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Abstract: Typhoons and typhoon waves can cause disasters in coastal areas around the world. The
Taiwan Strait often experiences typhoons, especially in summer. Numerical models have been
adopted to predict typhoons and reduce losses. The Weather Research and Forecasting (WRF)
model is widely used in typhoon simulations, and the Simulating WAves Nearshore (SWAN) model
performs well in wave simulations. However, significant uncertainty remains in terms of choosing
suitable WRF physical parameterizations in different situations. To evaluate the effect of WRF
physical parameterizations on wind and wave simulations, 27 simulation experiments were designed.
Three typhoon events (Goni, Dujuan, and Meranti) with different tracks that influenced the Taiwan
Strait were simulated. Three parameters (wind speed, wind direction and significant wave height)
were assessed using Taylor diagrams, and it was found that the best simulation experiment changed
according to typhoon tracks and physical parameters. In wind speed simulation, the best simulation
experiment is 12 for typhoon Dujuan and 19 for typhoon Goni and Meranti. From the perspective
of wind direction simulation, experiments 26, 23, and 2 performed best for typhoons Goni, Dujuan,
and Meranti. And experiments 19, 1, and 20 had the best performances in significant wave height
simulation for typhoons Goni, Dujuan, and Meranti. The WRF-SWAN model using the best simulation
experiment reduced the error and exhibited good performance in the wind and wave simulations.
Skill scores of three parameters were all over 70 for typhoon Goni and 80 for typhoon Dujuan
and Meranti. The applicability of the best simulation experiments was demonstrated in typhoon
simulations with similar tracks. The accuracy of the wave simulation depended on wind speed, wind
direction, and their interaction. In addition, a scheme’s sensitivity changed with different typhoon
tracks. This study provides references for designing physical parameterizations for use with the
WRF-SWAN model, which may help to simulate typhoons and typhoon waves in the Taiwan Strait
more accurately in the future.

Keywords: WRF-SWAN; physical parameterizations; typhoon; significant wave height; buoy observation

1. Introduction

Typhoons and typhoon waves are terrible natural disasters that lead to significant
economic and human losses in coastal areas around the world [1–4]. The southeast coast of
China, which includes the Taiwan Strait, frequently experiences typhoons, which form over
the Northwest Pacific Ocean, especially in summer [5,6]. The waves induced by typhoons
threaten fisheries and navigation [3,7]. In recent years, expanding reclamation programs
have changed the land-sea distribution, which might result in more serious consequences
associated with typhoon events [8,9]. However, accurate typhoon and wave forecasts can
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help prevent the losses caused by typhoons and typhoon waves, especially in regions in
which typhoons frequently occur [10].

Numerical simulations with high temporal and spatial resolutions are playing an
increasingly important role in typhoon and typhoon wave studies [11–13]. The Weather
Research and Forecasting (WRF) model, developed by the National Center for Atmospheric
Research and the National Centers for Environmental Prediction, is a mesoscale meteoro-
logical model designed for atmospheric research and operational forecasting [14–16]. The
WRF model is widely applied in typhoon simulations and has been shown to perform
well in wind, temperature, pressure, and humidity simulations [17–20]. The Simulating
WAves Nearshore (SWAN) model, developed by the Delft University of Technology, is a
third-generation wave model designed to obtain realistic estimates of waves in coastal areas
from given wind conditions. It is widely adopted in studies concerning typhoon wave
simulations [21–23]. Reanalysis data are often used to provide wind inputs in the SWAN
model [24,25]. However, many studies show that wind inputs obtained from the WRF
model with high temporal and spatial resolutions can significantly improve the SWAN
wave simulation [26–30]. In the WRF-SWAN model, the design of WRF physical parame-
terizations has a significant influence on the accuracy of typhoon simulations [31–34].

The Taiwan Strait (21–26◦ N, 118–123◦ E) is located between Taiwan Island and Fu-
jian Province. This is the main path of typhoons that form over the Northwest Pacific
Ocean [35,36]. Typhoons are significantly influenced by islands that they pass near, for
example, Taiwan Island. This has acted to increase errors in wind simulations in the Taiwan
Strait during typhoon events [7,37]. Suitable physical parameterization combinations can
reduce the WRF model’s wind simulation errors and are also helpful in reducing the SWAN
model’s wave simulation errors [21,24,38,39]. The effects of the Taiwan Island change with
typhoon tracks and suitable physical parameterization can also differ [7,36]. However,
significant uncertainty remains in choosing suitable WRF physical parameterization com-
binations in the WRF-SWAN model according to the typhoon track to produce relatively
reliable typhoon and wave simulations in the Taiwan Strait [39,40].

This study aimed to investigate the effect of WRF physical parameterizations on
typhoon and wave simulations in the Taiwan Strait and provide references for the selection
of WRF physical parameterizations for the WRF-SWAN model, which might help to predict
typhoons and typhoon waves more accurately and reduce human and financial losses.

2. Methodology

Three typhoon events with different tracks were simulated using the WRF-SWAN
model. Twenty-seven simulation experiments were designed to investigate the effect of
WRF physical parameterizations on simulation accuracy. The simulated wind speed, wind
direction, and significant wave height were compared with buoy observation data, and
the performances of different WRF physical parameterizations were assessed using Taylor
diagrams. Details about the model, experimental design, Taylor diagrams, and observation
data are described below.

2.1. WRF Model

The WRF model version 3.9.1 was used to simulate the typhoon events in this study.
The source code and a detailed description can be obtained from the official site [41]. The
WRF model domain consists of 280 × 180 grids with a 25 km resolution that covers East
Asia and the Pacific, including the Taiwan Strait (21–26◦ N, 118–123◦ E; Figure 1). The
wide model domain can simulate the formation, development, and dissolution of typhoons
and improve the accuracy of simulated wind [42]. The characteristics of the WRF grid are
shown in Table 1. The FNL reanalysis data were used to provide meteorological initial and
boundary conditions, the spatial resolution was 1 × 1 degrees, and the temporal resolution
was 6 h. We applied a 4-dimensional nudging technique in the WRF simulation. The wind
over the boundary layer would be nudged per 6 h to make modeled trajectory and intensity
correct. The wind in the boundary layer is not influenced by nudging, which could develop
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and interact with terrain freely. The simulations started 3 days before the formation of
typhoons and ended at the dissolution of typhoons. The first 3 days were regarded as
the spin-up of the model. The simulation start and end times of 3 typhoons are shown in
Table 2.
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Figure 1. The Weather Research and Forecasting (WRF) simulated domain (whole figure) and the
Simulating WAves Nearshore (SWAN) simulated region (orange square). The tracks of typhoon Goni
(purple line), Dujuan (red line), and Meranti (blue line). Red triangles are the locations of buoys in
the Taiwan Strait.

Table 1. The characteristics of WRF grids.

Grid Type Arakawa C

Map projection Mercator
Time step 120 s

Vertical level 30
Top pressure 5000 Pa

Table 2. The simulation start and end times of three typhoons.

Simulation Start Time (UTC) Simulation End Time (UTC)

Goni 8 September 2015, 00:00 27 August 2015, 00:00
Dujuan 17 September 2015, 00:00 30 September 2015, 00:00
Meranti 9 July 2016, 00:00 17 September 2016, 00:00

2.2. SWAN Model

The SWAN model version 40.85 was used to simulate the typhoon wave during
typhoon events in this study. The SWAN model domain consists of a 200 × 120 grid with
a 0.1◦ resolution that covers the Taiwan Strait (21–26◦ N, 118–123◦ E; Figure 1). Various
related sets are shown in Table 3. The WRF model provided wind speed and wind direction
at a 10 m height to simulate the wave in the SWAN model, the spatial resolution was
25 km, and the temporal resolution was 1 hour. The initial conditions in the SWAN model
were calculated using the WRF wind input. The wave spectrum at the boundary of the
SWAN grid is defined as JONSWAP in the SWAN model. JONSWAP could give boundary
conditions according to WRF wind input. The simulation period was consistent with the
WRF model, and the first 3 days were used to spin up the model.
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Table 3. Basic set of the SWAN model.

Mode Two Dimensions

Coordinate system Spherical
Grid type Regular

Minimum depth 0.05 m
Model physics Gen3

2.3. Experimental Design

Previous studies suggest that the choice of microphysics, longwave/shortwave ra-
diation, and cumulus parameterizations significantly influence typhoon simulations in
the WRF model [39,43,44]. To investigate the effect of these 3 types of parameteriza-
tions on typhoon simulations, 3 popular choices from each type were adopted in this
study. The Lin, WSM6, and Morrison microphysics parameterizations can all simulate
the microphysics processes in typhoon events [45,46]. The longwave/shortwave radiation
parameterization is very important in energy absorption, conversion, and transmission
processes. RRTM/Dudhia, CAM/CAM, and RRTMG/RRTMG are widely used in typhoon
simulation studies [47,48]. Three cumulus parameterizations (KF, Grell 3D, and TDK) can
all describe the cumulus convection process during typhoon events [49–51]. The 27 exper-
iments are shown in Table 4. In addition, the Yonsei University scheme was adopted as
the planetary boundary layer parameterization and the Noah scheme was adopted as the
land-surface parameterization, according to previous studies [12,52,53].

Table 4. Twenty-seven physical parameterization combinations for typhoon simulation experiments.

Experiment ID Microphysics Long/Short Wave
Radiation Cumulus

1 Lin RRTM/Dudhia KF
2 Lin RRTM/Dudhia G3D
3 Lin RRTM/Dudhia TDK
4 Lin CAM/CAM KF
5 Lin CAM/CAM G3D
6 Lin CAM/CAM TDK
7 Lin RRTMG/RRTMG KF
8 Lin RRTMG/RRTMG G3D
9 Lin RRTMG/RRTMG TDK
10 WSM6 RRTM/Dudhia KF
11 WSM6 RRTM/Dudhia G3D
12 WSM6 RRTM/Dudhia TDK
13 WSM6 CAM/CAM KF
14 WSM6 CAM/CAM G3D
15 WSM6 CAM/CAM TDK
16 WSM6 RRTMG/RRTMG KF
17 WSM6 RRTMG/RRTMG G3D
18 WSM6 RRTMG/RRTMG TDK
19 Morrison RRTM/Dudhia KF
20 Morrison RRTM/Dudhia G3D
21 Morrison RRTM/Dudhia TDK
22 Morrison CAM/CAM KF
23 Morrison CAM/CAM G3D
24 Morrison CAM/CAM TDK
25 Morrison RRTMG/RRTMG KF
26 Morrison RRTMG/RRTMG G3D
27 Morrison RRTMG/RRTMG TDK

The same WRF physical parameterizations can exhibit different performances on
different typhoon tracks because physical parameterizations perform better in different
situations and regions. Three representative typhoon events (Goni, Dujuan, and Meranti)
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were chosen to analyze the effect of WRF physical parameterizations on the typhoon
simulation with different tracks and the wave simulation in the Taiwan Strait.

Typhoon Goni formed on 12 August 2015 and reached typhoon strength on August 15,
first moving toward the west and turning north on the southeast side of Taiwan (Figure 1).
The maximum wind speed detected near the typhoon center was over 50 m/s, and the
Taiwan Strait was only impacted by the outer wind field of the typhoon.

Typhoon Dujuan started as a tropical depression on 20 September 2015 and became a
strong tropical storm on 24 September. Dujuan reached its peak intensity on 26 September
when it became a super typhoon with a sustained wind of 55 m/s. The typhoon moved
westward, made landfall on 28 September in Taiwan and made landfall a second time
on 29 September at Putian, Fujian (Figure 1). The typhoon’s structure broke down to a
significant extent after landfall in Taiwan, and it weakened to a tropical storm after landfall
at Fujian.

Typhoon Meranti started as a tropical storm on 10 September 2016 over the North-
western Pacific Ocean and intensified into a super typhoon in just 2 days. Typhoon Meranti
moved toward the northwest and made landfall at Xiamen, Fujian, without passing over
Taiwan (Figure 1). It is regarded as the strongest typhoon to make landfall in Fujian from
1949 to 2016.

These 3 typhoons all impacted the Taiwan Strait in different ways. Typhoon Goni did
not pass over Taiwan and the Taiwan Strait, and so this area was only impacted by the
outer wind field. The typhoons Dujuan and Meranti passed over the Taiwan Strait, but
Meranti did not pass over Taiwan Island. The tracks of these 3 typhoon events are shown
in Figure 1.

In addition, ensemble prediction of many experiments sometimes could improve
simulation accuracy and was adopted in this study.

2.4. Taylor Diagram

Taylor diagrams were used to assess the experimental performances in this study.
They can be used to assess the agreement between a set of experiments and a reference
data set by summarizing the metrics of the correlation (R), the centered root mean square
difference (E), and the standard deviation (σ) in a single graph [54]. The value of σ is
calculated by Equation (1)

σ =

√√√√√ n
∑

i=1
(xi − xmean)

2

n
(1)

where n is the total number of discrete points, and xmean is the mean value of the field. The
value of σ denotes the amplitude of variation.

The R-value between f (experiment) and r (reference data), which are defined as N
discrete points, is defined by Equation (2)

R =

1
N

N
∑

n=1
( fn − fmean)(rn − rmean)

σfσr
(2)

where fmean and rmean are the mean values and σf and σr are the standard deviations of f and
r, respectively. R is often used to quantify the pattern similarity between the experiment
and reference data.

The E value is defined by Equation (3)

E =

{
1
N

N

∑
n=1
{( fn − fmean)− (rn − rmean)}2

} 1
2

(3)

The value of E refers to the difference between the experiment and reference data.
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All 4 statistics (R, E, σf, and σr) are useful in assessing experiments and the relationship
between them is shown in Equation (4).

E2 = σ2
f + σ2

r − 2σfσrR (4)

The relationship is consistent with the law of cosines and allows 4 statistics to be
displayed on a single diagram.

Because the units of variables are different, their statistics should be nondimensional-
ized before being compared with each other. For each variable, we choose to normalize the
E and the 2 standard deviations by the standard deviation of the reference data (En = E/σr,
σn = σf/σr, and σrn = 1) and plot the normalized diagram. The details of the diagram are
described below.

A good experiment should accurately simulate the amplitude and pattern of variables.
However, when an experiment has a lower R (a lower pattern similarity) and a lower En
(closer agreement with the reference data), has the model performance improved or not? To
comprehensively assess the model performance, the skill score (S) is defined as Equation (5)

S =
2 + 2R

(σn + 1/σn)
2 × 100 (5)

As the model simulation approaches the reference data, S approaches 100.
Wind speed and wind direction from wind simulations are very important for wave

simulations. In wave simulations, significant wave height is an essential parameter and is
closely related to wave forecasting. As a result, we used a Taylor diagram to analyze the
accuracy of the simulated wind speed, wind direction, and significant wave height [55,56].

2.5. Other Data

In our study, the best typhoon track data from the China Meteorological Administra-
tion Tropical Cyclone Data Center’s official website were used to provide the best typhoon
tracks [57].

Hourly buoy observation data from typhoon episodes from the Fujian Marine Forecast
Station were used to provide the wind speed and wind direction at a 10 m height and
significant wave height in our research [58]. The precision of the observation data is to
2 significant figures, and the locations of buoys are shown in Figure 1, i.e., they almost
cover the entire Taiwan Strait area.

3. Model Result
3.1. Evaluation of the Wind Speed Simulation

Twenty-seven simulation experiments for each typhoon event obtained from the
WRF model were used to evaluate the performance of the physical parameterization
combinations. Taylor diagrams of the wind speed for 3 typhoon events and 27 experiments
are shown in Figure 2. Each red dot stands for an experiment, and the blue dots stand
for the ensemble prediction of 27 experiments. The radial distance from the dot to the
origin is proportional to the σn of an experiment. The R-value between the experiment
and observation is given by the azimuthal position. The En between the experiment and
observation is proportional to the distance from the dot to the reference point. The results
suggest that the R-, σn-, and En-values of the wind speed all changed significantly between
experiments. The same experiment exhibited different performances for typhoons with
different tracks, which demonstrates that typhoon track and physical parameterization
both affect the simulation accuracy. The performance of ensemble prediction is better than
many experiments but not the best experiment.
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In terms of R, details about R in the three typhoon events are shown in Table 5. The
error range, the best value, and the best simulation experiment for the three typhoon
simulations were all different, and the simulation of typhoon Goni exhibited the worst
performance in terms of R. According to the best simulation experiments, the ranking of
performance for the three typhoon events was Dujuan > Meranti > Goni.

Table 5. R statistics of the wind speed simulation in the three typhoon events.

Correlation Range Best Value Best Experiment

Goni 0.55–0.65 0.636 5
Dujuan 0.7–0.8 0.769 11
Meranti 0.65–0.8 0.762 6

From the perspective of σn, the error range, best value, and best experiment are
shown in Table 6. All values were less than one, which indicated that the amplitude of the
simulated variation was less than the amplitude of the observed variation. According to
the best simulation experiments, the ranking of performance for the three typhoon events
was also Dujuan > Meranti > Goni.

Table 6. σn statistics of the wind speed simulation in the three typhoon events.

σn Range Best Value Best Experiment

Goni 0.6–0.8 0.817 19
Dujuan 0.75–0.9 0.897 3
Meranti 0.7–0.85 0.824 23

The En statistics are shown in Table 7. According to the best experiment, the ranking of
performance for the three typhoon events was consistent with that for R and σn. However,
the best simulation experiments in the three statistics (R, σn, and En) were different for the
same typhoon simulation. In fact, a change in the physical parameterizations in the model
produced improvements in one aspect of a simulation and deterioration in other aspects.
No physical parameterization was the best for every aspect.

Table 7. En statistics of the wind speed simulation in the three typhoon events.

En Range Best Value Best Experiment

Goni 0.75–0.85 0.766 5
Dujuan 0.65–0.75 0.639 11
Meranti 0.65–0.75 0.641 21

Considering the R, σn, and En as a whole, skill score (Equation (4)) was adopted to
assess the performance of the different experiments. The results suggest that experiment
19 exhibited the best performance in the Goni simulation, with a skill score of 78.5. The best
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simulation experiments in the Dujuan and Meranti typhoons were 12 (86.3) and 19 (83.9).
The best simulation experiments in terms of skill score were different from those identified
using the single statistics, which demonstrates that an improvement in one aspect might be
offset by a deterioration in another. Despite this, the ranking of the best skill scores for the
three typhoon events was Dujuan > Meranti > Goni.

The temporal distributions of the simulated wind speed in the best simulation ex-
periments for the three typhoons are shown in Figures 3–5 and were compared with the
observation data from the buoys. The results suggest that the simulated typhoons with
different tracks performed well in the wind speed simulation. The maximum wind speeds
were almost accurately simulated, especially in the Dujuan Typhoon.
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The mean skill scores of the schemes for the three typhoon events are shown in Table 8,
which were calculated using the skill scores of the experiments containing special physical
parameterizations. For example, the mean skill score of the Lin scheme is the average value
of the Lin-contained experiments, i.e., experiments 1–9. The results suggest that cumulus
schemes had the greatest impact on the skill score in the three typhoon simulations. From
the perspective of the mean skill score, Morrison was the best microphysical scheme in
the three typhoon events. In the three pairs of longwave/shortwave radiation schemes,
CAM/CAM performed best for typhoons Goni and Meranti, while RRTM/Dudhia ex-
hibited the best performance for typhoon Dujuan. KF was the best cumulus scheme for
typhoon Goni, and TDK performed best for typhoons Dujuan and Meranti. In summary,
Morrison, CAM/CAM, and KF produced the best experiment (experiment 22) for typhoon
Goni according to the highest mean skill score. However, this result is inconsistent with the
above results, which indicates that the schemes might affect each other, and the total perfor-
mance of parameterization combinations does not equal the sum of single parameterization.
A similar situation was also observed for typhoon Dujuan.

Table 8. Mean skill score of the single physical parameterization in the wind speed simulation.

Physical Parameterization Goni Dujuan Meranti

Microphysics Lin 73.00 83.87 78.70
WSM6 73.86 83.99 78.86

Morrison 75.48 84.37 81.23
Longwave/shortwave radiation RRTM/Dudhia 75.26 84.66 80.01

CAM/CAM 75.59 83.86 80.35
RRTMG/RRTMG 71.48 83.72 78.44

Cumulus KF 75.93 84.23 79.70
G3D 74.62 83.04 78.37
TDK 71.79 84.97 80.74

3.2. Evaluation of the Wind Direction Simulation

Wind direction is another basic parameter in wind simulations other than wind speed.
The accuracy of the simulated wind direction also significantly affects the wave simulation.
The direction of the north wind is 0 degrees, the east wind is 90 degrees, the south wind
is 180 (−180) degrees, and the west wind is −90 degrees. Taylor diagrams of the wind
direction for the three typhoon events and 27 experiments are shown in Figure 6.
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The result indicates that the wind direction errors in the three typhoon events were
different from the wind speed errors, which demonstrates that the same physical parameter-
ization had different effects on the wind speed and wind direction. The choice of physical
parameterization had a significant impact on the wind direction accuracy, especially in the
Dujuan simulation. In addition, there is a clear gap between the performances of ensemble
prediction and the best experiment, especially in the Dujuan and Meranti simulations.

The R, σn, and En statistics for the wind direction simulation are shown in Tables 9–11.
In the three statistics, the difference between the worst value and the best value was larger
than that observed in the wind speed simulation. According to the best value, the ranking of
performance in the three typhoon events was Dujuan > Goni > Meranti. The best simulation
experiments in the three statistics were different from each other; thus, the skill score was
helpful in assessing the overall performance of the experiments. The skill score results
suggest that experiments 26 (90.43), 23 (92.39), and 2 (86.60) were the best experiments for
typhoons Goni, Dujuan, and Meranti. The differing best simulation experiments in the
three typhoon events show that the performance of physical parameterization changed
with typhoon tracks.

Table 9. R statistics of the wind direction simulation in the three typhoon events.

Correlation Range Best Value Best Experiment

Goni 0.5–0.9 0.914 26
Dujuan 0.15–0.95 0.948 23
Meranti 0.3–0.8 0.791 2

Table 10. σn statistics of the wind direction simulation in the three typhoon events.

σn Range Best Value Best Experiment

Goni 0.6–1.1 0.993 6
Dujuan 0.6–1.5 0.998 24
Meranti 0.75–1.1 1.01 24

Table 11. En statistics of the wind direction simulation in the three typhoon events.

En Range Best Value Best Experiment

Goni 0.4–0.9 0.409 14
Dujuan 0.3–1.5 0.322 23
Meranti 0.6–1.2 0.614 2

The temporal distributions of the simulated wind directions in the best simulation
experiments for the three typhoons are shown in Figures 7–9 and were compared with the
observation data from the buoys. The results indicate that there were certain differences
between the simulated wind directions and buoy observations, especially for the Meranti
simulation. Because the temporal resolution of the meteorological reanalysis data was only
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6 h, certain small-scale wind direction changes might not have been simulated well. How-
ever, the wind direction trends were approximately accurate for the three typhoon events.
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Figure 9. The temporal distributions of wind directions (degree) obtained from experiment 2 (blue
dot) and buoy observations (red dot) during typhoon Meranti at the locations of four buoys.

The mean skill scores for each physical scheme for the three typhoon events are shown
in Table 12. From the perspective of mean skill score, experiments 27 and 13 were the
best simulation experiments for typhoons Goni and Meranti, which is different from the
above results and demonstrates that 27 experiments were necessary. According to the mean
skill score, longwave/shortwave radiation had the greatest effect on the skill score of the
simulated wind directions.

Table 12. Mean skill score of the single physical parameterization in the wind direction simulation.

Physical Parameterization Goni Dujuan Meranti

Microphysics Lin 88.31 70.97 76.06
WSM6 91.40 74.16 76.45

Morrison 93.73 82.44 73.62
Longwave/shortwave radiation RRTM/Dudhia 93.82 74.88 72.79

CAM/CAM 85.02 84.07 78.52
RRTMG/RRTMG 94.59 68.62 74.81

Cumulus KF 86.39 73.99 77.51
G3D 93.41 83.05 75.88
TDK 93.62 70.52 72.74

The different errors, the best simulation experiments, and the scheme sensitivities
in the wind speed and wind direction simulations suggest that the effects of physical
parameterization on the wind speed and wind direction were different.

3.3. Evaluation of the Significant Wave Height Simulation

The accuracy of the simulated wind speed and wind direction both had a significant
impact on the significant wave height simulation. However, the performance of physical
parameterizations and the best simulation experiments were different for the wind speed
and wind direction. It remains a question whether a suitable simulation experiment for
significant wave height would refer to the wind speed simulation or the wind direction
simulation. To address the question, wind data obtained from 27 experiments for each
typhoon event were provided to simulate the significant wave height in the SWAN model.
The results were used to analyze the effect of WRF physical parameterization combinations
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on the accuracy of the significant wave height simulation. Taylor diagrams of the significant
wave height during the three typhoon events are shown in Figure 10.
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The result indicates that the significant wave height simulation error was different
from that observed in the wind speed and wind direction simulations and was influenced
by both of them. However, the significant wave height error was similar to the wind speed
error, and the differences caused by the experiments were relatively small. The rankings
of ensemble prediction in three typhoon simulations were all almost between the 10th
and 20th.

The R, σn, and En statistics of the significant wave height simulation are shown
in Tables 13–15. In the three statistics, the error ranges were the smallest among the
three parameters. According to the best value, the ranking of performance for the three
typhoon events is Dujuan > Meranti > Goni, which is consistent with the wind speed
result. The best simulation experiments in the three statistics were also different, so the
skill score was necessary to evaluate the experiment performances of the three physical
parameters and the three typhoon tracks. The skill score results suggest that experiments
19 (71.47), 1 (83.96), and 20 (80.99) were the best simulation experiments for typhoons Goni,
Dujuan, and Meranti. The best simulation experiments for the significant wave height
in the three typhoon events were different from that observed for the wind speed and
wind direction because significant wave height is related to both of them. Therefore, the
suitable physical parameterization combinations for the significant wave height should
be considered alone, and the best choice should not be simply selected from the wind
speed or direction simulations. In addition, interestingly, some experiments had better
performances in terms of wind speed and wind direction compared to the best experiments
for the significant wave height. This indicates that the total effect of wind on the accuracy
of the significant wave height does not simply equal the sum of the performances of the
wind speed and wind direction.

Table 13. R statistics of the significant wave height simulation in the three typhoon events.

Correlation Range Best Value Best Experiment

Goni 0.45–0.55 0.519 5
Dujuan 0.7–0.8 0.789 11
Meranti 0.7–0.8 0.776 10

Table 14. σn statistics of the significant wave height simulation in the three typhoon events.

Σn Range Best Value Best Experiment

Goni 0.6–0.7 0.712 19
Dujuan 0.75–0.85 0.822 1
Meranti 0.65–0.75 0.766 5
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Table 15. En statistics of the significant wave height simulation in the three typhoon events.

En Range Best Value Best Experiment

Goni 0.8–0.9 0.839 6
Dujuan 0.6–0.7 0.629 11
Meranti 0.6–0.7 0.639 10

The temporal distributions of the simulated significant wave heights from the best
simulation experiments for the three typhoons are shown in Figures 11–13 and were
compared with the observation data from the buoys. The trend of the simulated significant
wave height was similar to that of the buoy observations, and high values were simulated
with relative accuracy. The changes in significant wave height during typhoons Dujuan
and Meranti were more intense compared to those during typhoon Goni, which might
have been influenced by the different typhoon tracks.
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The mean skill scores of each physical scheme for the three typhoon events are shown
in Table 16. The differences caused by microphysics parameterizations were the smallest,
and longwave/shortwave radiation parameterizations had the most obvious impact on the
skill scores for the three typhoons. The results are consistent with the schemes’ sensitivities
for wind direction.

Table 16. Mean skill score for the single physical parameterization in the significant wave height simulation.

Physical Parameterization Goni Dujuan Meranti

Microphysics Lin 64.15 82.53 77.24
WSM6 64.51 82.39 76.28

Morrison 66.62 83.15 76.17
Longwave/shortwave radiation RRTM/Dudhia 67.01 83.21 78.08

CAM/CAM 65.78 82.49 76.35
RRTMG/RRTMG 62.49 82.37 75.27

Cumulus KF 66.98 83.05 76.33
G3D 64.83 82.25 77.66
TDK 63.47 82.76 75.70

3.4. Applicability of the Best Simulation Experiments

The above results show the best simulation experiments for different parameters and
typhoon tracks. However, the applicability of the best simulation experiments derived from
typhoons Goni, Dujuan, and Meranti remains to be analyzed. Three typhoons with similar
tracks (Noul, Soudelor, and Nepartak; Figure 14) were simulated using 27 experiments.

The results suggest that the ensemble prediction of 27 experiments was not the best.
The best simulation experiments for typhoons Goni, Dujuan, and Meranti are the best
simulation experiments for typhoons with similar tracks. The skill scores of the wind speed,
wind direction, and significant wave height obtained from the best simulation experiments
for the three typhoons are shown in Table 17. The ranking of best performances in different
parameters is wind direction > wind speed > significant wave height, which is consistent
with the results observed for typhoons Goni, Dujuan, and Meranti.
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Table 17. Skill scores of the wind speed, wind direction, and significant wave height obtained from
the best simulation experiments for typhoons Noul, Soudelor, and Nepartak.

Skill Score Noul Soudelor Nepartak

Wind speed 79.51 87.6 82.31
Wind direction 89.82 92.66 86.42

Significant wave height 70.12 85.71 70.88

4. Conclusions

Three typhoon events (Goni, Dujuan, and Meranti) were selected to investigate the
effects of WRF physical parameterization combinations on the accuracy of wind and wave
estimations in the Taiwan Strait. Twenty-seven experiments were designed using three
microphysics, longwave/shortwave radiation, and cumulus schemes. Wind speed, wind
direction, and significant wave height from the 27 experiments were assessed using Taylor
diagrams. The skill score and mean skill score of single schemes were used to establish the
best simulation experiments and scheme sensitivities in different situations.

The results suggest that the choice of simulation experiments has a significant influence
on the accuracy of the wind and wave estimations in the WRF-SWAN model. The ranking
of influence on parameters was wind direction > wind speed > significant wave height.
Significant wave height errors depend on the wind speed error and wind direction error,
but the total error of wind speed and wind direction does not simply equal the sum of
their errors.

The performance of the physical parameterization combination does not equal the
sum of single schemes’ performances. The best simulation experiments for typhoon esti-
mation change with varying parameters and typhoon tracks. In wind speed simulation,
experiment 12 was the best choice for typhoon Dujuan and experiment 19 was the best
choice for typhoon Goni and Meranti. From the perspective of wind direction simulation,
experiments 26, 23, and 2 had the best performances for typhoons Goni, Dujuan, and
Meranti. Furthermore, experiments 19, 1, and 20 performed best in significant wave height
simulation for typhoons Goni, Dujuan, and Meranti. When using the best simulation
experiments, the accuracy of the three parameters improved significantly, and the results
were relatively accurate. The skill scores of three parameters were all over 70 for typhoon
Dujuan and 80 for typhoon Dujuan and Meranti. To investigate the applicability of the best
simulation experiments, three typhoons with similar tracks (Noul, Soudelor, and Nepartak)
were selected. The results indicate that the best simulation experiments also performed best
in typhoons with similar tracks. In addition, scheme sensitivity is related to the parameters.
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The most sensitive scheme type was shown to be cumulus for the wind speed simulation
and longwave/shortwave radiation for the wind direction and significant wave height.

This study will help scientists choose suitable physical parameterization combinations
for the WRF-SWAN model and improve simulation accuracy.

In addition, the air-sea interaction process is an important topic in numerical simu-
lations. In the WRF-SWAN model, the WRF model provides the wind input with a high
spatial and temporal resolution to the SWAN model, which improves the accuracy of the
simulated wave. In addition, the accuracy of the wind estimation can be improved when
the SWAN model provides the sea surface roughness to the WRF model. This will form the
basis of our future research direction.
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