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Abstract: With the intensification of climate change, understanding the impacts of climate change
on the water cycle is vital for integrated watershed management. Based on the precipitation and
temperature data from 1980 to 2018, the climatic change characteristics of the Three Gorges Reservoir
Area were analyzed. The Soil and Water Assessment Tool (SWAT) was used to simulate the spatial
and temporal distribution of runoff and water quality. The result indicated that precipitation showed
clear inter-annual fluctuation, and the maximum and minimum temperatures showed an increasing
trend with rates of 0.38 ◦C/10a and 0.29 ◦C/10a, respectively. The moving averages revealed that the
annual averages of runoff, total nitrogen (TN), and total phosphorus (TP) loads showed a decreasing
trend followed by an increasing trend, which experienced strong inter-annual fluctuations. The
hydrological processes changed significantly at different spatial scales, and the most affected area
was the middle and head of reservoir area. The highest correlation was found between precipitation
and runoff (0.91), followed by TP (0.81), and TN (0.60), while extreme precipitation could result in a
high probability of water pollution events. These findings provide useful information to support the
utilization of water resources, especially in the face of strong climate change impacts.

Keywords: climate change; basin hydrology; water quality; modeling; spatial and temporal variation;
Three Gorges Reservoir Area

1. Introduction

Climate change is induced by changes operating at a global scale and is conspicuously
manifested by significant changes to local statistical distributional properties of precipita-
tion, temperature, and other indicators, which persist over time scales that can range from
decades to centuries [1–3]. Climate change alters the water cycle by affecting evaporation,
surface runoff, and groundwater, which is considered to be one of the major drivers behind
diminishing water resource availability and changes in spatial distribution [4,5]. Pollutants
and nutrients come not only from urban and municipal wastewater discharges but also
from nonpoint sources, such as atmospheric deposition, subsurface nutrient leaching, and
biochemical deposition, which are strongly affected by precipitation and temperature [5–7].
In addition, research has also shown that global climate change might significantly increase
the severity and frequency of extreme weather events. Previous studies have shown that the
risk of extreme events associated with climate change could increase significantly for every
1 ◦C increase in temperature [8,9]. Extreme climate events, such as extreme temperatures
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and heavy rainstorms, can have significant impacts on the watershed environment. There-
fore, understanding the impact of climate change on the temporal and spatial evolution of
the watershed hydrological cycle and water quality is a vital basis for improving optimal
watershed management [10,11].

To meet the new challenges of recent strong warming and significant precipitation
variations, the quantification of long-term climate change impacts on watersheds needs
to be properly addressed, which is one of the hot issues in the field of hydrological re-
search [12–14]. Common research methods can be divided into two categories, including
the statistical analysis approach and the watershed model approach [13,15,16]. A watershed
model, such as the Soil and Water Assessment Tool (SWAT) and Storm Water Management
Model (SWMM), has been widely used to quantify the impact of climate change on the
river system [17–19]. Among them, SWAT, a distributed physical model based on a geo-
graphic information system, has been the most widely used to simulate the trend of water
environment change in large watersheds and predict the impact of climate change on the
water environment. In practical studies, the SWAT model has been shown to be capable of
simulating a complex hydrological cycle and the transportation of pollutants in the river
system and has been successfully applied to simulate the climate change impact mechanism
on the watershed environment in the Yellow River, Hanjiang River, Blue Nile Basin, and
other places [16,18,20–23]. An accurate simulation of the SWAT model relies on sufficient
meteorological data and watershed pollution source data. The difficulty of information
collection hinders the simulation of the water cycle process in a large watershed, such as
the Yangtze River [13].

As the largest water system in China, the Yangtze River is of great historical, economic,
and cultural importance to the country [24–26]. The Three Gorges Reservoir area (TGRA)
is an important part of the Yangtze River, and the topographic structure is complex and
undulating, which makes the hydrological mechanism response more complex than the
natural watershed. Therefore, climate change and its impact on the reservoir area have
always been a scientific issue of great concern to people [22,25,27,28]. There has been much
research on the evolution of the watershed environment in the TGRA, but the focus has been
on the tributary area or the surrounding area, which does not reflect the long-time dynamic
trend and spatial distribution of the whole basin [13,22]. In addition, many studies have
only considered the spatial-temporal variation characteristics of runoff, and the response
process of water quality is still under development [29,30]. The studies which use long
series meteorological data to simulate the impacts of climate change on the watershed
environment are still limited in TGRA, and it is of great practical significance to study
historical climate change and its influence on the whole watershed scale.

With climate change, shortages and uncertainties in water resources have become
increasingly prominent, posing great challenges to the management of the aquatic environ-
ment in the TGRA. The aims of the study were to (a) analyze the climate change regimes
and extreme weather of TGRA from 1980 to 2018; (b) simulate the spatial and temporal
distribution of runoff, total nitrogen (TN), and total phosphorus (TP) loads; and (c) evaluate
the effects of climate conditions and extreme weather on runoff, TN, and TP loads.

2. Materials and Methods
2.1. Study Area

The Yangtze River, which has a watershed area of 1,810,000 km2 with a population of
approximately 450 million people, is the third largest river in the world with complicated
hydroclimatic conditions [13,22,25]. The Three Gorges Dam Project is one of the biggest
hydropower complex projects in the world, which was completed in 2009 and forms the
biggest reservoir in China [13,27]. The TGRA is situated in the middle reaches of the
Yangtze River (28◦28′–31◦44′ N, 105◦49′–111◦39′ E) and involves a total of 26 districts
and counties of the Chongqing City and Hubei Province. The study area covers the land
surface of TGRA, and the total watershed area is about 64,000 km2. Under the influence
of a subtropical warm monsoon climate with distinctive basin climate features, rainfall
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is abundant, and rainstorm events occur frequently in the basin. The average annual
temperature is equal to 20 ◦C, and annual precipitation is between 1000 and 1200 mm from
1961 to 2016, while rainfall is uneven throughout the years, with over 80% of precipitation
falling in May–September [13,27]. Figure 1 shows the location, soil types, and land use map
of the study area. The terrain of the entire watershed is undulating, with surface elevation
ranging between 70 m and 3,105 m above sea level. The mountain area is the largest and
accounts for more than 70%, followed by thills which accounts for about 20%, and the plain
area is the smallest. According to the role and characteristics of land, land use types could
be divided into different categories, and the largest area is agricultural land (28%), followed
by forest and grassland. The soil types include purple soil, paddy soil, yellow-brown soil,
lime soil, and so on. The purple soil, which is fertile and weak in erosion resistance, is the
most widely distributed in the basin, accounting for about 36.8% of the total land area.
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2.2. Methods of Analysis
2.2.1. Mann–Kendall Test

The Mann–Kendall (MK) test is a nonparametric statistical test that is generally used
in the long time-series trend analysis of climate data, which has the advantage of a wide
application range, simple calculation, and high accuracy [31–33]. The method does not
need to hypothesize the statistical distribution of the samples in advance, which maintains
higher reliability than other parametric methods. In addition, due to the low requirements
for the data continuity of this method, it can be used to accurately describe the trend of
long-term data. List the data in the order in which they were collected over time x1, x2, . . . ,
xn, which denote the measurements obtained at times 1, 2, . . . , n, respectively. The MK test
is based on the statistic S:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (1)
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where x1, x2, x3, . . . , xn are the observations listed in the order it is collected, j > i; xj and xi
are the time series values; and n is the length of the data set.

sgn(xj − xi) =


+1

(
xj − xi > 0

)
0

(
xj − xi = 0

)
−1

(
xj − xi < 0

) (2)

The mean and variance of the S statistic are calculated using the following formula:

E(S) = 0 (3)

Var(S) =
[n(n− 1)(2n− 5)−∑ tm(m− 1)(2m + 5)]

18
(4)

where tm is the number of times of extent m; n is the length of the data set. Based on the
above formula, the normalized test statistic Z:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)
(5)

where Z is the test statistics. For the mutation analysis, the rank statistic (Sk) can be
expressed by the following formula:

Sk =
k

∑
i=1

ri (k = 2, 3, ..., n) (6)

ri =

{
1 (xj > xi)
0 (xj ≤ xi)

(j = 1, 2, ..., i) (7)

where Sk is the cumulative number of cases xj > xi. Define the statistical variables:

UFk =
[Sk − E(Sk)]√

Var(Sk)
(k = 1, 2, ..., n) (8)

where UFk is the sequential values of the statistic; E(Sk) is the mean value of Sk; and Var(Sk)
is the variance value of Sk. The specific calculation formulas of the value are as follows:

E(Sk) =
n(n− 1)

4
(9)

Var(Sk) =
n(n− 1)(2n + 5)

72
(10)

UBk = −UFk (11)

Based on the calculated values, the trend of the time series can be further analyzed
to clarify the mutation time and the mutation region of the series. In this study, UFk
was normally distributed, which formed the forward sequence curve, and the backward
sequence UBk was obtained in the same way but in a reverse data series. If the two curves
intersect within the confidence interval, the intersection point is the moment of abrupt
change in the time series. The significance level of the test is α = 0.05.

2.2.2. Wavelet Analysis

Wavelet, cross-wavelet, and coherence wavelet approaches were used to analyze the
periodicity and correlation of the meteorological, hydrological and water quality elements.
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Wavelet analysis is developed based on the short-time Fourier transform. Compared with
the Fourier analysis, wavelet analysis can not only determine the spectral characteristics
of the signal in the time domain but also reflect local time spectral characteristics with a
better resolution. The method used in this study was Morlet wavelet analysis, with the
multi-resolution function, which is suitable for the periodic analysis of climate change
processes based on long-time series meteorological data [33,34]. Morlet wavelet is the
complex wavelet, and the function expression is:

ϕ(t) = eiω0te−t2/2 (12)

where i is an imaginary number; ω0 is the wavelet central frequency. The calculation
methods of wavelet transform, wavelet coefficient, and wavelet variance are as follows:

W f (a, b) = |a|−1/2∆t
N

∑
k=1

f (k∆t)ϕ(
k∆t− b

a
) (13)

W f (a, b) = |a|−1/2
N

∑
k=1

f (k)ϕ · eict · e−t/2 (14)

Var(a) =
+∞∫
−∞

∣∣∣W f (a, b)
∣∣∣2db (15)

where a is the contraction-expansion factor; b is the time parameter; Wf(a,b) is the Morlet
wavelet transform coefficient; Var(a) is the variance; c is the constant with the value of 6.2.

The cross-wavelet spectrum of sequences and degree of coherence of wavelet transform
can be defined as:

WXY
n (s) = WX

n (s)WY∗
n (s) (16)

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
S
(

s−1|WY
n (s)|

2
) (17)

where WXY
n (s) is the wavelet cross spectrum; WX

n (s) and WY
n (s) are the wavelet transform

coefficients; WY∗
n (s) is the complex conjugate of WY

n (s); s is the scale factor; and S is the
smoothing operator.

2.2.3. Moving Average Analysis

Moving average is a common method used in trend fitting, and the average value of
the different subsets can be used to show the trend of data change. For a long time series of
data, the new series is obtained by adjusting the size of the sliding window to calculate
the average of different time subsets, which makes the time variation trend of the original
series more obvious and better reflects the changing trend. The appropriate sliding length
k can average the high-frequency oscillation of the original sequence, though not too much:

y =
1
k

n−1

∑
i=0

xk−i (18)

where k is the appropriate sliding length; n is the length of the data set.

2.2.4. Anomaly Analysis

Anomaly analysis is a statistical method that indicates the deviation of data vari-
ables from normal conditions, which is often used in climate change studies. The differ-
ence between xi and the multi-year average xa is the anomaly value. In the analysis of
the climate change trend, the climate data sequence can be transformed into a sequence
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with an average value of 0 after anomaly processing, which makes the calculation result
more intuitive:

xi =
t

∑
i=1

(xi − xa), t = 1, 2, 3, · · · , n (19)

xa =
1
n

n

∑
i=1

xi (20)

where xi is the values of meteorological elements at time i; xa is the average annual value; n
is the length of the data set; and t is the time series.

2.2.5. Spatial Interpolation

The Ordinary Kriging method was used to represent the evolution of the spatial
distribution of meteorological elements in the TGRA. Kriging interpolation, also known
as spatial local interpolation, considers both the spatial relativity of variables and the
interrelationship between data point locations and is effective in spatial data interpolation.
The Ordinary Kriging interpolation assumes that the properties of space are uniform and
uses the weight associated with the measurement points (λi) to produce a predicted value
of the unknown point. The general form of the equation can be written as:

Z∗(x0) =
n

∑
i=1

λiZ(xi) (21)

where Z*(x0) is the predicted value of the unknown points; Z(xi) is the value of the known
points; λi is the weight used in the calculation; and n is the number of observed values.

2.3. Hydrological Model

The SWAT model, a physically based distributed hydrological model with high pre-
cision, was developed by the USDA Agricultural Research Service and is suitable for
watershed-scale water environmental simulation [18,35]. Based on the spatial data of the
Geographical Information System (GIS) and Remote Sensing (RS), the SWAT model can
accurately simulate complex water cycle processes in large-scale basins, such as runoff,
sediment, solid–liquid distribution, erosion, groundwater, evapotranspiration, nutrient
loss (nitrogen, phosphorus), heavy metals, and so on [20,35]. The SWAT model has the
advantage of high operational efficiency and continuous time simulations. In the SWAT
model, the river basins are usually divided into several sub-basins, which reduce the influ-
ence of various factors on the simulation accuracy in the watershed water cycle simulation.
Afterward, the watershed is further divided into the hydrological response units (HRUs),
which are the smallest discrete units of account and contain uniform land use, manage-
ment practices, and soil property information [13,18]. The runoff and pollutants generated
via surface and subsurface pathways were input to the stream network at the respective
sub-watershed outlet [13,20].

2.3.1. Data Source

The specific sources, accuracy, and format of the input data required by the SWAT
model are shown in the Supplementary Materials (Table S1). The Digital Elevation Model
(DEM), land use, soil type, and other data were provided by the different professional
institutions, and the data accuracy met the simulation requirements of the TGRA. In
previous studies, the SWAT model, when established with the same precision data, could
accurately simulate the water environment process in a large-scale watershed [13,22]. In
the study area, there were 22 weather stations and 113 rain stations, which could fully
reflect the spatial distribution of the meteorological elements in the study area. The daily
meteorological data of the stations were collected from the National Data Center for
Meteorological Sciences and Hydrologic Statistical Yearbooks. The watershed hydrology
and water quality data were collected from the Hydrology Bureau of Yangtze River Water
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Resources Commission. The 3710 specific point source emissions data of the study area
were collected from the Chongqing Academy of Environmental Science, and the non-point
source emission was calculated by the SWAT model.

2.3.2. Model Setup

The SWAT model can automatically generate the basin boundary and sub-basin layers
based on accurate DEM data. Therefore, the watershed was divided into 187 sub-basins
using a threshold drainage area of 2000 ha, which was successfully applied in previous
watershed simulation studies [13,22]. Based on the heterogeneity of topography, land use,
and soil type, 183 sub-basins provided 4282 HRUs. The land use/cover in the current year
of 2018 and the meteorological data with a period of 1980–2018 were used as the input
conditions for modeling. The SWAT model was calculated for 38 years, while the period
could be divided into two parts: the warm-up period (1980–1981) and the simulation period
(1882–2018).

2.3.3. Model Calibration and Validation

The calibration and verification of the SWAT model were conducted using the GLUE
methodology in the study, which took input uncertainty, structural uncertainty, parameter
uncertainty, and response uncertainty into account. The details and specific steps of
the model evaluation are presented by Shi et al. (2017) and Chen et al. (2019) [13,22].
The model was calibrated, first in the order of runoff and then water quality. It was
impossible to adjust all parameters during the calibration process, while the most sensitive
parameters which affected the simulation of runoff, TN, and TP loads were selected for
calibration. The selected parameters were basically consistent with the previous SWAT
model studies [13,35]. The sensitivity of the model parameters could be divided into four
grades: high-grade, middle-grade, primary-grade, and low-grade, and the details are
shown in the Supplementary Materials (Table S2).

The model performance was evaluated by the coefficient of determination (R2) and the
Nash Sutcliffe efficiency (ENS), which are widely used to evaluate the model
simulation [36–38]. R2 indicates the strength of the covariance between the model simula-
tion data and the monitoring data, with a value range from 0 to 1. The higher the R2 value
was, the better the model simulation effect; and the acceptable range of the simulation
accuracy was greater than 0.5. ENS ranged from 1 to negative infinity. For the value of ENS,
when ENS was higher than 0, the model simulation effect met the application requirements,
while the reverse indicated that the model simulation accuracy was insufficient:

R2 =

[
n
∑

i=1

(
Qm,i −Qm

)(
Qs,i −Qs

)]2

n
∑

i=1

(
Qm,i −Qm

)2 n
∑

i=1

(
Qs,i −Qs

)2
(22)

ENS = 1−

n
∑

i=1
(Qm,i −Qs,i)

2

n
∑

i=1

(
Qm,i −Qm

)2
(23)

where Q is the runoff or water quality concentration; Q is the average of all observations; m
is the measured values; and s is the simulated values.

2.4. Correlation Analysis

The Pearson correlation coefficient is widely used to detect the correlation between two
different variables. The Pearson correlation coefficient ranged from −1 to 1, indicating that
the correlation between the variables ranged from a completely unrelated to a completely
positive correlation. In this study, the correlations between climate change, extreme climate
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indicators, runoff, TN, and TP loads were analyzed using this method. The formula is as
follows:

Px,y =
∑(x− x′)∑(y− y′)√
(x− x′)2

√
(y− y′)2

(24)

where Px,y is the correlation coefficient; x′ is the average value of variable x; and y′ is the
average value of variable y.

3. Results and Discussion
3.1. Calibration and Validation Results

Daily runoff and water quality results during the period of 2003–2007 were utilized for
calibration and were validated over the period from 2008 to 2012. The monitoring runoff
data were provided by 10 hydrological stations, and the monitoring water quality data
were obtained by the water quality monitoring stations of the study area. The locations
of the monitoring stations are shown in Figure 1. The major parameters, which are most
sensitive to the watershed water cycle processes and the transport and transformation of
nutrients, were employed for calibration purposes. The results of the principal parameters
are shown in Table 1. The results showed that CN2 (Moisture condition II curve number)
was most sensitive to runoff modeling and was followed by CH_K2 (Effective hydraulic
conductivity) and SOL_AWC (Soil available moisture content). In the process of TN and TP
simulation, RCN (Concentration of nitrogen in rainfall) and FILTERW (Width of the edge of
field filter strip) showed the strongest sensitivity, which reached 3.31 and 2.71, respectively.
A detailed analysis of the parametric sensitivity and uncertainty of the study area was
available in our previous work [13,22]. Compared with the previous studies, the sensitive
parameters of the watershed water environment simulation were similar.

Table 1. The sensitivity value, sensitivity level, and sensitivity rank of principal parameters which
related to runoff, total nitrogen (TN), and total phosphorus (TP) loads.

Parameter Parameter Definition Sensitivity
Value Level Rank

Runoff

CN2 Moisture condition II curve number 2.99 IV 1
CH_K2 Effective hydraulic conductivity 2.67 IV 2

SOL_AWC Soil available moisture content 2.28 IV 3
ALPHA_BF Baseflow alpha factor 1.97 III 4

ESCO Soil evaporation compensation factor 1.91 III 5
GW_DELAY Groundwater delay 1.85 III 6

GWQMN
Threshold depth of water in the

shallow aquifer required for return
flow to occur

0.97 III 7

REVAPMN
Threshold depth of water in the

shallow aquifer for evaporation to
occur

0.81 III 8

CH_N2 Manning’s value for main channel 0.60 III 9
SOL_BD Soil moisture bulk density 0.30 III 10

TN

RCN Concentration of nitrogen in rainfall 3.31 IV 1

SOL_ORGN Initial organic N concentration in the
soil layer 1.58 IV 2

SDNCO Denitrification threshold water content 0.87 III 3

BC1 Rate constant for biological oxidation
of NH3

0.82 III 4

BC2 Rate constant for biological oxidation
of NO2 to NO3

0.28 III 5

TP

FILTERW Width of the edge of field filter strip 2.71 IV 1

SOL_ORGP initial humic organic phosphorus in
soil layer 2.13 IV 2

PHOSKD Phosphorus soil partitioning coefficient 1.08 IV 3
BC4 Phosphorus soil partitioning coefficient 0.88 III 4
PSP Phosphorus sorption coefficient 0.76 III 5
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Figure 2 illustrates an agreement between the simulated and monitored results of
runoff, TN, and TP. Regarding the results of runoff, the R2 range of the calibration pe-
riod was 0.52–0.79, and the R2 range of the verification period was 0.55–0.81, while the
corresponding ENS had a range from 0.47 to 0.70 and 0.50 to 0.65, respectively. During
the calibration period, the R2 of TN simulation results ranged from 0.50 to 0.86, and the
value range of ENS was 0.42–0.63, while the R2 and ENS value of TP simulation ranged
from 0.58 to 0.76 and 0.47 to 0.76, respectively. In the validation period, the minimum R2

value of TN simulation was 0.52, and the maximum value was 0.81, while the range of
ENS was 0.40–0.69. Meanwhile, the R2 of TP ranged from 0.52 to 0.77, and the ENS values
were in the range of 0.43–0.61. The simulation accuracy of the SWAT model for runoff,
TN, and TP loads could meet the requirement of the accuracy of the watershed water
environment simulation.
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Figure 2. The calibration and validation results of runoff (a), TN (b), and TP (c) loads.

It was expected that a slightly weaker performance for the water quality simulation
would be observed compared to that for runoff. The main reason for this was that the
transport and transformation processes of the watershed pollutants were more complex
than those that the runoff and the changes in hydrodynamic conditions and underlying
surface characteristics would affect the simulation of the complex pollutant transport
processes. Compared with the previous simulation research, the SWAT model adopted
in the study had an acceptable simulation accuracy, which met the requirements of the
simulation [13,22,35].

3.2. Spatial and Temporal Distribution of Climate Change
3.2.1. Temporal Distribution

In order to better investigate the characteristics of the regional climate change of TGRA,
the precipitation, minimum temperatures and maximum temperatures, along with the long
time series from 1980 to 2018, were analyzed. The trend test results of the three variables,
are shown in Figure 3. The seasonal precipitation decreased in the following order autumn
(461.31 mm) > summer (412.42 mm) > winter (159.97 mm) > spring (88.83 mm). Under the
increasing influence of climate change, the variability of the inter-annual and inner-annual
value of the regional climate gradually strengthened in the TGRA, and the uncertainty
of precipitation increased and fluctuated greatly [4,7]. The seasonal variation trends in
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temperature were similar to that of precipitation, which were highest in autumn followed
by summer. The inter-annual variation in the seasonal average temperature was smaller,
especially in summer and autumn.
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Figure 3. The season variation trend (a–c), moving average value (d–f), anomaly change (g–i) and
Mann-Kendall test (j–l) of annual precipitation, minimum and maximum temperature.

The moving averages with the different yearly scales of precipitation and minimum
and maximum temperatures were selected to reveal the frequency changes in climate vari-
ables for the historical periods. The annual precipitation of the study area was 1121.92 mm,
which showed a large fluctuation from 1980 to 2018, while the lowest precipitation value,
878.46 mm, occurred in 2001. Compared with the other large river basins with a complex
ecological environment, such as the Yellow River, Songhua River, and Hanjiang River,
the Yangtze River basin had higher annual precipitation [14,16,21]. As shown in Figure 3,
there were two obvious fluctuations in precipitation from 1980 to 2018, and the dividing
year was 2000. Over the two periods, the precipitation obviously showed a trend of first
decreasing and then increasing. From the perspective of a multi-time scale, the average
annual values of the minimum and maximum temperature were 13.53 ◦C and 21.23 ◦C.
The maximum and minimum temperatures showed an increasing trend, with linear change
rates of 0.38 ◦C/10a and 0.29 ◦C/10a, respectively. This change was mainly influenced by
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global warming, with the IPCC’s Fifth Assessment Report stating that the global average
land and sea temperatures increased by 0.89 ◦C during 1901–2012 [39,40]. Previous studies
have also shown that the global temperature showed a gradual upward trend since the
2000s, which has required more attention [39].

The percentage of the anomaly can be used as an important method to characterize
the excess (deficit) of precipitation and minimum and maximum temperature over the
multi-year average for a certain period. The results of the annual precipitation anomaly
analysis showed that there was no obvious trend of precipitation, which showed a strong
periodic fluctuation. Larger precipitations were recorded in 1982, 1983, and 1998, which
coincided with the records of a major flood disaster that occurred in the Yangtze River
Basin. The temperature anomaly results showed that the temperature had a significant
rising trend. There were three temperature periods during the study period: the cooling
period (1980 to 1990), the warming period (1990 to 2000), and the accelerated warming
period (2000 to 2018).

Figure 3 shows the MK test of precipitation and minimum and maximum temperature
in the TGRA. In this study, the significance level of the test was α = 0.05. The phenomenon
of the precipitation was quite different from that of temperature. It can be summarized
by stating that the precipitation change was not significant, and there was no obvious
mutation point, which is consistent with the analysis above. The UF and UB curves of
precipitation had multiple points of intersection in the confidence interval, which were
located between the two critical lines. The UF value was negative from 1985 to 2016,
indicating that the precipitation of the study area presented an overall decreasing trend
of fluctuation after 1985. It showed an obvious trend in both minimum and maximum
temperatures over the past few decades. The UF curves showed that UF values were
mostly negative before 1990, while all of them were positive after 1990, indicating that
the minimum and maximum temperatures changed from low to high. The UF value of
temperature exceeded the upper confidence limit, indicating that the abrupt points of the
minimum and maximum temperature were 1998 and 2001, while the temperature presented
an obvious increasing trend after the abrupt point.

Wavelet analysis was applied to examine the periodic variation in the annual precipi-
tation and minimum and maximum temperature (Figure 4). Positive areas of the real part
of the Morlet wavelet analysis indicated high annual precipitation and temperature, while
negative areas indicated the contrary. The contours of precipitation and temperature were
relatively dense in the study period and indicated that the change was drastic while the
fluctuation range was large. Combining the results of the wavelet variance test and the
contour map of the real part of wavelet coefficients, the oscillation period of precipitation
with the densest and the most significant contour value center was about 22 a, and the oscil-
lation period of temperature was 28 a. Previous studies have also shown that the Wujiang
River, an important tributary of the Yangtze River, and the main principle cycle of annual
precipitation was 29 years, which was similar to the periodic period of the study [41].

3.2.2. Spatial Distribution

The spatial distribution of precipitation and minimum and maximum temperature
from 1980 to 2018 is depicted in Figure 5. For the most recent past period, precipitation
presented a trend less-more-less from west to east, as lower elevations were commonly
associated with less precipitation. In addition to the influence of atmospheric circulation,
the spatial distribution of precipitation was also affected by the local topography and
altitude [13,22]. Due to the extensive mountainous area and rugged terrain in the TGRA,
the precipitation was abundant in the reservoir area, but the spatial distribution was not
uniform [13,24]. High temperature centers appeared in the urban area of Chongqing city,
Zhongxian city, and Xingshan city, with stronger economic development. Compared with
the land use types distribution above (Figure 1c), it could be found that the area with a
higher vegetation coverage and lower human activity intensities had a lower tempera-
ture [24]. The temperature distribution of the study area was highly susceptible to the
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degree of human activities (carbon emissions) and vegetation coverage, thus the tempera-
ture in the large urban area with high human activities was generally higher than in the
area with high vegetation coverage [42–45].
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3.2.3. Extreme Weather

As extreme climate events occur frequently, the inter-annual characteristics of climate
extremes have changed substantially. The inter-annual variation characteristics of extreme
climate events from 1980 to 2018 are shown in Figure 6, and the extreme weather indicators
are shown in Table S3. The extreme precipitation days showed an increasing trend between
1980 and 2018, indicating that the extreme precipitation weather increased prominently
under the background of global climate change [46]. Meanwhile, the extreme temperature
days in the study area increased gradually. The United Nations has stated that extreme
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weather events have increased more than fivefold over the past few decades, with a
significant increase in growth trends in just over two decades. The summer night days
and high-temperature days showed an increasing trend, while the frost days and freezing
days showed a decreasing trend. While climate change does not directly cause heavy
rainfall or drought, it makes these naturally occurring events more intense or severe. The
scenario that increased extreme weather events caused by global climate change could
lead to deeper changes in the watershed water cycle and has been supported by several
previous modeling prediction studies [4,15,46].
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3.3. Spatial and Temporal Distribution of Runoff, TN and TP Loads
3.3.1. Temporal Distribution

The temporal trends of runoff, TN, and TP loads in the study area under climate change
are shown in Figure 7. The average annual runoff for the past 40 years was 356.17 mm,
and the average annual TN, and TP were 13.61 kg/ha and 0.17 kg/ha, respectively. The
average annual value of runoff, TN and TP loads showed a decreasing trend followed by
an increasing trend and fluctuated violently within the short period, possibly due to the
same severe interannual fluctuation of precipitation [10,12]. A monthly variation in runoff
showed a fluctuation of cyclical variation, specifically from June to August. The highest
monthly runoff was in July 1982, which reached 170.49 mm, and the lowest monthly runoff
occurred in July 2006, with a value of 2.17 mm. The monthly variation in TN and TP loads
also showed cyclical fluctuations, such as runoff, as evidenced by the peaks from June
to August.

Figure 7 shows the trends of runoff, TN, and TP loads in different seasons. The multi-
year seasonal value of runoff showed a trend of autumn (151.55 mm) > summer (115.91 mm)
> winter (71.73 mm) > spring (22.34 mm), and the runoff fluctuated widely in autumn, with
the highest value of 328.79 mm in 1998 and the lowest value of 56.26 mm in 2006. The result
indicates that the intra-annual distribution of meteorological elements became more and
more uneven due to climate change, leading to profound changes in water environment
elements, especially in terms of runoff [47,48]. The multi-year seasonal average value of
TN was the following: autumn (4.93 kg/ha) > winter (4.64 kg/ha) > summer (3.71 kg/ha) >
spring (2.65 kg/ha), but the value of TP in autumn was lower than in summer. Compared
with runoff, the seasonal average of TN and TP simulations showed a lower inter-annual
fluctuation. Under the influence of climate change, especially after the operation of the
Three Gorges Dam Project, the local microclimate of the basin might lead to an obvious
decrease in the differences between runoff and TP across seasons. The seasonal fluctuation
trend of TN showed an increasing trend during the study period, which was possibly due
to an increase in the extreme precipitation conditions caused by climate change, which
increased the probability of higher nutrient loads due to surface erosion [49,50].
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3.3.2. Spatial Distribution

The impacts of climate change on the spatial distribution of runoff, TN, and TP
loads are presented in Figure 8, while Figure 8a–c are spatial distributions under 1980s
meteorological conditions, and Figure 8d–l are the difference between the 1990s, the 2000s,
the 2010s, and the 1980s, respectively. The hydrological processes changed significantly at
different spatial scales during the last 40 years. Under the meteorological conditions in the
1980s, higher runoff areas were mainly distributed in the middle and head reservoir areas,
where the average values were 429.87 mm and 404.23 mm, and the lower was in the tail
area, which was only 270.11 mm. Compared with the 1980s, the runoff in the middle area
of the reservoir decreased significantly in the 1990s, 2000s, and 2010s, while there was a
significant increase in the head and tail area. In the large-scale watershed, the hydrological
elements might appear to have opposite trends in the upstream and lowland areas, i.e.,
an increase in precipitation in the upstream area might result in a higher runoff while the
downstream even showed a downward trend. Previous studies have shown such opposing
trends in the Nile basin, which increased in the runoff upstream of the Blue and White Nile
and decreased downstream [2,51–53]. Under the meteorological conditions in the 1980s,
the area with a higher TN load was distributed in the middle area of the reservoir, with an
average TN value of 11.01 kg/ha, while the lower TN occurred in the head and tail area.
The spatial distribution of TP was similar to that of TN in the 1980s. Compared with the
1980s, the TN showed an increasing trend, while the TP showed an opposite trend during
the study period. In addition, climate change in the 2000s had the most significant impact
on runoff, TN, and TP loads.
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3.4. Response Relation
3.4.1. Climate Change Impact

The correlation analysis results were used to characterize the correlation between
climate indicators, runoff, TN, and TP loads, while temperature had little correlation with
runoff, TN, and TP. The Pearson correlation coefficient between the precipitation and
runoff reached 0.91 (Figure 9), and the significance level is less than 0.001, indicating that
precipitation was an important factor affecting the inter-annual variation of runoff during
the study period. From the wavelet spectrum, the correlation of precipitation and runoff
optimally explains runoff variations (Figure 10). Annual precipitation and annual runoff
showed a 3–5-years high energy resonance zone around 1995 and 2003. The coherence
wavelet presented the same phases as those observed in the cross-wavelet, with a high level
of correlation (0.80–1.00). The precipitation had a significant impact on rainfall during the
study period. These results were consistent with several previous studies, while climate
change had a great impact on runoff by affecting the precipitation and evaporation of the
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large river basin [54–56]. The Pearson correlation coefficient between TN and precipitation
was only 0.60, which indicated that precipitation had a lower influence on TN, while
the correlation was not significant. In addition to the slope erosion caused by rainfall
runoff, industrial point source emissions and domestic sewage emissions caused by human
activities are more important pollution sources of TN, especially the larger watershed with
a high population density [25,57–59]. Compared with TN, the correlation value between
precipitation and TP (0.81) was higher. TP mainly comes from soil erosion, and rainfall is the
most direct factor leading to soil erosion [60–62]. The wavelet coherency results suggested
that the precipitation had lower correlations with TN and TP loads than that of runoff,
with the range of 0.4–0.9 for TN load and 0.6–0.9 for TP load, respectively. With climate
change, the variability in the water cycle was intensified, which may bring extreme rainfall
events and associated flooding, as well as higher water environment pollution [24,46]. It
is necessary for the national government and various departments to formulate targeted
adaptation policies to achieve regional sustainable water resources management.
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3.4.2. Extreme Weather Impact

The correlation results between runoff, TN and TP loads, and extreme climate indica-
tors are shown in Table 2. Extreme precipitation indicators showed positive correlations
with runoff, TN, and TP loads and had a large effect. Severe torrential rain days (P100)
and torrential rain days (P50) were highly correlated with runoff and with the correlation
coefficients of 0.57 and 0.54, respectively. Previous studies indicated that the increase in the
precipitation of a large watershed, especially in summer, a season with frequent rainstorms,
would lead to a significant increase in watershed runoff and even lead to the occurrence of
floods [6,63,64]. The extreme precipitation indicators showed a positive correlation with
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TN and TP, but correlations were lower than runoff. Previous studies have shown that
extreme precipitation events had a potentially large impact on water quality, especially in
high-risk areas of non-point source pollution [24]. In particular, the extreme precipitation
events after successive droughts could wash many mineral elements, nutrients, pathogens,
and other pollutants into the river and lead to more pollution in water bodies; excessive
amounts of TN and TP could increase the risk of water eutrophication and result in a high
probability of water pollution events [65–67].

Table 2. Correlation between runoff, TN and TP loads, and extreme climate indicators.

Indicator Runoff TN TP

P100 Severe torrential rain days 0.54 0.44 0.55
P50 Torrential rain days 0.57 0.40 0.52
P25 Heavy rain days 0.19 0.35 0.03
P10 Moderate rain days 0.07 0.22 0.02
FD Frost days −0.13 −0.40 −0.05

SND Summer night days −0.17 −0.01 −0.16
HTD High temperature days −0.37 0.08 −0.37
FRD Freezing days 0.01 −0.02 −0.04

4. Conclusions

Under the influence of increasing regional climate change, the complexity and uncer-
tainty of the watershed environment in the TGRA are increasingly evident. Based on the
practical requirements of integrated watershed environment management, the analysis of
the corresponding relationship between climate change and the watershed environment
is an important technical support for the development of relevant adaptation measures.
In this paper, the temporal and spatial variation characteristics of climatic changes were
analyzed based on meteorological monitoring data from 1980 to 2018 in the TGRA. The
evolution of complex processes in the watershed environment was investigated using the
SWAT model.

1. The inter-annual variation in precipitation fluctuated greatly during the study period,
and there was no abrupt change point. The temperature showed an increasing trend;
the increasing rates of the maximum and minimum temperature were 0.38 ◦C/10a
and 0.29 ◦C/10a, respectively. The precipitation presented a spatial distribution trend
of less-more-less from west to east, while high temperatures mainly appeared in the
urban area. Extreme precipitation events and extremely hot weather have increased
during the past decades.

2. The average annual value of runoff, TN, and TP loads showed a decreasing trend
followed by an increasing trend and fluctuated violently within the short period. The
runoff decreased significantly at the head and middle reservoir region, while it also
showed an increasing trend at the tail reservoir area. Except for a few areas of the
middle region, TN in most areas showed an increasing trend while TP decreased.

3. Climate change and extreme precipitation events have had a significant impact on the
runoff and TP load, while the impact on the TN load has increased significantly over
the past 20 years. With climate change, variability in the water cycle has intensified,
which may bring floods and greater pollution in the water environment. It is necessary
for the national government and various departments to conduct more comprehensive
assessments of climate change and its influence to support integrated water resources
management.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w15081542/s1: Table S1: The sources of foundation database for
SWAT model. Table S2: The sensitivity values grading standard of the SWAT model. Table S3: The
description and calibrated value of the parameters which relate to the runoff, total nitrogen, and total
phosphorus. Table S4: Classification methods of climate extreme indicators.
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