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Abstract: In recent years, a real-time control method based on deep reinforcement learning (DRL)
has been developed for urban combined sewer overflow (CSO) and flooding mitigation and is more
advantageous than traditional methods in the context of urban drainage systems (UDSs). Since
current studies mainly focus on analyzing the feasibility of DRL methods and comparing them with
traditional methods, there is still a need to optimize the design and cost of DRL methods. In this
study, state selection and cost estimation are employed to analyze the influence of the different states
on the performance of DRL methods and provide relevant suggestions for practical applications.
A real-world combined UDS is used as an example to develop DRL models with different states. Their
control effect and data monitoring costs are then compared. According to the results, the training
process for DRL is difficult when using fewer nodes information or water level as the input state.
Using both upstream and downstream nodes information as input improves the control effect of
DRL. Also, using the information on upstream nodes as the input state is more effective than using
downstream nodes; using flow as input is more likely to have a better control effect than using water
level, while using both flow and water level cannot significantly further improve the control effect.
Because the cost of flow monitoring is higher than water level monitoring, the number of monitoring
nodes and the use of flow/water level need to be balanced based on cost-effectiveness.

Keywords: urban drainage system; flooding and overflow mitigation; deep reinforcement learning;
cost estimation

1. Introduction

Combined sewer overflow (CSO) and flooding have become an inevitable problem in
many urban drainage systems (UDSs) around the world due to climate change and urban-
ization [1–6]. For example, the heavy rainfall in Zhengzhou in 2021 caused a serious loss
of life and property, again highlighting the importance of urban water management [7,8].
Many studies show that real-time control (RTC) of UDS is an effective method to mitigate
CSO and flooding in the context of smart cities [6,8,9]. It makes full use of the storage
capacity of the pipe network and structures through controlling actuators such as pumps,
gates, and valves to change the hydraulic conditions of the pipe network for CSO and
flooding mitigation.

Traditional real-time control methods include: heuristic control (HC) [10–13], model
predictive control (MPC) [13–15], and supervised learning control [16]. HC controls UDS
through preset rules which cannot be adjusted in operation and has weak adaptabil-
ity [10,17]. MPC combines rainfall prediction, a UDS model, and an optimization algorithm
to optimize the control strategy through receding horizons at each control time point, but
is limited by prediction accuracy and computing speed [17]. Supervised learning control
trains an AI controller through a large amount of UDS operation data [16], thus its effec-
tiveness depends on the quality and quantity of collected data and might lack feasibility in
the context of UDS.
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Recent studies show that deep reinforcement learning (DRL) can be used to establish
a more advanced real-time control method for CSO and flooding mitigation and solve
the problems of traditional RTC methods [18–22]. DRL trains an agent to flexibly control
the pump and gate of UDS based on the real-time state, thereby adjusting the hydraulic
conditions and water volume of the pipe network for CSO and flood mitigation, and
therefore has better adaptability than HC. Also, a trained DRL agent directly provides
the control strategy, and no longer needs to solve an optimization problem in real-time
operation, leading to a faster computational speed compared with MPC. In addition, the
training process of DRL does not require a large amount of monitoring data, but rather to
obtain learning data through simulation and trial-and-error. Therefore, it requires only a
well-established UDS model and sufficient rainfall data, and eliminates the need for a large
amount of monitoring data compared to supervised learning.

Although the optimization of state selection has already existed in other fields [23,24],
the optimizations of state selection and cost are still missing in the existing DRL in the
context of UDSs. Different states will provide different information to DRL, resulting
in different control effects. Therefore, it is beneficial to improve the operation of DRL
by fully considering the state selection to help it obtain as much useful information as
possible. Meanwhile, adding an input into a DRL system requires the establishment
of a corresponding data monitoring system and a data transmission network system.
Considering the price difference of data monitoring systems, the cost of a DRL using water
level as input can be significantly different from a DRL using flow as input. Therefore,
how to achieve a balance between a DRL method’s control effects and its construction costs
is an important issue that must be considered in the practical application. The optimal
combination of the input features and their rationality were analyzed by cross-validation
and mechanism analysis in related deep learning application studies [24,25]. In addition,
there were also studies that provided preliminary accounting for construction costs of
real-time control systems and data monitoring systems in UDS [10,26]. However, none of
these studies have been conducted for DRL in the context of UDS.

The main objective of this paper is thus to understand the influence of different state
selections on the performance of DRL in CSO and flood mitigation by state design based
on monitoring locations (different node locations in UDS) and monitoring information
(water level or flow). The impact of state selection on the construction price is also analyzed
through cost estimation. A real-world UDS is used as an example for verification. Its DRL
design and implementation suggestion is proposed by taking into account both control
effects and costs.

2. Materials and Methods

Simulation, state selection, and cost estimation are applied to analyze the influence
of different states on both the control effect and construction cost of DRL. Different state
scenarios based on the location of pipeline network nodes and information type (water
level, flow, or both) are designed according to the characteristics of UDSs and are used to
train different DRL agents. The cost of each input scenario is calculated using the collected
price information from different service providers in China. The following section provides
details on the applied methods.

2.1. Case Study and Rainfall Data

The case study is a real-world combined UDS located in eastern China, which has
139 nodes, 140 pipelines, and three pump stations. In this study, we focus on the area with
a high level of flooding and CSO, thus only two pump stations are considered. Its storm
water management model (SWMM) is shown in Figure 1. The version of SWMM is 5.1 [27].
In dry periods, the sewage pumps transfer water from the storage tanks downstream, while
on rainy days, the storm pumps discharge excess water into a nearby river as the CSO.
During heavy rainfalls, the maximum capacity of the pumping stations might exceed the
maximum capacity of the pipeline network, causing both flooding and CSO in this area.
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Therefore, its control system needs to smartly balance the water volume both upstream
and downstream to minimize the total CSO and flooding. These pump stations have a
rule-based heuristic control (HC) system that operates the pumps to start/stop working
based on a sequence of water level threshold values [21]. The threshold values are shown
in Table 1. The system is named HC in this study. More details of this case can be found in
our previous studies [6,19–21,28].
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Figure 1. The SWMM model of the case study. The CC pump station has two sewage pumps (CC-S1, 2),
two storm pumps (CC-R1, 2), and one storage tank (CC-storage). The JK pump station has one
sewage pump (JK-S), two storm pumps (JK-R1, 2), and one storage tank JK-storage. The nodes in the
upstream and downstream are used in the state design in Section 2.2.

Table 1. Rule-based heuristic control (HC) system in the case study.

Pump Name Type Startup Depth of HC (m) Shutoff Depth of HC (m)

CC-S1 Sewage pump 0.8 0.5
CC-S2 Sewage pump 1.0 0.5
CC-R1 Stormwater pump 1.2 0.5
CC-R2 Stormwater pump 1.4 0.5
JK-R1 Stormwater pump 4.2 1.2
JK-R2 Stormwater pump 4.3 1.2
JK-S Sewage pump 4.0 1.0

The rainfall data used in this study for DRL training and testing are designed rainfalls
based on Chicago histograms (Equation (1)), where i(tb) is the storm intensity before the
rainfall peak; i(ta) is the storm intensity after the rainfall peak; ta and tb are corresponding
rainfall duration time; A is the rainfall intensity with a recurrence period of one year; C
is an empirical constant; P is the rainstorm return period; K is the peak intensity position
coefficient (or time-to-peak ratio); and n and b are the parameters related to the region.
These parameters are randomly selected within the range provided by historical research
on the rainstorm intensity in the study area. The detailed values are provided by previous
studies [19,20] and are shown in Table 2. These rainfalls are shown in Figure 2.

Before the peak : i(tb) =
[A(1+Clog(P))]

[
(1−n)tb

K +b
]

( tb
K +b

)1+n

After the peak : i(ta) =
[A(1+Clog(P))]

[
(1−n)ta

1−K +b
]

( ta
1−K +b)

1+n

(1)
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Table 2. The range of parameters in Equation (3).

A (mm) C P (Year) n b K

21~35 0.939~1.20 1~5 0.86~0.96 16~22 0.3~0.8
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2.2. Deep Reinforcement Learning for Flooding and Overflow Mitigation

When establishing DRL for a UDS, its model, e.g., SWMM, is applied as an environ-
ment controlled by a DRL agent, while its agent is established by a deep neural network to
input real-time state and output action. The state is real-time information on UDS, which
includes the water level and flow of pipeline network nodes, rainfall intensity, and so on.
In this study, the influence of different states on the control effect of DRL is mainly studied.
Different state selection scenarios based on the node’s location and information type (water
level or flow) are designed and used to train different DRLs for comparison. Details of
scenarios are provided in Section 2.3. The action refers to the control command in the next
time period, which generally includes the startup/shutoff of a valve or a pump, etc. There
are two pump stations in this case study and each of them has corresponding stormwater
pumps and sewage pumps, thus the action is the control command of all these pumps
(startup/shutoff). The system needs a reward to score the control effectiveness of action in
real-time according to a control objective, e.g., flooding and CSO mitigation. The reward in
this study is calculated using Equation (2), where CSOt is the total CSO of time t; f loodingt
is the total flooding of time t; and total in f lowt is the total inflow of time t.

rt = −
CSOt + f loodingt

total in f lowt
(2)

The DRL agent needs to be trained before practical application. Its training process
consists of two steps: sampling and updating. The sampling process uses a DRL agent
to control a UDS model through simulation and collects state, action, and reward data
during control. The updating process selects a DRL update algorithm with respect to the
type of DRL agent and uses it to train the DRL agent with the collected data to maximize
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the weighted total reward, i.e., the q-value function of Equation (3); st, at, and rt are the
state, action, and reward of the DRL method; γ is the discount factor between 0 and 1, used
to guarantee the convergence of q value and govern the temporal context of the reward;
k is the number of forward time-steps; T is the total number of time-steps; π is the policy
function used by the agent to provide action with respect to state, and is a deep neural
network in this study. After multiple epochs of sampling and updating, the trained DRL
agent is able to find the action that obtains the highest q value in play, and thus it becomes
an expert in controlling UDS.

qπ(at, st) = E
[

T

∑
k=0

γkrt+k+1

∣∣∣at, st

]
(3)

DRLs can be classified as value-based or policy-based. The value-based DRL uses a
deep neural network to predict the q value of all the available actions and selects the action
with the highest corresponding q value for control (Mnih et al., 2015). This study is more
concerned with the influence of different state selections on DRL control output than on
the q value prediction; therefore, proximal policy optimization (PPO) is used. It belongs to
the policy-based models [29,30] which use a deep neural network to approximate policy
function (input state and output action). Then, this deep neural network is trained by
one of the gradient-based algorithms. In this study, Adam [31] is used as the training
algorithm. One special feature of the policy-based method is that its gradient cannot be
directly obtained by the derivatives of q value function. Instead, an estimator called policy
gradient (Equation (4)) [30] is used as the gradient of the deep neural network in the Adam
algorithm, where q is the q value, πθ(at|st) is the policy function based on a deep neural
network with parameter θ. The training process of PPO and its implementation of PPO in a
simulated environment is described in Figure 3.

g = Et[∇θ logπθ(at|st)q] (4)
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In this study, the architecture of the deep neural network is M-30-30-30-1. M is the size
of the input layer and is related to the selection of pipeline nodes and input type. There
are 3 hidden layers and each of them has 30 nodes. The output layer has 1 node, which
represents the action. Since there are a total of 7 pumps, each of them has two kinds of
settings (startup/shutoff), thus there are 27 combinations of all possible actions of pumps,
that is, the output of the deep neural network is between 1 and 128 in this study. The
trained system is named PPO in this study.

2.3. The Design of State Selection Scenarios

As mentioned above, existing DRL studies lack optimal design for system inputs, so
the influence of state selection on the DRL control effect is still unknown. This study inves-
tigates the influence of state selection on DRL through state design. Specifically, different
state selection scenarios based on different node locations and the type of information
(water level or flow) are provided to train different DRL agents for comparison.

The DRL agent needs to provide the action of pumps that can obtain the highest
q value in the next time period based on real-time states. Therefore, the data that reflects
the real-time situation of the UDS and provides effective information for pump controlling
can all be used as a state, and the most related one is the information on the forebay
storage tanks of all the pump stations. Meanwhile, pump stations need to balance the
water volume both upstream and downstream to avoid the situation in which a large
amount of stormwater and sewage water run into a node simultaneously. Therefore, with
the pump station as the center, the information on its upstream and downstream nodes
can also support the control of the DRL agent. The distance between the node and the
pump station can be used as a reference for node selection. Studies on control systems have
provided analysis methods of controllability of networks [32,33] and important nodes on a
network [34]. However, none of them is for black-box control systems of urban drainage
pipeline networks, and thus they need to be adjusted to fulfill the hydrodynamic properties
of pipeline systems. Therefore, they are not considered in this study.

Based on the above two points, the state selection scenarios designed in this study
are divided into four categories: storage tank nodes only (state-1), storage tank nodes and
upstream nodes (state-2), storage tank nodes and downstream nodes (state-3), and storage
tank nodes and both upstream and downstream nodes (state-4).

In addition to node location, the flow or water level information provided by each
node also affects DRL control performance. Therefore, the use of flow or water level is also
considered in the state selection. In the previous study, the flooding value was used as a
state of DRLs [19]. This is available in a simulated environment but is not considered in
this study due to the difficulty of flooding real-time monitoring in practical applications.

The state selection scenarios based on the integration of node location and information
types are shown in Table 3, and the location of each node is shown in Figure 2. Each
scenario is used to construct a PPO-based DRL (named PPO) to analyze the effect of state
selection on the control effectiveness. Since many studies have confirmed the necessity of
rainfall information for real-time control [14,19], real-time rain intensity is used as one of
the input states in all the scenarios.

Table 3. The scenarios of state selection.

Scenario Name Type of Nodes Info. Selected State, Node Names, and RG (Real-Time Rain Intensity)

state-1-wl Water-level
CC-storage, JK-storage, RG.state-1-fl Flow

state-1-wfl Both

state-2-1-wl Water-level
CC-storage, JK-storage, YS02001757, YS02001907, RG.state-2-1-fl Flow

state-2-1-wfl Both
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Table 3. Cont.

Scenario Name Type of Nodes Info. Selected State, Node Names, and RG (Real-Time Rain Intensity)

state-2-2-wl Water-level
CC-storage, JK-storage, YS02001757, YS02001907, YS02001664,

YS02001882, RG.
state-2-2-fl Flow

state-2-2-wfl Both

state-3-1-wl Water-level
CC-storage, JK-storage, WS02006248, WS02006229, RG.state-3-1-fl Flow

state-3-1-wfl Both

state-3-2-wl Water-level
CC-storage, JK-storage, WS02006248, WS02006229, WS02006116, RG.state-3-2-fl Flow

state-3-2-wfl Both

state-4-1-wl Water-level
CC-storage, JK-storage, YS02001757, YS02001907, WS02006248,

WS02006229, RG.
state-4-1-fl Flow

state-4-1-wfl Both

state-4-2-wl Water-level
CC-storage, JK-storage, YS02001757, YS02001907, YS02001664,

YS02001882, WS02006248, WS02006229, WS02006116, RG.
state-4-2-fl Flow

state-4-2-wfl Both

2.4. The Unit Cost of DRL Data Monitoring

The construction of a DRL real-time control system requires an online data monitoring
system, control actuators, a data and computing center, and a data transmission network.
The control actuators in this study are the pumps in the two pump stations. A data and
computing center is used to collect all the online monitoring data and run the DRL agent
to provide real-time control actions. Since dispatching facilities and a control center are
already available in this case area, the costs of these parts are the same for all the scenarios
and are ignored in this study.

The data transmission in the case study mainly relies on wireless base stations for real-
time communication. Since the case UDS is located in an urban area with well-developed
network facilities, there is no need to establish a dedicated network and the cost of this
part depends on the network communication service. The online data monitoring system
is used to obtain real-time water flow and water level data. The selection of flow or water
level leads to different costs of system construction as the price of their monitoring facilities
is significantly different.

Accordingly, the construction cost difference of all the state selection scenarios mainly
comes from the cost of the online data monitoring system. Thus, this cost is mainly
analyzed in this study to reveal the cost-effectiveness of each state selection. Referring to
the existing quotations of online monitoring service providers in five different regions of
China (Shanghai, Wuhan, Shenzhen, Chongqing, and Fujian), the unit prices of different
water level and flow monitoring, software support, and network communication services
are obtained and shown in Table 4, and the final cost can be calculated by multiplying the
unit price by the quantity.

Table 4. The unit cost of data monitoring and network communication service.

Unit Cost (CNY) Type Description

Water-level meter 6500~9000
Ultrasonic digital water level gauge,

photoelectric multipurpose water-level
gauge, radar water-level gauge.

This price includes power supply (lithium batteries or
solar energy), data collection and transmission
equipment, software support, and equipment

installation service.Flow meter 10,000~40,000 Doppler flow gauge, radar flow gauge

Network communication service 50~100 per month Wireless network or cable
broadband network

This price is related to the data transmission method
and the cost of the network service in different areas.

It is worth mentioning that the prices here are heavily influenced by the cost of
installation labor and network services in different regions of China, as well as the principles
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of monitoring equipment; therefore, there is a difference among them and they can only be
used as a reference.

3. Results and Discussion

Different PPOs are established based on different state selection scenarios, and they are
trained by 10 training rainfall events (Figure 2) using the method provided in Section 2.1.
Then, all the trained PPOs are used to control the UDS in 6 testing rainfall events (Figure 2)
through simulation and are compared with the HC in the case study area. All the control
processes have 8 h of time length, which includes 1 h before rainfall, 2 h of rainfall event
(training and testing rainfalls), and 5 h after rainfall. The control interval is 5 min. After
that, the construction costs of all the PPOs’ online data monitoring systems are analyzed
according to the price data in Section 2.4 as to the cost-effectiveness of different state
selection scenarios.

3.1. Training Process of DRLs

The reward sum of all the PPOs during the training process in the 10 rainfalls
are shown in Figure 4. Each PPO is named after its input scenario’s name in Table 3,
e.g., state-1-1 water level means the input of this PPO is the water level of CC-storage,
JK-storage. According to the training process, the total reward of different PPOs gradually
increases and eventually converges to −50, indicating that the training process can gradu-
ally improve the control effect of PPOs in CSO and flooding mitigation. The training speed
of PPOs using only water level or fewer nodes information (state-1-1) is slower compared
to the others. This shows that training a PPO using only water level information or less
node information as input is difficult. Since the final reward sum of all PPOs is close to
−50, the use of water level has a limited impact on the final training effect.

3.2. Control Effect of DRLs

All the trained PPOs were used to control the UDS model in six designed rainfalls.
The sum of the CSO and flooding volume during these control processes are provided in
Table 5. According to the results, all the PPOs achieved better control performance than HC,
which indicates the effectiveness of DRL in CSO and flooding mitigation and is consistent
with the existing studies. The results of PPO robustness can be found in our previous
research [19,20].

Table 5. The sum of CSO and flooding volume (103 m3) of PPO in the 10 test rainfalls.

Rain1 Rain2 Rain3 Rain4 Rain5 Rain6

HC 42.75 33.36 29.23 17.86 10.76 28.14
state-1-wl 41.06 31.54 27.33 15.98 8.77 26.38
state-1-fl 41.28 31.76 27.58 16.49 8.87 26.17

state-1-wfl 41.01 31.44 27.41 16.09 8.81 26.28
state-2-1-wl 41.04 31.53 27.51 16.37 8.71 26.74
state-2-1-fl 40.89 31.47 27.50 17.12 9.85 26.87

state-2-1-wfl 41.01 31.55 27.62 15.95 8.78 26.21
state-2-2-wl 40.98 31.34 27.37 15.92 8.77 26.30
state-2-2-fl 41.12 31.48 27.52 15.92 9.14 26.11

state-2-2-wfl 40.98 31.58 27.42 15.93 8.79 26.12
state-3-1-wl 41.14 31.66 27.64 16.52 8.79 26.55
state-3-1-fl 40.90 31.52 27.37 15.98 8.87 26.15

state-3-1-wfl 40.98 31.54 27.27 15.94 8.93 26.09
state-3-2-wl 42.26 33.17 28.42 17.35 10.41 27.66
state-3-2-fl 40.98 31.50 27.29 15.95 8.79 26.32

state-3-2-wfl 40.97 31.75 27.42 16.34 9.09 26.16
state-4-1-wl 41.01 31.54 27.39 16.05 9.00 26.14
state-4-1-fl 40.80 31.52 27.28 15.87 8.73 26.29

state-4-1-wfl 40.99 31.55 27.36 16.07 8.82 26.33
state-4-2-wl 41.06 31.55 27.37 15.95 8.74 26.26
state-4-2-fl 40.99 31.65 27.53 15.84 8.73 26.15

state-4-2-wfl 41.00 31.56 27.35 15.96 8.79 26.29
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Meanwhile, the performances of the PPOs were different. It can be found that simply
adding monitoring nodes was not necessarily effective in improving the control effect. Also,
flow-based PPO was more likely to achieve better performance than water-level-based PPO.
To further elaborate on these findings, we summarized and classified the above results and
obtained the following Tables 6 and 7 to illustrate the influence of node number, location,
and input type on the control effect.

Table 6. Node number and location vs. average control effect.

Rain1 Rain2 Rain3 Rain4 Rain5 Rain6

state-1 41.17 31.65 27.46 16.24 8.82 26.28
state-2 41.01 31.47 27.49 16.23 9.01 26.42
state-3 41.21 31.83 27.57 16.28 9.10 26.48
state-4 40.97 31.59 27.39 16.02 8.85 26.22

Table 7. Input type vs. average control effect.

Rain1 Rain2 Rain3 Rain4 Rain5 Rain6

Water level 41.22 31.76 27.58 16.31 9.03 26.58
Flow 40.99 31.56 27.44 16.17 9.00 26.29
Both 40.99 31.57 27.41 16.04 8.86 26.21

The average values of the PPOs’ control effects according to the number of input nodes
were calculated and are provided in Table 6, in which it can be seen that the performance
of PPO increased with the number of selected upstream nodes. Also, the worst case
in each rainfall was state-3, which shows that the use of downstream nodes was not
effective. Using upstream nodes as input (state-2) achieved better performance than using
downstream nodes (state-3), and it was much better when both upstream and downstream
were considered (state-4).

The average values of the PPOs’ control effect according to the type of input were also
calculated and are shown in Table 7. It can be seen that the use of water level as input was
the worst case, while the control effect of the PPO using water flow as input was better
than that of the PPO using water level as input. The PPOs using both have a certain level
of improvement, but it is not significant in some cases (e.g., Rain1 and Rain2). If we only
focus on the control effect, the PPO that considered the most nodes (state-4) and used water
flow as input was relatively better than others in this case.

3.3. Cost-Effectiveness Analysis

The cost-effectiveness analysis of all the scenarios is provided based on the unit price
in Table 4 and the performance in Table 5. In order to evaluate the control effect of PPOs
more specifically, their performances are reflected by calculating the Ratio of PPOs’ CSO
and flooding volume to HC’s in all the testing rainfall events (Equation (5), where CSOHC,i
and f loodingHC,i are the sum of CSO and flooding volumes of HC in ith test rainfall,
and CSOPPO,i and f loodingPPO,i are the sum of CSO and flooding volumes of PPO in
ith test rainfall).

Ratio =
1
6

6

∑
i=1

(
CSOHC,i + f loodingHC,i

)
−
(

CSOPPO,i + f loodingPPO,i

)
(

CSOHC,i + f loodingHC,i

) (5)

The result of the cost-effectiveness analysis is shown in Table 8. It can be seen that
the rise in the number of monitoring nodes gradually increases the system’s spending,
especially for the PPO based on flow input because the price of water flow monitoring
is much higher than water level monitoring. Meanwhile, when the Ratio of the system
is further considered, the state-4-1-fl works better than others because it achieves a good
control effect with an acceptable cost, which is 60,300~240,600 CNY.
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Table 8. Cost-effective analysis of different scenarios.

Scenario Name

Quantity

Total Cost (CNY) RatioWater-Level
Gauge Flow Gauge Communication

Service (1 Month)

state-1-wl 2 0
2

13,100~18,200 0.0853
state-1-fl 0 2 20,100~80,200 0.0769

state-1-wfl 2 2 33,100~98,200 0.0845

state-2-1-wl 4 0
4

26,200~36,400 0.0796
state-2-1-fl 0 4 40,200~160,400 0.0551

state-2-1-wfl 4 4 66,200~196,400 0.0849

state-2-2-wl 6 0
6

39,300~54,600 0.0874
state-2-2-fl 0 6 60,300~240,600 0.0807

state-2-2-wfl 6 6 99,300~294,600 0.0866

state-3-1-wl 4 0
4

26,200~36,400 0.0763
state-3-1-fl 0 4 40,200~160,400 0.0856

state-3-1-wfl 4 4 66,200~196,400 0.0856

state-3-2-wl 5 0
5

32,750~45,500 0.0205
state-3-2-fl 0 5 50,250~200,500 0.0864

state-3-2-wfl 5 5 82,750~245,500 0.0771

state-4-1-wl 6 0
6

39,300~54,600 0.0824
state-4-1-fl 0 6 60,300~240,600 0.0889

state-4-1-wfl 6 6 99,300~294,600 0.0840

state-4-2-wl 9 0
9

58,950~81,900 0.0865
state-4-2-fl 0 9 90,450~360,900 0.0872

state-4-2-wfl 9 9 148,950~441,900 0.0857

4. Conclusions

Although DRL has shown promise in real-time control of urban drainage systems,
there is still a lack of analysis on the optimization of system design and cost-effectiveness.
In this study, state design and cost estimation are employed to analyze the influence of the
state selection on DRL’s performance from the perspective of CSO and flooding mitigation
and cost-effectiveness by taking PPO as an example. The significance of this article is to
study the design and expenditure of DRL in urban drainage systems, providing support
for promoting the implementation of this method. The following conclusions are obtained.

The choice of different states affects the training process of PPO. The training speed of
PPO using only water level or a small number of nodes as input is relatively slower than
using water flow and more nodes as input. This indicates that it is difficult to train a PPO
based on water level and fewer nodes information.

Providing more upstream node information as input to PPO improves its control effect,
and using upstream node information on UDS is more effective than using downstream
information. The control effect is better when water flow is used as input than when
water level is used under the same conditions, while PPOs using both of them have a
certain level of improvement, but it is not significant in some cases. Therefore, purely
from the perspective of the control effect, the PPO using water flow in both upstream and
downstream nodes is relatively better in this case.

Although the performance of the PPOs using water flow as input is better compared
to the PPOs using water level, their design based on cost-effective analysis still needs to be
considered in the practical application because the cost of flow monitoring is higher than
that of water level monitoring. In this case, the PPO state-4-1-fl is recommended because of
its relatively low cost and acceptable control performance.
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