2 3.65 ± 0.82 abc 39.53 ± 1.96 bcd 28.69 ± 2.77 d 4.17 ± 0.06 f 8.50 ± 0.82 cd 13.63 ± 0.55 c
F3 3.96 ± 0.79 abc 27.10 ± 0.00 h 17.88 ± 2.17 e 4.00 ± 0.00 f 5.30 ± 0.64 e 13.67 ± 1.25 c

CK
F1 3.46 ± 0.90 bc 39.53 ± 1.96 bcd 37.84 ± 3.08 a 5.10 ± 0.10 b 8.41 ± 0.69 cd 10.37 ± 0.90 f
F2 3.31 ± 1.16 bc 47.43 ± 0.00 a 39.04 ± 0.48 a 5.40 ± 0.10 a 10.46 ± 0.96 ab 12.80 ± 0.80 cd
F3 3.20 ± 0.56 bc 36.14 ± 1.96 def 33.93 ± 1.24 b 4.70 ± 0.10 cd 9.55 ± 0.56 bc 12.10 ± 0.20 cdef

Irrigation level

W1 3.44 ± 0.73 b 38.40 ± 2.40 b 33.58 ± 3.37 b 4.59 ± 0.37 b 9.66 ± 1.40 a 14.50 ± 1.79 a
W2 4.25 ± 1.44 ab 38.02 ± 4.07 b 29.19 ± 1.24 d 4.38 ± 0.17 c 7.98 ± 0.80 b 13.66 ± 2.91 b
W3 5.04 ± 0.92 a 35.01 ± 5.36 c 30.75 ± 5.34 c 4.46 ± 0.33 c 7.94 ± 1.37 b 13.07 ± 3.49 b
W4 4.01 ± 0.93 b 35.01 ± 6.11 c 24.39 ± 5.27 e 3.74 ± 0.52 d 6.42 ± 1.66 c 13.50 ± 0.75 b
CK 3.32 ± 0.80 b 41.03 ± 5.21 a 36.94 ± 2.86 a 5.07 ± 0.32 a 9.47 ± 1.11 a 11.76 ± 1.25 c

Nitrogen
fertilizer

treatment

F1 4.41 ± 1.13 a 37.04 ± 2.99 b 30.63 ± 4.55 b 4.11 ± 0.67 c 7.88 ± 1.54 b 12.97 ± 2.62 b
F2 3.90 ± 1.40 a 41.56 ± 4.14 a 34.45 ± 4.89 a 4.76 ± 0.45 a 9.35 ± 1.58 a 13.93 ± 2.49 a
F3 3.74 ± 0.75 a 33.88 ± 4.96 c 27.83 ± 5.75 c 4.47 ± 0.26 b 7.66 ± 1.62 b 12.98 ± 1.93 b

p
W 0.007 0.000 0.000 0.000 0.000 0.000
F 0.171 0.000 0.000 0.000 0.000 0.001

W*F 0.67 0.000 0.000 0.000 0.000 0.000

Note(s): Different lowercase letters in the same column indicate significant differences among treatments
(p < 0.05). Values with the same letters are not significantly different. The multiplication sign represents there is
an interaction effect.

With respect to the irrigation level, the increase in the irrigation lower limit led to an
increase in the irrigation water volume, followed by a decreasing trend in the Vc, soluble
sugar, and TSS. The highest sugar–acid ratio was observed in W1F2 (11.14), followed by
CKF2 (10.46), ranking as W1 > CK > W2 > W3 > W4 under different irrigation treatments,
which the appropriate sugar–acid ratio is 6.9 to 11 [42]. The lycopene presented a significant
difference among the various treatments. The highest lycopene could be witnessed at W3F1,
and it was higher than that of the lowest treatment 69.43%. F2 was significantly better than
F1 and F3 in all indicators of tomato quality under different nitrogen forms (p < 0.01).

3.2. Effects of Different Treatments on Water and Fertilizer Use Efficiency of Tomato

Figure 6 presents the significant differences in the nutrient accumulation and use
efficiencies in tomato under the different treatments. W2F2 demonstrated the highest
accumulation and use rates for all nutrients compared to the other treatments. The N, P2O5,
and K2O accumulations in W2F2 were 10.76 g/plant, 1.80 g/plant, and 15.86 g/plant, and
the use efficiencies were 74.58%, 31.83%, and 77.06%, respectively. Compared to the other
treatments, W2F2 showed significant increases in the N content (12.46% to 80.16%), the N
use rate (12.47% to 80.19%), the P2O5 content (7.80% to 125.01%), the P2O5 use rate (7.79%
to 85.81%), the K2O content (12.24% to 128.20%), and the K2O use rate (12.20% to 128.06%).

Highly significant differences were observed in the nutrient accumulation of tomato
under different irrigation treatments (p < 0.01). Furthermore, there were no significant
differences in the accumulation of N and K, but significant differences were found in
the accumulation of P under the three nitrogen fertilizer treatments (p < 0.05). There
were significant differences in the accumulation of N, P, and K under the water–fertilizer
interaction (p < 0.01). The effects of different irrigation treatments, nitrogen fertilizer
treatments, and the interaction effects of water and fertilizer on the use efficiency of N, P,
and K reached a highly significant level (p < 0.01).
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Figure 6. Effect of different treatments on irrigation water use effciency and nutrient use efficiency
of tomatoes. Different lowercase letters in the same column indicate significant differences among
treatments (p < 0.05). Values with the same letters are not significantly different. The multiplication
sign represents there is an interaction effect. The detailed data can be found at Appendix A.

No significant differences were observed in the water use efficiency of tomato among
the 15 groups under different water and fertilizer treatments. Furthermore, there were
no significant differences in the water use efficiency of tomato under the same irrigation
regime with different nitrogen forms and water–fertilizer interaction effects. However,
different irrigation treatments at the same fertilization level had a significant effect on the
water use efficiency of tomato, with p < 0.05. The water use efficiency of W3F2 was the
highest at 43.430 kg/m3, but did not reach a significant level. Under the same nitrogen
fertilizer treatment, it was 67.04%, 39.44%, 34.29%, and 61.17% higher than that of CKF2,
W1F2, W2F2, and W4F2 with different irrigation levels. Under the same irrigation level,
it was 9.59% and 34.72% higher than that of W3F1 and W3F3 under different nitrogen
fertilizer treatments.

3.3. Comprehensive Evaluation of the Effect of Different Water and Fertilizer Treatments
3.3.1. Correlation between Indicators

The yield per plant, Vc, soluble sugar, TSS, sugar–acid ratio, lycopene, water use
efficiency, N use efficiency, P2O5 use efficiency, and K2O use efficiency are represented by
U1~U10. The correlations among the indicators are tabulated in Table 5. According to
the results, the yield per plant had a negative correlation with the soluble sugar, TSS, and
sugar–acid ratio, while showing a highly significant positive correlation with the water use
efficiency. Additionally, Vc was found to be positively correlated with the soluble sugar,
and the soluble sugar had a positive correlation with the TSS and sugar–acid ratio. On the
other hand, the soluble sugar had a negative correlation with the P use efficiency and K use
efficiency. The TSS showed a positive correlation with the sugar–acid ratio. The sugar–acid
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ratio was highly negatively correlated with the P use efficiency and negatively correlated
with the K use efficiency. There was no significant correlation between the lycopene and
the other indicators. There were highly significant positive correlations among the N use
efficiency, P2O5 use efficiency, and K2O use efficiency.

Table 5. Spearman’s correlation between indicators.

No. U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 1
U2 −0.219 1
U3 −0.579 * 0.614 * 1
U4 −0.558 * 0.453 0.852 ** 1
U5 −0.527 * 0.371 0.833 ** 0.603 * 1
U6 −0.075 0.032 −0.293 −0.37 −0.204 1

U7 0.557 * −0.061 0.007 −0.057 −0.077 −0.35 1
U8 0.429 −0.005 −0.361 −0.166 −0.45 −0.281 0.007 1
U9 0.432 −0.147 −0.579 * −0.386 −0.745 ** −0.118 0.089 0.789 ** 1
U10 0.493 –0.144 −0.536 * −0.376 −0.570 * −0.195 0.064 0.929 ** 0.796 ** 1

Note(s): “*” indicates a significant correlation at the p < 0.05 level, and “**” indicates a highly significant correlation
at the p < 0.01 level.

The results demonstrate that the indicator data reflected both overlapping and distinct
information. To better evaluate the comprehensive effects of the different irrigation and
fertilization systems, a comprehensive multi-item evaluation was necessary.

3.3.2. Analysis and Evaluation of Tomato Yield, Quality, and Water–Fertilizer
Use Efficiency

Principal component analysis was used to analyze the indicators of tomato quality
and water–fertilizer use efficiency, respectively. The Vc (U2), soluble sugar (U3), TSS (U4),
sugar–acid ratio (U5), lycopene (U6), water use efficiency (U7), N use efficiency (U8), P2O5
use efficiency (U9), and K2O use efficiency (U10) were normalized and then subjected to
principal component analysis, respectively.

The contributions of the eigenvalues of the tomato quality indicators are shown in
Table 6, and two principal components were extracted. The variance interpretation rates of
the two principal components were 59.965% and 20.757%, respectively, and the cumulative
variance interpretation rates were 80.723%. The principal component expression is:

Y1 = 0.413U2 + 0.556U3 + 0.479U4 + 0.520U5 − 0.141U6 (10)

Y2 = 0.401U2 − 0.082U4 + 0.003U5 + 0.912U6 (11)

Table 6. Principal component variance interpretation of tomato quality indicators under each treatment.

No. Eigenvalue Variance
Interpretation Rate (%)

Cumulative Variance
Interpretation Rate (%)

U2 2.998 59.965 59.965
U3 1.038 20.757 80.723
U4 0.582 11.631 92.354
U5 0.297 5.932 98.286
U6 0.086 1.714 100.000
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The greatest influences on the first and second principal components were the Vc
and soluble sugar, respectively, and the first two principal components were used as the
evaluation indicators of the tomato quality, with the integrated evaluation equation of

Y = 0.743Y1 + 0.257Y2 (12)

The contributions of the eigenvalues of the water and fertilizer use efficiency indicators
are presented in Table 7, and one principal component was extracted. The cumulative
contribution of this principal component was 69.317%, which can replace the original four
variables to evaluate the water and nutrient use efficiencies under different treatments. The
principal component expression is:

Z1 = 0.109U7 + 0.583U8 + 0.561U9 + 0.578U10 (13)

Table 7. Principal component variance interpretation of water and fertilizer use efficiency under each
treatment.

No. Eigenvalue Variance
Interpretation Rate (%)

Cumulative Variance
Interpretation Rate (%)

U7 2.773 69.316 69.316
U8 0.984 24.591 93.906
U9 0.187 4.685 98.591
U10 0.056 1.409 100.000

The comprehensive score was calculated according to the first principal component:

Z = Z1 (14)

The comprehensive score and ranking of principal components of the tomato quality
and water and fertilizer use efficiency were obtained according to Equations (12) and (14).
Table 8. lists the rankings and scores reflecting the three dimensions of tomatoes.

Table 8. Rankings and scores reflecting the three dimensions of tomato.

Irrigation
Level

Nitrogen
Fertilizer
Treatment

Tomato Quality Indicator Water and Fertilizer Use
Efficiency Indicator Yield Indicator

Score Ranking Score Ranking Yield Ranking

W1
F1 0.302 7 −1.735 14 3.823 8
F2 1.470 2 −3.258 15 2.882 15
F3 0.428 6 −1.170 11 3.618 11

W2
F1 −0.538 11 1.745 2 5.144 3
F2 0.297 8 3.122 1 3.937 7
F3 −0.299 10 1.533 3 3.678 10

W3
F1 −0.828 12 −1.256 12 5.196 2
F2 1.154 3 0.511 7 5.695 1
F3 −1.275 13 1.012 6 4.227 5

W4
F1 −1.731 14 1.212 4 4.435 4
F2 −0.101 9 −0.224 8 3.647 9
F3 −2.738 15 1.199 5 3.958 6

CK
F1 0.929 4 −0.365 9 3.458 12
F2 2.444 1 −1.257 13 3.309 13
F3 0.485 5 −1.071 10 3.195 14
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3.3.3. Comprehensive Evaluation of the Effect of Different Water and Fertilizer Treatments
Using Fuzzy Borda

The evaluation information of the three dimensions of yield, quality, and water–
fertilizer use efficiency was evaluated in combination using the fuzzy Borda method to
obtain the comprehensive score and ranking. The results are shown in Figure 7, where they
are ranked by area size. The W3F2 scored 78.208, ranking first, and indicating that under
the treatment with 70%FC~90%FC as the irrigation condition and with nitrate nitrogen
fertilizer, the multi-dimensional optimal comprehensive evaluation of the tomato yield,
quality, and water–fertilizer use efficiency can be achieved.
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4. Discussion
4.1. Relationships among Tomato Yield, Quality Indicators, and Water and Fertilizer Use
Efficiency Indicators

The optimal regression equation was obtained by a stepwise regression method
through a path analysis, with tomato yield (U1) as the dependent variable and the in-
dicators of tomato quality and water and fertilizer use efficiency (U1~U10) as independent
variables: U1 = 1.039− 0.156U5 + 0.129U7 (R2 = 0.782). This implies that the sugar–acid
ratio and water use efficiency could explain 78.3% of the variation in the yield per plant.
The path analysis showed that the sugar–acid ratio had a significant negative correlation
with the yield, while the water use efficiency had a significant positive correlation with
the yield, with a path coefficient of 0.947. These results suggest that improving the tomato
water use efficiency can be a key factor in increasing tomato yield.

4.2. Effects of Irrigation Lower Limit and Nitrogen Forms and Water-Fertilizer Interactions on
Tomato Yield and Quality

Soil moisture and fertility are important factors that significantly affect crop yield and
quality. Research on the irrigation and fertilization of tomatoes under facility growing
conditions has been widely conducted by scholars both domestically and abroad [43,44].
Many studies have demonstrated that irrigation, fertilization, and intercropping practices
generate certain effects on crop yield and quality [45–47].

In this study, significant differences were observed in the yield among 15 groups
of treatments with different irrigation and fertilization regimes. Additionally, highly
significant yield differences were observed among W1, W2, W3, W4, and CK under different
irrigation treatments (p < 0.01). However, no significant differences in yield were observed
among F1, F2, and F3 under different nitrogen forms, and no significant effects of the
water–fertilizer interaction were observed on the tomato yield.

The treatment that resulted in the highest yield per plant was W3F2, with a yield
of 5.695 kg. The variation in the yield among treatments followed a trend of increasing
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and then decreasing with increases in the irrigation lower limit. This can be interpreted
that the gradual increase in the irrigation starting conditions, from 50%FC to 80%FC for
each treatment W1 to W4, resulted in a gradual increase in the irrigation water volume
throughout the entire growth period of the tomato. However, as the lower limit continued
to increase, the air permeability of the soil decreased, which inhibited the ability of the root
system to absorb nutrients, ultimately resulting in a decrease in the fruit yield [48].

In this study, the irrigation and nitrogen forms affected all indicators of tomato quality
at highly significant levels (p < 0.01), while the water–fertilizer interaction effects were also
found to have highly significant effects on the tomato quality (p < 0.01). Irrigation and fer-
tilization had profound impacts on the tomato fruit quality through different mechanisms.
Irrigation influenced the water content of the fruit, thereby altering its nutrient content and
quality. The nitrogen form affected the activity of key enzymes involved in the organic
acid metabolism, such as phosphoenolpyruvate carboxylase (PEPCase), as well as nitrogen
metabolism enzymes, such as nitrate reductase (NR) and glutamine synthetase (GS) in
the fruit, which in turn modulated the sugar–acid ratio, thereby impacting the flavor and
quality of the tomato [49].

The relationship model between the quality comprehensive score (Y) and the tomato yield
(U1) was determined through a quadratic curve fitting method, as shown in Equation (15).

Y = 26.35− 12.18U1 + 1.35U2
1 (15)

As depicted in Figure 8, the quality score shows a decreasing and then increasing trend
with an increasing yield. The lowest quality score was observed when the yield per plant
increased to 4.51 kg/plant, after which the quality score gradually increased with further
increases in the yield. The reason for this situation may have been that there was a negative
correlation between the quality score and the yield before the yield per plant increased to
4.51 kg. With the increase in the irrigation volume and appropriate fertilization, both the
yield and quality improved simultaneously.
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4.3. Effects of Irrigation Lower Limit and Nitrogen Forms and Water-Fertilizer Interactions on
Water and Fertilizer Use Efficiency of Tomato

The results show that the different irrigation treatments, under the same amount of
fertilization, had significantly different effects on the tomato water use efficiency (p < 0.05).
The highest water use efficiency, 38.432 kg/m3, was observed when the irrigation lower
limit was set at 70%FC. However, no clear trend was observed between the water use
efficiency and the irrigation lower limit. This was because different water and nitrogen
supply patterns affected the water–fertilizer use efficiency of plants [50,51]. Wang et al.
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concluded that reduced soil water regimes under N fertigation caused the partial closure of
the stomata via the decreased plant water status and intensified root-to-shoot abscisic acid
(ABA) signaling, resulting in an improved intrinsic water use efficiency.

The results of this study indicate that the effects of irrigation schemes, nitrogen forms,
and their interaction on the utilization efficiency of N, P, and K were highly significant. The
principal component analysis revealed that the highest comprehensive score for water and
fertilizer use efficiency (W2F2) was achieved when the irrigation lower limit was set to
60%FC. Studies have shown that there is a positive correlation between the appropriate
application of nitrate nitrogen and yield and nutrient element use efficiency in crops such
as maize [52] and cotton [53]. The results of this study indicate that under water–fertilizer
interaction, an appropriate amount of water and nitrogen can greatly enhance plant and
fruit growth, resulting in improved nutrient element use efficiency while maintaining a
certain level of fertilization.

In future research, the performance of water and fertilizer use efficiency on various
tomato cultivars should be discussed, and the various requirements of irrigation volume in
different growth periods of tomato should be explored.

5. Conclusions

The water–fertilizer interaction has highly significant impacts on the quality indica-
tors of tomato, such as the Vc, soluble sugar, TSS, sugar–acid ratio, and lycopene content.
Furthermore, the interaction also significantly influences the accumulation and use effi-
ciency of the N, P, and K in tomato. These findings indicate that the improvement in the
water use efficiency of tomato plays a crucial role in increasing tomato yield. The optimal
irrigation and fertilization scheme for the spring crop cultivation of facility tomato in this
region is determined as follows: The soil moisture should be controlled at 70%FC from
the fruit setting to the harvest period. At the same time, the application of nitrate nitrogen
fertilizer could achieve the best effects on the tomato yield, quality, and water and fertilizer
use efficiency.
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Appendix A

Table A1. Effects of different treatments on IWUE and NUE of tomato.

Treatment
N

Accumulation
(g/plant)

P
Accumulation

(g/plant)

K
Accumulation

(g/plant)

N Use
Efficiency (%)

P Use
Efficiency (%)

K Use
Efficiency (%)

Water Use
Efficiency
(kg/·m3)

W1F1 7.09 ± 0.77 def 1.03 ± 0.16 def 9.09 ± 0.36 f 49.15 ± 0.94 h 18.24 ± 0.30 h 44.16 ± 0.32 j 32.55 ± 8.51 a

W1F2 5.97 ± 1.00 f 0.80 ± 0.00 f 6.95 ± 0.18 g 41.39 ± 1.11 j 14.15 ± 0.49 j 33.79 ± 1.60 k 31.15 ± 10.91 a

W1F3 7.32 ± 0.02 def 1.31 ± 0.16 bcde 8.83 ± 0.13 f 50.73 ± 0.90 g 23.11 ± 0.70 f 42.91 ± 0.79 j 30.07 ± 5.24 a

W2F1 9.57 ± 0.30 ab 1.49 ± 0.08 abcd 14.13 ± 0.77 b 66.31 ± 1.05 b 26.40 ± 0.58 d 68.68 ± 0.54 b 42.25 ± 11.22 a

W2F2 10.76 ± 0.58 a 1.80 ± 0.13 a 15.86 ± 0.42 a 74.58 ± 0.71 a 31.83 ± 0.63 a 77.06 ± 0.86 a 32.34 ± 13.89 a

W2F3 9.45 ± 1.02 ab 1.67 ± 0.00 ab 12.98 ± 0.91 c 65.49 ± 0.67 bc 29.53 ± 0.37 b 63.07 ± 0.65 d 30.21 ± 10.76 a

W3F1 6.88 ± 0.89 ef 1.26 ± 0.07 bcde 8.89 ± 0.49 f 47.66 ± 0.21 i 22.26 ± 0.00 f 43.21 ± 0.52 j 39.63 ± 3.15 a

W3F2 8.81 ± 0.06 bcd 1.29 ± 0.10 bcde 12.01 ± 0.27 cd 61.02 ± 0.43 d 22.86 ± 0.39 f 58.39 ± 0.23 f 43.43 ± 9.08 a

W3F3 8.82 ± 0.53 bcde 1.52 ± 0.35 abc 12.09 ± 0.56 d 61.14 ± 0.06 d 26.83 ± 0.68 cd 63.99 ± 0.57 d 32.24 ± 2.46 a

W4F1 8.69 ± 0.70 bcde 1.56 ± 0.30 abc 12.73 ± 0.10 c 60.24 ± 0.42 d 27.54 ± 0.34 c 67.49 ± 0.88 b 32.77 ± 9.66 a

W4F2 7.65 ± 0.60 cdef 1.29 ± 0.01 bcde 10.26 ± 1.17 e 53.04 ± 0.80 f 22.90 ± 0.49 f 61.52 ± 1.34 e 26.95 ± 6.06 a

W4F3 9.30 ± 0.50 abc 1.48 ± 0.30 abcd 12.87 ± 0.10 c 64.46 ± 0.59 c 26.25 ± 0.18 d 66.05 ± 0.96 c 29.25 ± 5.84 a

CKF1 7.60 ± 0.70 cdef 1.43 ± 0.08 abcde 8.44 ± 0.52 f 52.69 ± 0.22 f 25.25 ± 0.66 e 49.80 ± 0.68 h 34.50 ± 7.62 a

CKF2 7.94 ± 0.10 bcde 0.97 ± 0.18 ef 8.90 ± 0.70 f 55.04 ± 0.74 e 17.13 ± 0.80 i 51.65 ± 0.50 g 26.00 ± 5.76 a

CKF3 7.54 ± 0.03 cdef 1.16 ± 0.16 cdef 8.32 ± 0.20 f 52.22 ± 0.57 f 20.60 ± 0.73 g 47.94 ± 0.69 i 32.64 ± 4.66 a

W1 6.80 ± 0.89 d 1.05 ± 0.25 d 8.29 ± 1.03 d 47.09 ± 4.41 e 18.50 ± 3.91e 40.28 ± 4.99 e 34.87 ± 5.34 ab

W2 9.82 ± 0.76 a 1.68 ± 0.18 a 14.32 ± 1.41 a 68.75 ± 4.46 a 29.25 ± 2.40 a 69.60 ± 6.12 a 30.30 ± 6.04 b

W3 7.97 ± 1.00 bc 1.37 ± 0.23 bc 10.83 ± 1.52 c 56.60 ± 6.72 c 23.98 ± 2.19 c 55.20 ± 9.32 c 38.43 ± 6.99 a

W4 9.30 ± 0.50 b 1.44 ± 0.24 b 11.96 ± 1.40 b 59.25 ± 5.03 b 25.56 ± 2.1 b 65.02 ± 2.85 b 29.66 ± 6.89 b

CK 7.70 ± 0.64 c 1.19 ± 0.23 cd 8.55 ± 0.52 d 53.32 ± 1.39 d 20.99 ± 3.58 d 49.80 ± 1.70 d 31.05 ± 6.57 b

F1 7.97 ± 1.21 a 1.35 ± 0.24 ab 10.66 ± 2.44 a 55.21 ± 7.32 c 23.94 ± 3.49 b 54.67 ± 11.60 b 33.56 ± 6.09 a

F2 8.16 ± 1.63 a 1.25 ± 0.39 b 10.80 ± 3.18 a 57.01 ± 11.25 b 21.77 ± 6.28 c 56.48 ± 14.60 a 32.47 ± 8.57 a

F3 8.37 ± 1.02 a 1.43 ± 0.27 a 10.92 ± 2.09 a 58.78 ± 6.38 a 25.26 ± 3.24 a 56.79 ± 9.82 a 32.55 ± 6.40 a

W 0.000 0.000 0.000 0.000 0.000 0.000 0.029
F 0.278 0.021 0.435 0.000 0.000 0.000 0.871

W*F 0.003 0.003 0.000 0.000 0.000 0.000 0.249

Note(s): Different lowercase letters in the same column indicate significant differences among treatments (p < 0.05).
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